首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used human DNA microarray to explore the differential gene expression profiling of atrial natriuretic peptide (ANP)-stimulated renal tubular epithelial kidney cells (LLC-PK1) in order to understand the biological effect of ANP on renal kidney cell's response. Gene expression profiling revealed 807 differentially expressed genes, consisting of 483 up-regulated and 324 down-regulated genes. The bioinformatics tool was used to gain a better understanding of differentially expressed genes in porcine genome homologous with human genome and to search the gene ontology and category classification, such as cellular component, molecular function and biological process. Four up-regulated genes of ATP1B1, H3F3A, ITGB1 and RHO that were typically validated by real-time quantitative PCR (RT-qPCR) analysis serve important roles in the alleviation of renal hypertrophy as well as other related effects. Therefore, the human array can be used for gene expression analysis in pig kidney cells and we believe that our findings of differentially expressed genes served as genetic markers and biological functions can lead to a better understanding of ANP action on the renal protective system and may be used for further therapeutic application.  相似文献   

2.
Diabetic nephropathy remains a major cause of morbidity and mortality in the diabetic population and is the leading cause of end-stage renal failure. Despite current therapeutics including intensified glycemic control and blood pressure lowering agents, renal disease continues to progress relentlessly in diabetic patients, albeit at a lower rate. Since synthetic drugs for diabetes are known to have side effects, fungal mushrooms as a natural product come into preventing the development of diabetes. Our previous report showed the hypoglycemic effect of extracellular fungal polysaccharides (EPS) in streptozotocin (STZ)-induced diabetic rats. In this study, we analyzed the differential expression patterns of rat kidney proteins from normal, STZ-induced diabetic, and EPS-treated diabetic rats, to discover diabetes-associated proteins in rat kidney. The results of proteomic analysis revealed that up to 500 protein spots were visualized, of which 291 spots were differentially expressed in the three experimental groups. Eventually, 51 spots were statistically significant and were identified by peptide mass fingerprinting. Among the differentially expressed renal proteins, 10 were increased and 16 were decreased significantly in diabetic rat kidney. The levels of different proteins, altered after diabetes induction, were returned to approximately those of the healthy rats by EPS treatment. A histopathological examination showed that EPS administration restored the impaired kidney to almost normal architecture. The study of protein expression in the normal and diabetic kidney tissues enabled us to find several diabetic nephropathy-specific proteins, such as phospholipids scramblase 3 and tropomyosin 3, which have not been mentioned yet in connection with diabetes.  相似文献   

3.
Exposure of human Jurkat T cells to JNK inhibitor IX (JNKi), targeting JNK2 and JNK3, caused apoptotic DNA fragmentation along with G2/M arrest, phosphorylation of Bcl-2, Mcl-1, and Bim, Δψm loss, and activation of Bak and caspase cascade. These JNKi-induced apoptotic events were abrogated by Bcl-2 overexpression, whereas G2/M arrest, cyclin B1 up-regulation, Cdk1 activation, and phosphorylation of Bcl-2 family proteins were sustained. In the concomitant presence of the G1/S blocking agent aphidicolin and JNKi, the cells underwent G1/S arrest and failed to induce all apoptotic events. The JNKi-induced phosphorylation of Bcl-2 family proteins and mitochondrial apoptotic events were suppressed by the Cdk1 inhibitor. Immunofluorescence microscopic analysis revealed that mitotic spindle defect and prometaphase arrest were the underlying factors for the G2/M arrest. These results demonstrate that JNKi-induced mitochondrial apoptosis was caused by microtubule damage-mediated prometaphase arrest, prolonged Cdk1 activation, and phosphorylation of Bcl-2 family proteins in Jurkat T cells.  相似文献   

