首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of biodegradation treatment processes for oil sands process-affected water (OSPW) has been progressing in recent years with the promising potential of biofilm reactors. Previously, the granular activated carbon (GAC) biofilm process was successfully employed for treatment of a large variety of recalcitrant organic compounds in domestic and industrial wastewaters. In this study, GAC biofilm microbial development and degradation efficiency were investigated for OSPW treatment by monitoring the biofilm growth on the GAC surface in raw and ozonated OSPW in batch bioreactors. The GAC biofilm community was characterized using a next-generation 16S rRNA gene pyrosequencing technique that revealed that the phylum Proteobacteria was dominant in both OSPW and biofilms, with further in-depth analysis showing higher abundances of Alpha- and Gammaproteobacteria sequences. Interestingly, many known polyaromatic hydrocarbon degraders, namely, Burkholderiales, Pseudomonadales, Bdellovibrionales, and Sphingomonadales, were observed in the GAC biofilm. Ozonation decreased the microbial diversity in planktonic OSPW but increased the microbial diversity in the GAC biofilms. Quantitative real-time PCR revealed similar bacterial gene copy numbers (>109 gene copies/g of GAC) for both raw and ozonated OSPW GAC biofilms. The observed rates of removal of naphthenic acids (NAs) over the 2-day experiments for the GAC biofilm treatments of raw and ozonated OSPW were 31% and 66%, respectively. Overall, a relatively low ozone dose (30 mg of O3/liter utilized) combined with GAC biofilm treatment significantly increased NA removal rates. The treatment of OSPW in bioreactors using GAC biofilms is a promising technology for the reduction of recalcitrant OSPW organic compounds.  相似文献   

2.
Batch experiments were performed to evaluate biodegradation of raw and ozonated oil sands process-affected water (OSPW) under denitrifying anoxic and nitrifying aerobic conditions for 33 days. The results showed both the anoxic and aerobic conditions are effective in degrading OSPW classical and oxidized naphthenic acids (NAs) with the aerobic conditions demonstrating higher removal efficiency. The reactors under nitrifying aerobic condition reduced the total classical NAs of raw OSPW by 69.1 %, with better efficiency for species of higher hydrophobicity. Compared with conventional aerobic reactor, nitrifying aerobic condition substantially shortened the NA degradation half-life to 16 days. The mild-dose ozonation remarkably accelerated the subsequent aerobic biodegradation of classical NAs within the first 14 days, especially for those with long carbon chains. Moreover, the ozone pretreatment enhanced the biological removal of OSPW classical NAs by leaving a considerably lower final residual concentration of 10.4 mg/L under anoxic conditions, and 5.7 mg/L under aerobic conditions. The combination of ozonation and nitrifying aerobic biodegradation removed total classical NAs by 76.5 % and total oxy-NAs (O3–O6) by 23.6 %. 454 Pyrosequencing revealed that microbial species capable of degrading recalcitrant hydrocarbons were dominant in all reactors. The most abundant genus in the raw and ozonated anoxic reactors was Thauera (~56 % in the raw OSPW anoxic reactor, and ~65 % in the ozonated OSPW anoxic reactor); whereas Rhodanobacter (~40 %) and Pseudomonas (~40 %) dominated the raw and ozonated aerobic reactors, respectively. Therefore, the combination of mild-dose ozone pretreatment and subsequent biological process could be a competent choice for OSPW treatment.  相似文献   

3.
Treatment of oil sands process-affected water (OSPW) using biodegradation has the potential to be an environmentally sound approach for tailings water reclamation. This process is both economical and efficient, however, the recalcitrance of some OSPW constituents, such as naphthenic acids (NAs), require the pre-treatment of raw OSPW to improve its biodegradability. This study evaluated the treatment of OSPW using ozonation followed by fluidized bed biofilm reactor (FBBR) using granular activated carbon (GAC). Different organic and hydraulic loading rates were applied to investigate the performance of the bioreactor over 120 days. It was shown that ozonation improved the adsorption capacity of GAC for OSPW and improved biodegradation by reducing NAs cyclicity. Bioreactor treatment efficiencies were dependent on the organic loading rate (OLR), and to a lesser degree, the hydraulic loading rate (HLR). The combined ozonation, GAC adsorption, and biodegradation process removed 62 % of chemical oxygen demand (COD), 88 % of acid-extractable fraction (AEF) and 99.9 % of NAs under optimized operational conditions. Compared with a planktonic bacterial community in raw and ozonated OSPW, more diverse microbial communities were found in biofilms colonized on the surface of GAC after 120 days, with various carbon degraders found in the bioreactor including Burkholderia multivorans, Polaromonas jejuensis and Roseomonas sp.  相似文献   

