首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Questions: How important is management disturbance on gamma species richness of woody plants at intermediate landscape scales? How is species richness related to other climatic and biotic factors in the study area? How does the assumption of spatial stationarity affect assessment of relationships among species richness and explanatory variables (e.g. management, biotic and climatic factors) across extensive study areas? Location: Central Spain (regions of Castilla y León, Madrid and Castilla‐La Mancha). Scale: Extent: 150 000 km2. Grain: 25 km2 (5 × 5‐km cells). Methods: Information from 21 064 plots from the 3SNFI was used to evaluate richness of tree and shrub species at intermediate landscape scales. In addition to variables well known to explain biodiversity, e.g. environmental and biotic factors, effect of management treatments was evaluated by assessing clearcutting, selection cutting, stand improvement treatments and agrosilvopastoral systems (dehesas). Results from GWR techniques were compared with those from OLS regression. Results: Patterns of gamma species richness, although strongly affected by both environmental and biotic variables, were also significantly modified by management factors. Species richness increased with percentage of selection cutting stands and improvement treatments but decreased with percentage of clearcutting stands. Reduced species richness of woody plants was associated with agrosilvopastoral practices. Species richness for trees was closely related to basal area, annual precipitation and topographic complexity; species richness for shrubs was closely related to topographic complexity and agrosilvopastoral systems. Most relationships between species richness and environmental or biotic factors were non‐stationary. Relationships between species richness and management effects tended to be stationary, with a few exceptions. Conclusions: Landscape models of biodiversity in Central Spain were more informative when they accounted for effects of management practices, at least at intermediate scales. In the context of current rural abandonment, silvicultural disturbances of intermediate intensity increased gamma species richness of woody plants. Exclusion of factors such as agrosilvopastoral systems from models could have led to spurious relationships with other spatially co‐varying factors (e.g. summer precipitation). Patterns of spatial variation in relationships, provided by GWR models, allowed formulating hypotheses about potential ecological processes underlying them, beyond generalizations resulting from global (OLS) models.  相似文献   

3.
The metabolic theory of ecology (MTE) endeavours to explain ecosystem structure and function in terms of the effects of temperature and body size on metabolic rate. In a recent paper (Wang et al., 2009, Proceedings of the National Academy of Sciences USA, 106 , 13388), we tested the MTE predictions of species richness using tree distributions in eastern Asia and North America. Our results supported the linear relationship between log‐transformed species richness and the inverse of absolute temperature predicted by the MTE, but the slope strongly depends on spatial scale. The results also indicate that there are more tree species in cold climate at high latitudes in North America than in eastern Asia, but the reverse is true in warm climate at low latitudes. Qian & Ricklefs (2011, Global Ecology and Biogeography, 20 , 362–365) recently questioned our data and some of the analyses. Here we reply to them, and provide further analyses to show that their critiques are primarily based on unsuitable data and subjective conjecture.  相似文献   

4.
The metabolic theory of ecology (MTE) has attracted great interest because it proposes an explanation for species diversity gradients based on temperature-metabolism relationships of organisms. Here we analyse the spatial richness pattern of 73 coral snake species from the New World in the context of MTE. We first analysed the association between ln-transformed richness and environmental variables, including the inverse transformation of annual temperature (1/kT). We used eigenvector-based spatial filtering to remove the residual spatial autocorrelation in the data and geographically weighted regression to account for non-stationarity in data. In a model I regression (OLS), the observed slope between ln-richness and 1/kT was ?0.626 (r2 = 0.413), but a model II regression generated a much steeper slope (?0.975). When we added additional environmental correlates and the spatial filters in the OLS model, the R2 increased to 0.863 and the partial regression coefficient of 1/kT was ?0.676. The GWR detected highly significant non-stationarity, in data, and the median of local slopes of ln-richness against 1/kT was ?0.38. Our results expose several problems regarding the assumptions needed to test MTE: although the slope of OLS fell within that predicted by the theory and the dataset complied with the assumption of temperature-independence of average body size, the fact that coral snakes consist of a restricted taxonomic group and the non-stationarity of slopes across geographical space makes MTE invalid to explain richness in this case. Also, it is clear that other ecological and historical factors are important drivers of species richness patterns and must be taken into account both in theoretical modeling and data analysis.  相似文献   