4.
The antineoplastic agent paclitaxel (TaxolTM), a microtubule stabilizing agent, is known to arrest cells at the G2/M phase of the cell cycle and induce apoptosis. We and others have recently demonstrated that paclitaxel also activates the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) signal transduction pathway in various human cell types, however, no clear role has been established for JNK/SAPK in paclitaxel-induced apoptosis. To further examine the role of JNK/SAPK signaling cascades in apoptosis resulting from microtubular dysfunction induced by paclitaxel, we have coexpressed dominant negative (dn) mutants of signaling proteins of the JNK/SAPK pathway (Ras, ASK1, Rac, JNKK, and JNK) in human ovarian cancer cells with a selectable marker to analyze the apoptotic characteristics of cells expressing dn vectors following exposure to paclitaxel. Expression of these dn signaling proteins had no effect on Bcl-2 phosphorylation, yet inhibited apoptotic changes induced by paclitaxel up to 16 h after treatment. Coexpression of these dn signaling proteins had no protective effect after 48 h of paclitaxel treatment. Our data indicate that: (i) activated JNK/SAPK acts upstream of membrane changes and caspase-3 activation in paclitaxel-initiated apoptotic pathways, independently of cell cycle stage, (ii) activated JNK/SAPK is not responsible for paclitaxel-induced phosphorylation of Bcl-2, and (iii) apoptosis resulting from microtubule damage may comprise multiple mechanisms, including a JNK/SAPK-dependent early phase and a JNK/SAPK-independent late phase.  相似文献   

5.
Autosomal dominant polycystic kidney disease is one of the most common human monogenic diseases in which extensive epithelial‐lined cysts develop in kidney and other organs. Affected kidneys are not only characterized by the formation of cysts, but also by changes associated with the extracellular matrix and interstitial inflammation, which can progress to fibrosis and loss of renal function. Mxi1 protein, which is a c‐myc antagonist, may be essential in controlling cellular growth and differentiation. Previously, multiple tubular cysts were observed in kidney of Mxi1‐deficient mice aged 6 months and more. Presently, 2‐DE and MALDI‐TOF MS was employed to identify the differentially expressed proteins in the kidney. Several proteins were identified, among them, apolipoproteinA1 which is a major component of the high‐density lipoprotein complex and has anti‐inflammation effects, was significantly decreased in the Mxi1‐deficient mouse. We confirm the development of inflammation and renal fibrosis and the expression of extracellular matrix molecules including transforming growth factor were also increased in cystic kidney. These results indicate that expression of proteins related with inflammation and renal fibrosis changes by Mxi1 inactivation in polycystic kidney.  相似文献   

6.
7.
Diabetic nephropathy (DN) is a microvascular complication associated with diabetes causing slow deterioration of kidneys leading to end-stage renal disease. Timely intervention and diagnosis are crucial in order to ameliorate and halt the progression of DN. Current diagnosis of DN consists of urine assays for detection of microalbuminuria, which have inadequate specificity and sensitivity. Hence, there arises a need to discover stage-specific biomarkers which can aid in the early detection of DN and also in identifying the mechanisms underlying pathogenesis of DN. Therefore the present study was undertaken to identify the differentially expressed proteins in the urine and to examine the pattern of proteomic changes occurring in the rat kidneys during the course of progression of streptozotocin-induced model of DN in rats. Two-dimensional gel electrophoresis coupled to MALDI-TOF mass spectrometry was employed to identify the differentially expressed proteins under diabetic conditions. Among the identified proteins Calgranulin A and Calgranulin B appeared in the urinary proteome at the fourth week of induction of diabetes while we recorded a time-dependent decrease in the expression of major urinary protein (alpha 2u globulin) in the urine as well as kidneys of diabetic rats. Parallel monitoring of targeted proteomic changes in the renal proteome revealed an increase in histone H2B phosphorylation at serine14 along with a gradual decrease in Bcl-2 and MMP-13 expression during the course of progression and development of streptozotocin-induced DN.  相似文献   

8.
Rapid and reliable biomarkers of renal allograft rejection have not been available. This study aimed to investigate biomarkers in renal allograft tissue using proteomic analysis. Orthotopic kidney transplantations were performed using Fisher (F344) or Lewis rats as donors and Lewis rats as recipients. Syngenic control group (Group I) constituted F344-to-F344 orthotopic kidney allo-transplantations (n = 8); and allogenic group (Group II) consisted of F344-to-Lewis orthotopic kidney allo-transplantations (n = 8). Renal tissues were harvested 7 days after transplantation. Samples were analyzed using 2-D electrophoresis and matrix assisted laser desorption ionization-time of flight mass spectrometry. 6 differentially expressed proteins were identified between allogenic group and syngenic control group. A rat model of acute renal allograft rejection was successfully set up. Differentially expressed proteins in renal allograft tissue of rat were detected using proteomic analysis and might serve as novel diagnostic and therapeutic targets in human. Quantitative proteomics, using MALDL-TOF-MS methodology has the potential to provide a profiling and a deeper understanding of acute renal rejection.  相似文献   