4.
Effects of operating lab-scale nitrifying membrane bioreactors (MBR) at short solids retention times (SRT = 3, 5 and 10d) were presented with focus on reactor performance and microbial community composition. The process was capable of achieving over 87% removal of ammonia and 95% removal of chemical oxygen demand (COD), almost regardless of SRT. The denaturing gradient gel electrophoresis (DGGE) analysis shown that bacterial communities evolved in time in a similar way at different SRT. The results of clone library analysis indicated that Betaproteobacteria was the dominant bacterial group in all the reactors but there were significant difference of species for different SRT with higher species diversity at longer SRT. Ammonia and COD removal efficiencies were not correlated with the number of bacterial species or their diversity.  相似文献   

5.
The anaerobic packed-bed (AP) and hybrid packed-bed (HP) reactors containing methanogenic microbial consortia were applied to treat synthetic soft drink wastewater, which contains polyethylene glycol (PEG) and fructose as the primary constituents. The AP and HP reactors achieved high COD removal efficiency (>95%) after 80 and 33 days of the operation, respectively, and operated stably over 2 years. 16S rRNA gene pyrotag analyses on a total of 25 biofilm samples generated 98,057 reads, which were clustered into 2,882 operational taxonomic units (OTUs). Both AP and HP communities were predominated by Bacteroidetes, Chloroflexi, Firmicutes, and candidate phylum KSB3 that may degrade organic compound in wastewater treatment processes. Other OTUs related to uncharacterized Geobacter and Spirochaetes clades and candidate phylum GN04 were also detected at high abundance; however, their relationship to wastewater treatment has remained unclear. In particular, KSB3, GN04, Bacteroidetes, and Chloroflexi are consistently associated with the organic loading rate (OLR) increase to 1.5 g COD/L-d. Interestingly, KSB3 and GN04 dramatically decrease in both reactors after further OLR increase to 2.0 g COD/L-d. These results indicate that OLR strongly influences microbial community composition. This suggests that specific uncultivated taxa may take central roles in COD removal from soft drink wastewater depending on OLR.  相似文献   

6.
This study evaluated the treatment of oil sands process-affected water (OSPW) using a fluidized bed biofilm reactor (FBBR) with granular activated carbon (GAC) as support media. The bioreactor was operated for 120 days at different organic and hydraulic loading rates. The combined GAC adsorption and biodegradation process removed 51% of chemical oxygen demand (COD), 56% of acid-extractable fraction (AEF) and 96% of classical naphthenic acids (NAs) under optimized operational conditions. Bioreactor treatment efficiencies were dependent on the organic loading rate (OLR), and to a lower degree, on the hydraulic loading rate (HLR). Further ultra performance liquid chromatography/high resolution mass spectroscopy (UPLC/HRMS) analysis showed that the removal of classical NAs increased as the carbon number increased. Compared with planktonic bacterial community in OSPW, more diverse microbial structures were found in biofilms colonized on the surface of GAC after 120-day treatment, with various carbon degraders namely Polaromonas jejuensis, Algoriphagus sp., Chelatococcus sp. and Methylobacterium fujisawaense in the GAC-biofilm reactor. The results of this study, therefore, showed that the GAC-biofilm seems to be a promising biological treatment method for OSPW remediation.  相似文献   

7.
The structures of microbial communities in lab-scale upflow anaerobic sludge blanket (UASB) reactors for treating municipal wastewater with different ratios of CODsoluble/ CODtotal were studied using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes. The microbial structure of the inoculum sludge obtained from a full-scale UASB reactor of treating potato processing wastewater was compared with the structures of sludges collected from three lab-scale UASB reactors after eight months feeding with raw municipal wastewater, with CEPS (chemically enhanced primary sedimentation) pretreated municipal wastewater, and with a synthetic municipal sewage, respectively. Computer-aided numerical analysis of the DGGE fingerprints showed that the bacterial community underwent major changes. The sludges for treating raw and CEPS pretreated wastewater had very similar bacterial and archaeal communities (82% and 96% similarity) but were different from that for treating the synthetic sewage. Hence, despite similar % COD in the particulate form in the synthetic and the real wastewater, the two wastewaters were selected for different microbial communities. Prominent DGGE bands of Bacteria and Archaea were purified and sequenced. The 16S rRNA gene sequences of the dominant archaeal bands found in the inoculum, and UASB sludge fed with raw sewage, CEPS pretreated wastewater, and synthetic sewage were closely associated withMethanosaeta concilii. In the UASB sludge fed with synthetic sewage, another dominant band associated with an uncultured archaeon 39-2 was found together withM. concilii.  相似文献   