5.
This paper is an attempt, using statistical modelling techniques, to understand the patterns of vascular plant species richness at the poorly studied meso-scale within a relatively unexplored subarctic zone. Species richness is related to floristic-environmental composite variables, using occurrence data of vascular plants and environmental and spatial predictor variables in 362 1 km2 grid squares in the Kevo Nature Reserve. Species richness is modelled in two different way. First, by detecting the major floristic-environmental gradients with the ordination procedure of canonical correspondence analysis, and subsequently relating these ordination axes to species richness by generalized linear modelling. Second, species richness is directly related to the composite environmental factors of explanatory variables, using partial least squares regression. The most important explanatory variables, as suggested by both approaches, are relatively similar, and largely reflect the influence of altitude or altitudinally related variables in the models. The most prominent floristic gradient in the data runs from alpine habitats to river valleys, and this gradient is the main source of variation in species richness. Some local environmental variables are also relatively important predictors; the grid squares rich in vascular plant taxa are mainly located in the lowlands of the reserve and are characterised by rivers and brooks, as well as by abundant cliff walls. The two statistical models account for approximately the same amount of variation in the species richness, with more than half of the variation unexplained. Potential reasons for the relatively modest fit are discussed, and the results are compared to the characteristics of the diversity-environment relationships at both broader- and finer-scales.  相似文献   

6.
The metabolic theory of ecology (MTE) predicts the effects of body size and temperature on metabolism through considerations of vascular distribution networks and biochemical kinetics. MTE has also been extended to characterise processes from cellular to global levels. MTE has generated both enthusiasm and controversy across a broad range of research areas. However, most efforts that claim to validate or invalidate MTE have focused on testing predictions. We argue that critical evaluation of MTE also requires strong tests of both its theoretical foundations and simplifying assumptions. To this end, we synthesise available information and find that MTE's original derivations require additional assumptions to obtain the full scope of attendant predictions. Moreover, although some of MTE's simplifying assumptions are well supported by data, others are inconsistent with empirical tests and even more remain untested. Further, although many predictions are empirically supported on average, work remains to explain the often large variability in data. We suggest that greater effort be focused on evaluating MTE's underlying theory and simplifying assumptions to help delineate the scope of MTE, generate new theory and shed light on fundamental aspects of biological form and function.  相似文献   

7.
Abstract Using data on the geographic range of 260 described species in the Atlas of Australian Termites, seven ‘regions’ with more complete data, across a wide range of latitudes were selected for further analysis. For these regions, mean species richness (± SE) was calculated for (i) all species from all families, (ii) Termitidae (197 spp.), (iii) Amitermes spp. (Termitidae, 58 spp.), (iv) all families excluding Amitermes spp. (139 spp.), (v) Termopsidae (5 spp.), (vi) Kalotermitidae (32 spp.) and (vii) Rhinotermitidae (25 spp.). In addition, we compared the Atlas data with species richness for five regions, across a comparable range of latitudes, based on the pooled species richness of described and un-described species given in community studies. No group of termites showed a consistent decline in species richness from tropical to temperate latitudes for either data set. The Atlas data showed similar total species richness from the tropics to the mediterranean southwest, before declining to lowest species richness at the highest latitudes. Species richness of Amitermes spp. and Rhinotermitidae was highest in the southwest. Termopsidae and Kalotermitidae showed no latitudinal pattern in species richness. Community studies showed highest and lowest total species richness in the southwest and at the highest latitudes (south-coastal Western Australia), respectively, and similar species richness from the tropics to arid central Australia. Species richness of. Amitermes spp. was highest in the southwest (31 spp.). Kalotermitidae and Rhinotermitidae showed no clear latitudinal pattern. The latitudinal patterns of species richness for the Australian termites is consistent with that for the Australian vertebrates and ants in that they differ from patterns established for these taxa on other continents.  相似文献   