9.
The incidence and the rate of progression of chronic kidney diseases (CKD) are for most diseases greater in men than in age-matched women. We have previously shown that testosterone (T) promotes the apoptosis of proximal tubule kidney cells. To better understand the downstream signaling process associated with T-induced apoptosis, we examined the involvement of c-Jun amino terminal kinase (JNK) in a human proximal tubule cell line (HK-2) exposed to T: JNK and its downstream effector c-Jun were rapidly phosphorylated. By blocking androgen receptor, JNK phosphorylation was reduced and 17β-Estradiol treatment had no effect on it. Similarly, pre-treatment with the JNK inhibitor SP600125 prevented the T-induced apoptosis, the phosphorylation of c-Jun and the upregulation of the Fas/FADD pathway. These data show that the JNK/c-Jun pathway is directly regulated by androgens in vitro and highlight a potential mechanism explaining the reported gender differences in the progression of renal diseases.  相似文献   

10.
11.
There is growing evidence that, because of the highly significant differences in gene activation/protein expression between animal models of stroke and stroke patients, the current treatment strategies based on animal stroke models have been unsuccessful. Therefore, it is imperative that the pathobiology of human stroke be studied. As a first step here, Western blotting and immunohistochemistry were employed to examine expression and tissue localization of key apoptotic proteins in infarct and peri-infarcted (penumbra) from grey and white matter in human postmortem tissue of 18 patients who died between 2 and 37 d after stroke caused by large vessel disease. The contralateral hemisphere was used as a control. JNK1, JNK2, and p53 were upregulated in the majority of samples, whereas Bcl-2, caspase-3, active caspase-3, phosphorylated p53 (p-p53), phosphorylated JNk1 (p-JNK1), and phosphorylated JNK2 (p-JNK2) were upregulated in approximately half of the samples. JNK1 expression was positively correlated with JNK2 expression in grey and white matter infarct and penumbra, whereas active caspase-3 levels were positively correlated with p-JNK2 levels in grey and white matter infarct. Using indirect immunoperoxidase staining of paraffin-embedded sections, active caspase-3 was found in infarcted neurons that co-localized with TUNEL-positive cells. p-JNK localization in the nuclei of TUNEL-positive cells with the morphological appearance of neurons from infarct and penumbra was also demonstrated. The use of Kaplan Meier survival data demonstrated that the presence of Bcl-2 in penumbra of grey matter correlated significantly with shorter survival (p=0.006). In conclusion, the present study has identified significantly altered expression of apoptotic proteins in human stroke tissue and shown that the presence of Bcl-2 in penumbra of grey matter has prognostic value. It is tempting to suggest that further studies of apoptotic proteins in human stroke may lead to identification of novel targets for drug discovery.  相似文献   

12.
Cloned animals developed from somatic cell nuclear transfer (SCNT) embryos are useful resources for agricultural and medical applications. However, the birth rate in the cloned animals is very low, and the cloned animals that have survived show various developmental defects. In this report, we present the morphology and differentially regulated proteins in the extraembryonic tissue from SCNT embryos to understand the molecular nature of the tissue. We examined 26-day-old SCNT porcine embryos at which the sonogram can first detect pregnancy. The extraembryonic tissue from SCNT embryos was abnormally small compared with the control. In the proteomic analysis with the SCNT extraembryonic tissue, 39 proteins were identified as differentially regulated proteins. Among up-regulated proteins, Annexins and Hsp27 were found. They are closely related to the processes of apoptosis. Among down-regulated proteins, Peroxiredoxins and anaerobic glycolytic enzymes were identified. In the Western blot analysis, antioxidant enzymes and the antiapoptotic Bcl-2 protein were down-regulated, and caspases were up-regulated. In the terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) assay with the placenta from SCNT embryos, apoptotic trophoblasts were observed. These results demonstrate that a major reason for the low birth rate of cloned animals is due to abnormal apoptosis in the extraembryonic tissue during early pregnancy.  相似文献   