8.
We investigated the treatment of fresh leachate from municipal solid waste incineration plants with high-strength organics using a lab-scale expanded granular sludge bed (EGSB) reactor. The reactor was operated at a mesophilic temperature (33 °C) for 118 days. The influent chemical oxygen demand (COD) of the leachate gradually increased to over 70,000 mg/L, and the organic loading rate increased to 18 kg COD/(m3?day). An average COD removal efficiency of 86.7 % was achieved when the reactor was fed with raw leachate, which suggests the feasibility of the EGSB process for leachate treatment. The microbial communities in the sludge from the reactor during the trial operation were constructed by denaturing gradient gel electrophoresis, clone libraries, and real-time quantitative polymerase chain reaction. The dominant group for archaea was Methanosaeta, with 68.4 % proportion at the start of the operation, and then changed to Methanosarcina, with a proportion of 62.3 %, after 118 days of operation. The dominant group of eubacteria was confirmed to be Firmicutes throughout the operation process, with the proportion increasing from >50 to 81.2 %. Almost all the operational taxonomic units of Firmicutes belonged to the order Clostridiales, with characteristic spore formation. The microbial diversity of the population was low under raw leachate as feed in the reactor. The dynamics of the microbial community in the anaerobic granular sludge was discussed relating with the operating status of the EGSB reactor.  相似文献   

9.
《Process Biochemistry》2004,39(10):1249-1256
The granulation process using synthetic wastewater containing pentachlorophenol (PCP) in four 1.1 l laboratory scale upflow anaerobic sludge blanket (UASB) reactors was studied, and the anaerobic biotransformation of PCP during the granulation process investigated. After 110 days granular sludge was developed and up to 160 and 180 mg/l of PCP was added into the reactors R1 and R2, respectively, when they were inoculated with acclimated anaerobic sludge from an anaerobic digester of a citric acid plant. The inoculum was predominately composed of bacilli and filamentous bacteria. Granulation did not occur in reactors R3 and R4 which were inoculated with acclimated anaerobic sludge from aerobic sludge of the municipal sewage treatment plant which consisted mainly of cocci. Despite similar bacilli in the granule, the filamentous bacteria from reactor R1 were thicker than those of reactor R2. The granular sludge had a maximum diameter of 2.5 and 2.2 mm, and SMA of 1.44 and 1.32 gCOD/gTVS per day for reactors R1 and R2, respectively. Over 98% chemical oxygen demand (COD) removal rate and 99% of PCP removal rate were achieved when reactors R1 and R2 were operated at PCP and COD loading rates of 150 and 7.5 g/l per day, respectively. H2-producing acetogens were the dominant anaerobes in the granular sludge.  相似文献   

10.
Low strength wastewaters can be those with chemical oxygen demand (COD) below 2,000 mg/l. The anaerobic treatment of such wastewaters has not been fully explored so far. The suboptimal reaction rates with low substrate concentrations, and the presence of dissolved oxygen in the influent are regarded as possible constraints. In this study, the treatment of low strength soluble wastewaters containing ethanol or whey was studied in lab-scale upflow anaerobic sludged bed (UASB) reactors at 30°C. The high treatment performance obtained demonstrates that UASB reactors are viable for treating both types of wastewaters at low COD concentrations. The treatment of the ethanol containing wastewater resulted in COD removal efficiencies exceeding 95% at organic loading rates (OLR) between 0.3 to 6.8 g COD/l-d with influent concentrations in the range of 422 to 943 mg COD/l. In the case of the more complex whey containing wastewater, COD removal efficiencies exceeded 86% at OLRs up to 3.9 g COD/l·, as long as the COD influent was above 630 mg/l. Lowering the COD influent resulted in decreased efficiency with sharper decrease at values below 200 mg/l. Acidification instead of methanogenesis was found to be the rate limiting step in the COD removal at low concentrations, which was not the case when treating ethanol. The effect of dissolved oxygen in the influent as a potential danger in anaerobic treatment was investigated in reactors fed with and without dissolved oxygen. Compared with the control reactor, the reactor receiving oxygen showed no detrimental effects in the treatment performance. Thus, the presence of dissolved oxygen in dilute wastewaters is expected to be of minor importance in practice.  相似文献   