8.
《Zoology (Jena, Germany)》2014,117(5):295-314
Snakes are limbless tetrapods highly specialized for sliding locomotion. This locomotion leads to the skin being exposed to friction loads, especially on the ventral body side, which leads to wear. It is presumed that snakes therefore have specific optimizations for minimizing abrasion. Scales from snakes with habitat, locomotor and/or behavior specializations have specific gradients in material properties that may be due to different epidermal architecture. To approach this issue we examined the skin of Lampropeltis getula californiae (terrestrial), Epicrates cenchria cenchria (generalist), Morelia viridis (arboreal), and Gongylophis colubrinus (burrowing) with a focus on (i) the ultrastructure of the ventral epidermis and (ii) the qualitative abrasion pattern of the ventral scales. Scanning and transmission electron microscopy revealed variations in the structure, thickness, layering, and material composition of the epidermis between the species. Furthermore, SEM and white light interferometer images of the scale surface showed that the abrasion patterns differed, even when the snakes were reared on the same substrate. These data support the idea that (i) a specific gradient in material properties may be due to a variation in epidermis architecture (thickness/ultrastructure) and (ii) this variation may be an optimization of material properties for specific ways of life.  相似文献   

9.
新陈代谢是生物的基本生理过程。生态学代谢理论(metabolic theory of ecology)基于生物个体大小和环境温度对个体新陈代谢过程的影响, 使用尺度推移(scaling)的方法来解释多种生态学格局和过程。James Borwn等将这一理论用于解释物种多样性的大尺度格局, 并从机制上解释了物种多样性与环境温度的关系。这一理论提出了两个明确的预测: (1)物种多样性的对数与绝对温度的倒数之间呈线性关系; (2) 这一线性关系的斜率为–0.6至–0.7。这一理论自提出以来, 饱受争议, 经过了正反两方面经验数据的检验, 目前仍未形成一致的结论。虽然这一理论仍面临着一些有待解决的问题, 但它以崭新的思路和方法有别于以往的基于统计学方法的研究。人们过去对该理论的实证检验忽略了两个重要的约束条件, 即除温度以外的环境条件处于理想状态和群落处于平衡状态, 而这两个约束条件是理解该理论的基础。本文对生态学代谢理论的理论框架、预测和含义, 以及以往的检验结果进行阐述, 在此基础上提出了作者对该理论的若干认识和未来研究中应考虑的若干问题。  相似文献   

10.
A new species of the genus Lytorhynchus is described from the Kabir-Koh Mountains, southwestern Iran. Known from a single specimen, it is readily distinguished from its congeners by the form of the rostrum, the number of scales, and the colouration and colour pattern.

http://www.zoobank.org/urn:lsid:zoobank.org:pub:66BC88DF-C092-4F7D-8ECD2860EDAC17B1  相似文献   


11.
J. Ewald 《Plant biosystems》2013,147(3):594-603
Abstract

Based on a stratified random sample of 93 vegetation plots (144 m2) from montane and subalpine climax forests in a representative section through the Bavarian Alps, spatial pattern and environmental correlates of species density of trees, vascular understorey and epigeic bryophytes were analysed. Detecting landscape scale patterns in beta- and gamma-diversity based on interpretation of rarefaction curves proved to be difficult in a sample that had been stratified by ecological criteria. In 144 m2 plots tree species density (5 ± 2.0, max. 10) declined with elevation and increased with stand age (multiple R 2 = 0.557). The latter effect can be attributed to the secular history of game management and browsing pressure, which has hindered the regeneration of species-rich tree stands since ca. 150 yr. Species density of the forest undergrowth reached remarkably high levels for vascular plants (42 ± 12.8, max. 69) and bryophytes (14 ± 6.0, max. 30) and strongly depended on cover of the respective layer in a unimodal pattern, suggesting to separate direct and indirect effects, mediated through the mass effect, in the subsequent construction of regression models. Multiple regression (R 2 = 0.47) revealed that vascular species density is limited chiefly through low plant cover, which in turn decreases with tree cover, elevation and soil quality, and secondly by species pools that contain larger numbers of species requiring high pH and ample light. Cover and direct effects had roughly equal weight in controlling bryophyte species density (R 2 = 0.57). Biomass depended on the proportion of conifers in the tree layer and on site quality, less fertile sites tending to have higher bryophyte cover. The increase of bryophyte species density with elevation was interpreted as an effect of a pool of largely boreal-subalpine species. The increase of species density with stand age suggests dispersal limitation and deserves further study.  相似文献   