13.
Mitochondrial translocation of pro-apoptotic Bax prior to apoptosis is well established after treatment with many cell death stimulants or under apoptosis-inducing conditions. The mechanism of mitochondrial translocation of Bax is, however, still unknown. The aim of this work was to investigate the mechanism of Bax activation and mitochondrial translocation to initiate apoptosis of human hepatoma HepG2 and porcine kidney LLC-PK1 cells exposed to various cell death agonists. Phosphorylation of Bax by JNK and p38 kinase activated after treatment with staurosporine, H(2)O(2), etoposide, and UV light was demonstrated by the shift in the pI value of Bax on two-dimensional gels and confirmed by metabolic labeling with inorganic [(32)P]phosphate in HepG2 cells. Specific inhibitors of JNK and p38 kinase significantly inhibited Bax phosphorylation and mitochondrial translocation and apoptosis of HepG2 cells. A specific small interfering RNA to MAPKK4 (the upstream protein kinase of JNK and p38 kinase) markedly decreased the levels of MAPKK4 and MAPKK3/6, blocked the activation of JNK or p38 kinase, and inhibited Bax phosphorylation. However, the negative control small interfering RNA did not cause these changes. Confocal microscopy of various Bax mutants showed differential rates of mitochondrial translocation of Bax before and after staurosporine treatment. Among the Bax mutants, T167D did not translocate to mitochondria after staurosporine exposure, suggesting that Thr(167) is a potential phosphorylation site. In conclusion, our results demonstrate, for the first time, that Bax is phosphorylated by stress-activated JNK and/or p38 kinase and that phosphorylation of Bax leads to mitochondrial translocation prior to apoptosis.  相似文献   

14.
Cystic fibrosis (CF) is a lethal autosomal recessive genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR). Mutations in the CFTR gene may result in a defective protein processing that leads to changes in function and regulation of this chloride channel. Despite of the expression of CFTR in the kidney, patients with CF do not present major renal dysfunction, but it is known that both the urinary excretion of proteins and renal capacity to concentrate and dilute urine are altered in these patients. CFTR mRNA is expressed in all nephron segments of rat and human, and this abundance is more prominent in renal cortex and outer medulla renal areas. CFTR protein was detected in apical surface of both proximal and distal tubules of rat kidney but not in the outer medullary collecting ducts. Studies have demonstrated that CFTR does not only transport Cl but also ATP. ATP transport by CFTR could be involved in the control of other ion transporters such as Na+ (ENaC) and K+ (renal outer medullary potassium) channels, especially in TAL and CCD. In the kidney, CFTR also might be involved in the endocytosis of low-molecular-weight proteins by proximal tubules. This review is focused on the CFTR function and structure, its role in the renal physiology, and its modulation by hormones involved in the control of extracellular fluid volume.  相似文献   

15.
Kidney transplantation to treat end-stage renal disease has evolved rapidly from the first successful transplantations to the current widespread use of grafts from both cadaveric and living donors. But acute rejection is still a strong risk factor for chronic rejection in recipients of renal grafts. To investigate possible mechanisms, we describe a comparison between differentially proteins expression and immune markers profile (IL-2, IL-4, IL-6, and CRP) of acute rejection and the controls. Through quantitative real-time RT-PCR confirmation, PDIA3 mRNA and protein expression levels in serum and transplanted kidney in experiment group was significantly (P < 0.05) higher than that in control group. Immunity analysis showed that plasma IL-2, IL-4, IL-6, and CRP levels were higher in experimental rats than those in control rats. Our data thus indicate that PDIA3 might be potentially involve into the occurence and development of acute rejection response in renal transplantation and increased plasma IL-2, IL-4, IL-6, and CRP levels play an important role to prevent acute kidney allograft rejection in rats.  相似文献   