11.
Zhang J  Wei Y  Xiao W  Zhou Z  Yan X 《Bioresource technology》2011,102(16):7407-7414
An anaerobic baffled reactor with four compartments (C1-C4) was successfully used for treatment of acetone-butanol-ethanol fermentation wastewater and methane production. The chemical oxygen demand (COD) removal efficiency was 88.2% with a CH4 yield of 0.25 L/(g CODremoved) when organic loading rate (OLR) was 5.4 kg COD m−3 d−1. C1 played the most important role in solvents (acetone, butanol and ethanol) and COD removal. Community structure of C2 was similar to that in C1 at stage 3 with higher OLR, but was similar to those in C3 and C4 at stages 1-2 with lower OLR. This community variation in C2 was consistent with its increased role in COD and solvent removal at stage 3. During community succession from C1 to C4 at stage 3, abundance of Firmicutes (especially OTUs ABRB07 and ABRB10) and Methanoculleus decreased, while Bacteroidetes and Methanocorpusculum became dominant. Thus, ABRB07 coupled with Methanoculleus and/or acetogen (ABRB10) may be key species for solvents degradation.  相似文献   

12.
Karim K  Gupta SK 《Biodegradation》2002,13(5):353-360
The removal of nitrophenols under denitrifying conditions was studied in bench-scale upflow anaerobic sludge blanket (UASB) reactors (R1, R2, R3 and R4) using three different carbon sources. Initially acetate was used as carbon source (substrate) in all the four reactors followed by glucose and methanol. Reactor R1 was kept as control and R2, R3, R4 were fed with 30 mg/l concentration of 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), and 2,4-dinitrophenol (2,4-DNP), respectively. Throughout the study the hydraulic retention time (HRT) and COD/NO3 -–N ratio were kept as 24 h and 10, respectively. 2-Aminophenol (2-AP), 4-aminophenol (4-AP) and 2-amino,4-nitrophenol (2-A,4-NP) were found as the major intermediate metabolites of 2-NP, 4-NP and 2,4-DNP degradation, respectively. Methanol was found to be a better carbon source for 4-NP and 2,4-DNP degradation as compared to acetate and glucose, while 2-NP degradation was not influenced much by the change of substrate. Nitrate nitrogen removal was always more than 99%. COD removal efficiency of the nitrophenol fed reactors varied from 85.7% to 97.7%. The oxidation-reduction potential (ORP) inside the reactors dropped, up to –300 mv, with glucose as carbon source. As the reactors were switched over to methanol, ORP increased to –190 mv. The granular sludge developed inside the reactors was light brown in colour when acetate and glucose were used as substrate, which turned dark brown to black at the end of methanol run. Biomass yield in terms of volatile suspended solids was observed as 0.15, 0.089 and 0.14 g per gram of COD removal for acetate, glucose and methanol, respectively.  相似文献   

13.
The structures of microbial communities in lab-scale upflow anaerobic sludge blanket (UASB) reactors for treating municipal wastewater with different ratios of COD soluble/COD total were studied using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes.The microbial structure of the inoculum sludge obtained from a full-scale UASB reactor of treating potato processing wastewater was compared with the structures of sludges collected from three lab-scale UASB reactors after eight months feeding with raw municipal wastewater, with CEPS (chemically enhanced primary sedimentation) pretreated municipal wastewater, and with a synthetic municipal sewage, respectively. Computer-aided numerical analysis of the DGGE fingerprints showed that the bacterial community underwent major changes. The sludges for treating raw and CEPS pretreated wastewater had very similar bacterial and archaeal communities (82%and 96% similarity) but were different from that for treating the synthetic sewage. Hence, despite similar % COD in the particulate form in the synthetic and the real wastewater, the two wastewaters were selected for different microbial communities. Prominent DGGE bands of Bacteria and Archaea were purified and sequenced. The 16S rRNA gene sequences of the dominant archaeal bands found in the inoculum, and UASB sludge fed with raw sewage, CEPS pretreated wastewater, and synthetic sewage were closely associated with Methanosaeta concilii. In the UASB sludge fed with synthetic sewage, another dominant band associated with an uncultured archaeon 39-2 was found together with M. concilii.  相似文献   