12.
Bandy Bandy’s(Vermicella spp.)are a striking,black-and-white ringed genus of small elapid snakes endemic to Australia.All taxa are burrowers and little is known of their biology and ecology.We investigated the habitat preferences of the only arid-dwelling species,the centralian bandy bandy(Vermicella vermiformis),in the MacDonnell Ranges west of Alice Springs in the Northern Territory.Using systematic road-cruising,we encountered 16V.vermiformis over a 12 months period between 2009 and 2010.We used logistic regression to model the occurrence of the species against a range of different habitat variables collected at multiple scales.Despite the small sample size,V.vermiformis exhibited a clear preference for acacia shrubland habitats,with acacia variables present in all AICc ranked models in the 95%confidence set.The factors driving this association,together with the preference for habitat not burnt in the most recent wildfires,may be related to the abundance of their only known prey,blind snakes(Ramphotyphlops spp.).  相似文献   

13.
Ecological studies have shown that water-containing terrestrial, subterranean and submarine high-temperature environments harbor a great diversity of hyperthermophilic prokaryotes, growing fastest at temperatures of 80 degrees C or above. The investigations included cultivation, isolation and detailed analysis of these hyperthermophiles as well as in situ 16S rRNA gene sequence analysis and in situ hybridization studies. For a safe and fast isolation of novel hyperthermophiles from mixed cultures, a new, plating-independent isolation technique was developed, based on the use of a laser microscope ('optical tweezers'). This method, combined with 16S rRNA gene sequence analysis and whole-cell hybridization using fluorescently labelled oligonucleotide probes, even allows the recovery of pure cultures of phylogenetically predicted organisms harboring novel 16S rRNA gene sequences. In their natural habitats, hyperthermophiles form complex food webs, consisting of primary producers and consumers of organic material. Their metabolic potential includes various types of aerobic and anaerobic respiration and different modes of fermentation. In hydrothermal and geothermal environments, hyperthermophiles have important ecological functions in biogeochemical processes. Members of the Sulfolobales are able to mobilize heavy metals from sulfidic ores like pyrite or chalcopyrite. Biomineralization processes of hyperthermophiles include the formation of magnetite from iron or the precipitation of arsenate as realgar, a reaction performed by a novel hyperthermophile that was isolated from Pisciarelli Solfatara, Naples, Italy.  相似文献   

14.
15.
Abstract. 1. Using two sources of data to estimate butterfly species richness, the potential influences of 11 environmental variables on the richness gradient of butterflies in western/central Europe and northern Africa were examined with multiple regression and spatial autocorrelation analysis. A measure of water–energy balance, actual evapotranspiration, explained 79% of the variance in butterfly species richness using data derived from range maps, and 72% of the variance using data derived from grid‐based distribution maps. All other variables explained less than 4% of the variance in the regression models and differed depending on the data source. 2. The spatial analysis indicated that actual evapotranspiration successfully removed most of the spatial autocorrelation in both richness data sets at all spatial scales, confirming the ability of the model to account for the spatial pattern in butterfly richness. 3. Plant species richness, a rarely tested variable hypothesised to be an important determinant of herbivore diversity, was weakly associated with butterfly richness, suggesting that it has little or no direct influence on butterfly richness. 4. A historical variable, the length of time that areas have been exposed for recolonisation after the retreat of the ice sheet following the last ice age, was also not associated with richness patterns, indicating that butterfly richness is in equilibrium with contemporary climate. 5. It was not possible to confirm a result reported for Canadian butterflies that land cover diversity is a strong predictor of butterfly richness, possibly because of methodological differences in the studies, differences in the range of climates found in Canada and the western Palearctic, or because of the highly modified landscape characteristic of Europe. 6. Water–energy balance offers a parsimonious explanation for the butterfly richness gradient in this region, operating partially indirectly via effects on plant productivity and partially directly via physiological effects on butterflies, and this conclusion is robust to differences in the types of distribution maps used to estimate richness patterns.  相似文献   