16.
Autosomal dominant polycystic kidney disease (ADPKD) is one of the commonest inherited human disorders yet remains relatively unknown to the wider medical, scientific and public audience. ADPKD is characterised by the development of bilateral enlarged kidneys containing multiple fluid-filled cysts and is a leading cause of end-stage renal failure (ESRF). ADPKD is caused by mutations in two genes: PKD1 and PKD2. The protein products of the PKD genes, polycystin-1 and polycystin-2, form a calcium-regulated, calcium-permeable ion channel. The polycystin complex is implicated in regulation of the cell cycle via multiple signal transduction pathways as well as the mechanosensory function of the renal primary cilium, an enigmatic cellular organelle whose role in normal physiology is still poorly understood. Defects in cilial function are now documented in several other human diseases including autosomal recessive polycystic kidney disease, nephronophthisis, Bardet-Biedl syndrome and many animal models of polycystic kidney disease. Therapeutic trials in these animal models of polycystic kidney disease have identified several promising drugs that ameliorate disease severity. However, elucidation of the function of the polycystins and the primary cilium will have a major impact on our understanding of renal cystic diseases and will create exciting new opportunities for the design of disease-specific therapies.  相似文献   

17.
18.
转染了P75NGFR的R2神经细胞系R2L1在去血清的培养时可以诱导细胞凋亡的发生.此凋亡可以被RNA合成抑制剂放线菌素D和蛋白质合成抑制剂环己酰胺所抑制.利用DDRT-PCR技术比较了去血清培养的发生凋亡的R2L1细胞与有血清培养的不发生凋亡的R2L1细胞以及去血清培养的不发生凋亡的R2P细胞基因表达的差异.克隆了数个特异或差异表达的短cDNA片段,经Northern杂交证实其中两个片段LIAREST-1和LIAREST-2表达量在凋亡细胞中显著高于不发生凋亡的细胞中,GenBank检索表明此二片段为新的cDNA序列并给予登录号U47315和U47316.另有一个cDNA片段LIARCD-3在凋亡细胞中受到了明显的抑制,经检索为一已知的与前强啡肽原上游调控区结合的DNA结合蛋白cDNA编码区的一部分,首次被证实它与P75NGFR诱导的神经细胞凋亡调控关联  相似文献   

19.
通过在细胞和胚胎水平对猪Von Hippel-Lindau(VHL)基因进行了基因敲低研究,以便为建立VHL疾病模型猪奠定基础.研究首先通过 3'RACE和5'RACE克隆得到猪VHL基因cDNA全长序列(2 725 bp),Real-time PCR结果表明VHL基因广泛表达于猪的各种组织器官,其中在肾上腺、肝脏、胰腺、心脏和睾丸等组织器官高量表达.进一步在猪iPS细胞中对5条干扰片段进行筛选,获得2条高效的干扰片段,干扰效率分别达到72%(P=0.0012)和64% (P< 0.01).以稳定干扰VHL基因的猪胎儿成纤维细胞为核供体,构建克隆胚胎,结果表明,克隆胚胎的发育能力与对照组相比没有明显差异,而且在克隆囊胚中VHL基因的干扰效率达到71% (P< 0.01).综上所述,文中获得了猪VHL基因全长序列并获得该基因稳定敲低的猪细胞和胚胎,从而为VHL疾病模型猪的构建奠定了良好的基础.  相似文献   

20.
Yeast-based functional screening of a human glioblastoma cDNA library identified ras-related nuclear protein (Ran) as a novel suppressor of Bcl-2-associated X protein (Bax), a pro-apoptotic member of the Bcl-2 family of proteins. Yeast cells that expressed human Ran were resistant to Bax-induced cell death. In U373MG glioblastoma cells, stable overexpression of Ran significantly attenuated apoptotic cell death induced by the chemotherapeutic agent paclitaxel. FACS analysis demonstrated that Ran is involved in paclitaxel-induced cell cycle arrest. Stable overexpression of Ran also markedly inhibited the phosphorylation of Bcl-2 by paclitaxel, and inhibited the translocation of Bax, the release of cytochrome c and activation of caspase-3. Paclitaxel-induced phosphorylation of c-JUN N-terminal kinase (JNK), but not p38, extracellular signal-regulated kinase and Akt, was markedly suppressed in U373MG cells that stably expressed Ran. These results suggest that Ran suppresses paclitaxel-induced cell death through the downregulation of JNK-mediated signal pathways. Im Sun Woo and Han-Su Jang contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号