14.
The olive oil industry is one of the most typical and economically important Portuguese agro-industries, 29,900 tons of olive oil having been produced in 2002/2003. This industry generates large amounts of olive oil wastewaters (OOWW), which are difficult to degrade and thus cause a negative environmental impact. Jet-loop reactors (JACTO) developed and scaled-up by our group have been successfully used for biological treatment of winery and OOWW. This study aimed to determine the interactions of reactor hydrodynamics with microflora profiles during bio-treatment of OOWW. Bio-treatment was performed using a 20-dm3 JACTO bioreactor achieving a chemical oxygen demand (COD) and phenolic compounds removal rate of 70% at a hydraulic retention time of 12 days. Bio-treatment was scaled-up to 200-dm3 JACTO bioreactor, reaching 87% COD removal and 80% phenolic compounds removal. Microflora present on OOWW were identified on samples taken before, during, and at the end of bio-treatment. Identification of isolates was carried out at genus and/or species level. Samples from the bio-treatments did not show any fungi; most of the isolates belonged to the Bacillus genus (with predominance of Bacillus megaterium, Bacillus sphaericus, and Brevibacillus brevis). The good COD and phenolic compounds removal rate indicates that the microbial community selected during the treatment is well adapted to the stress conditions imposed by this special type of bioreactor.  相似文献   

15.
The structures of microbial communities in lab-scale upflow anaerobic sludge blanket (UASB) reactors for treating municipal wastewater with different ratios of COD soluble/ COD total were studied using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes. The microbial structure of the inoculum sludge obtained from a full-scale UASB reactor of treating potato processing wastewater was compared with the structures of sludges collected from three lab-scale UASB reactors after eight months feeding with raw municipal wastewater, with CEPS (chemically enhanced primary sedimentation) pretreated municipal wastewater, and with a synthetic municipal sewage, respectively. Computer-aided numerical analysis of the DGGE fingerprints showed that the bacterial community underwent major changes. The sludges for treating raw and CEPS pretreated wastewater had very similar bacterial and archaeal communities (82% and 96% similarity) but were different from that for treating the synthetic sewage. Hence, despite  相似文献   

16.
Bioaugmentation of bioreactors focuses on the removal of xenobiotics, with little attention typically paid to the recovery of disrupted reactor functions such as ammonium-nitrogen removal. Chloroanilines are widely used in industry as a precursor to a variety of products and are occasionally released into wastewater streams. This work evaluated the effects on activated-sludge reactor functions of a 3-chloroaniline (3-CA) pulse and bioaugmentation by inoculation with the 3-CA-degrading strain Comamonas testosteroni I2 gfp. Changes in functions such as nitrification, carbon removal, and sludge compaction were studied in relation to the sludge community structure, in particular the nitrifying populations. Denaturing gradient gel electrophoresis (DGGE), real-time PCR, and fluorescent in situ hybridization (FISH) were used to characterize and enumerate the ammonia-oxidizing microbial community immediately after a 3-CA shock load. Two days after the 3-CA shock, ammonium accumulated, and the nitrification activity did not recover over a 12-day period in the nonbioaugmented reactors. In contrast, nitrification in the bioaugmented reactor started to recover on day 4. The DGGE patterns and the FISH and real-time PCR data showed that the ammonia-oxidizing microbial community of the bioaugmented reactor recovered in structure, activity, and abundance, while the number of ribosomes of the ammonia oxidizers in the nonbioaugmented reactor decreased drastically and the community composition changed and did not recover. The settleability of the activated sludge was negatively influenced by the 3-CA addition, with the sludge volume index increasing by a factor of 2.3. Two days after the 3-CA shock in the nonbioaugmented reactor, chemical oxygen demand (COD) removal efficiency decreased by 36% but recovered fully by day 4. In contrast, in the bioaugmented reactor, no decrease of the COD removal efficiency was observed. This study demonstrates that bioaugmentation of wastewater reactors to accelerate the degradation of toxic chlorinated organics such as 3-CA protected the nitrifying bacterial community, thereby allowing faster recovery from toxic shocks.  相似文献   