16.
Variations in recorded diversity over time present a scrambled signal that is modulated by a large number of variables: the potential of particular life forms to generate evolutionary innovations, external constraints induced by the environment in its broad sense, the heterogeneity of the fossil record and the analytical artefacts due to sampling bias. A key question is how to characterise and quantify the separate input of any given factor in the overall diversity signal. This paper explores the structure of diversity data for spatangoid heart urchins and the sensitivity of recorded diversity to different factors of analytical bias (length of geological periods, proportion of palaeogeographical realms explored, accessible area of outcrops and historical determinism). Unexpectedly, recorded diversity of spatangoids is not proportional to the duration of stages. Bias implied by time scale is negligible compared to bias of sampling or historical determinism. Diversity at any given time is dependent on its recent history (autocorrelation). For spatangoids, a high correlation between diversity at time ti and ti−1 suggests that recorded diversity has an evolutionary significance. A nearly constant rate of diversification is hypothesised for the Cretaceous. A relative poor fossil record during the Turonian and the Coniacian interrupts the main trend of diversification. The number of species counted for a single time interval depends on the number of palaeogeographical realms considered. In conjunction with ecological and phylogenetic data, this relation suggests an evolutionary signal in which western Tethys acted as a centre of origination. Diversity at a single location is constrained ecologically and diversification is controlled by migration into new realms. Recorded diversity and available area of outcrop seem to be correlated, but alternative interpretations can be drawn, including large-scale bias in the fossil record or operation of similar causes (e.g., effect of sea-level fluctuation). Comparing recorded diversity with separate factors independently leads to conflicting results. A multivariate approach suggests that the main trend in recorded diversity might be partially related to evolutionary signal or biases connected with the heterogeneity of the fossil record. Results from other approaches (phylogeny, morphological disparity) are consistent with and emphasise the evolutionary significance of the recorded diversity of spatangoids.  相似文献   

17.
The latitudinal diversity gradient (LDG) has been known for over a century, but its origin remains poorly understood. Because both latitude and species richness are broadly related to temperature, environmental temperature has been proposed as a driver of the LDG. Recently, Wang et al. (2009, Proceedings of the National Academy of Sciences USA, 106 ,13388–13392) used datasets compiled from tree distributions in eastern Asia and North America to compare the species richness?temperature relationship between the two regions at several spatial scales and framed their analyses in the context of the metabolic theory of ecology. Here, we show that their datasets lack comparability between eastern Asia and North America and that some aspects of their analyses probably biased their results, casting doubt on some of their conclusions.  相似文献   

18.
19.
Understanding regional variability in species richness is necessary for conservation efforts to succeed in the face of large-scale environmental deterioration. Several analyses of North American vertebrates have shown that climatic energy provides the best explanation of contemporary species richness patterns. The paucity of analyses of insect diversity patterns, however, remains a serious obstacle to a general hypothesis of spatial variation in diversity. We collected species distribution data on a North American beetle genus, Epicauta (Coleoptera: Meloidae) and tested several major diversity hypotheses. These beetles are generally grasshopper egg predators as larvae, and angiosperm herbivores as adults. Epicauta richness is highest in the hot, dry American southwest, and decreases north and east, consistent with the species richness-energy hypothesis. Potential evapotranspiration, which is also the best predictor of richness patterns among North American vertebrates, explains 80.2% of the variability in Epicauta species richness. Net primary productivity and variables measuring climatic heat energy only (such as PET) are not generally comparable, though they are sometimes treated as if they were equivalent. We conclude that the species richness-energy hypothesis currently provides a better overall explanation for Epicauta species richness patterns in North America than other major diversity hypotheses. The observed relationship between climatic energy and regional species richness may provide significant insight into the response of ecological communities to climate change.  相似文献   

20.
We report an observation of cartwheeling behavior to escape predators employed by the Dwarf Reed Snake (Pseudorabdion longiceps). This rolling motion is a rare escape mechanism which has not been formally documented in detail for any other species of snake or reptile. This finding also extends our knowledge on the kinetic abilities in snakes. Abstract in Malay is available with online material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号