17.
The present study investigated a two-stage anaerobic hydrogen and methane process for increasing bioenergy production from organic wastes. A two-stage process with hydraulic retention time (HRT) 3 d for hydrogen reactor and 12 d for methane reactor, obtained 11% higher energy compared to a single-stage methanogenic process (HRT 15 d) under organic loading rate (OLR) 3 gVS/(L d). The two-stage process was still stable when the OLR was increased to 4.5 gVS/(L d), while the single-stage process failed. The study further revealed that by changing the HRThydrogen:HRTmethane ratio of the two-stage process from 3:12 to 1:14, 6.7%, more energy could be obtained. Microbial community analysis indicated that the dominant bacterial species were different in the hydrogen reactors (Thermoanaerobacterium thermosaccharolyticum-like species) and methane reactors (Clostridiumthermocellum-like species). The changes of substrates and HRT did not change the dominant species. The archaeal community structures in methane reactors were similar both in single- and two- stage reactors, with acetoclastic methanogens Methanosarcina acetivorans-like organisms as the dominant species.  相似文献   

18.
The impact of substratum surface property change on biofilm community structure was investigated using laboratory biological aerated filter (BAF) reactors and molecular microbial community analysis. Two substratum surfaces that differed in surface properties were created via surface coating and used to develop biofilms in test (modified surface) and control (original surface) BAF reactors. Microbial community analysis by 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis (DGGE) showed that the surface property change consistently resulted in distinct profiles of microbial populations during replicate reactor start-ups. Pyrosequencing of the bar-coded 16S rRNA gene amplicons surveyed more than 90% of the microbial diversity in the microbial communities and identified 72 unique bacterial species within 19 bacterial orders. Among the 19 orders of bacteria detected, Burkholderiales and Rhodocyclales of the Betaproteobacteria class were numerically dominant and accounted for 90.5 to 97.4% of the sequence reads, and their relative abundances in the test and control BAF reactors were different in consistent patterns during the two reactor start-ups. Three of the five dominant bacterial species also showed consistent relative abundance changes between the test and control BAF reactors. The different biofilm microbial communities led to different treatment efficiencies, with consistently higher total organic carbon (TOC) removal in the test reactor than in the control reactor. Further understanding of how surface properties affect biofilm microbial communities and functional performance would enable the rational design of new generations of substrata for the improvement of biofilm-based biological treatment processes.  相似文献   

19.
The removal efficiencies of 15 PAHs and some COD components (inert, readily degradable, slowly degradable and metabolic products) from a wastewater taken from a petrochemical industry treatment plant (İzmir, Turkey) have been determined using an aerobic completely stirred tank reactor (CSTR). Addition of rhamnolipid surfactant (15 mg l−1) increased the removal efficiencies of PAHs and soluble COD from 72% and 90% to 80% and 99%, respectively. The rhamnolipid treatment caused a significant increase of 5- and 6-ring PAH degradation. The soluble COD removal efficiency was 93%, in CSTR reactors with rhamnolipid added. The inert COD removal efficiency was 60% in a CSTR reactor containing rhamnolipid. Batch tests showed that removal arising from the adsorption of the PAHs was low (between 1.88% and 4.84%) while the removal of PAHs from the petrochemical industry wastewater via volatilization varied between 0.69% and 5.92%. Low sorption capacity (Kp) values for refinery activated sludge (approximately 2.98 l g−1) confirmed that bio-sorption was not an important mechanism controlling the fate of PAHs in aerobic CSTR reactors. Models proposed to simulate the PAH removal indicated that 94% of the PAHs were removed via biodegradation.  相似文献   

20.
【目的】比较不同营养条件及挂膜方式下生物膜法对氨氮污染水体的净化效果及其功能微生物群落结构。【方法】设置空白(Blank)、自然成膜(Raw)、预附脱氮菌强化挂膜(PCC)3组生物膜反应器,利用末端限制性片段长度多态性(T-RFLP)技术和非度量多维标度(NMDS)分析方法对生物膜反应器转化氨氮过程中微生物群落结构及其演替过程进行动态解析。【结果】在C/N=1:1时,除PCC在起始阶段短暂具有较高的氨氮脱除效率外,Blank、Raw和PCC最终均表现出较低的氨氮转化效率(10%-20%)。改变C/N=2:1后,Raw和PCC对人工合成污水中NH4+-N的转化率均提高至95%以上,而且Raw与PCC的群落结构在C/N=2:1时具有较高的相似性,优势菌群主要为γ-变形菌纲(Gammaproteobacteria)、放线菌纲(Actinobacteria)和硝化螺菌纲(Nitrospira)。【结论】C/N是影响生物膜反应器氨氮去除效果及驱动生物膜反应器中细菌群落结构发生改变的重要因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号