首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Juvenile hormone III (JH) is synthesized by the corpora allata (CA) and plays a key role in mosquito development and reproduction. JH titer decreases in the last instar larvae allowing pupation and metamorphosis to progress. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa (or pharate adult) becomes again “competent” to synthesize JH, which plays an essential role orchestrating reproductive maturation. 20-hydroxyecdysone (20E) prepares the pupae for ecdysis, and would be an ideal candidate to direct a developmental program in the CA of the pharate adult mosquito. In this study, we provide evidence that 20E acts as an age-linked hormonal signal, directing CA activation in the mosquito pupae. Stimulation of the inactive brain-corpora allata-corpora cardiaca complex (Br-CA-CC) of the early pupa (24 h before adult eclosion or −24 h) in vitro with 20E resulted in a remarkable increase in JH biosynthesis, as well as increase in the activity of juvenile hormone acid methyltransferase (JHAMT). Addition of methyl farnesoate but not farnesoic acid also stimulated JH synthesis by the Br-CA-CC of the −24 h pupae, proving that epoxidase activity is present, but not JHAMT activity. Separation of the CA-CC complex from the brain (denervation) in the −24 h pupae also activated JH synthesis. Our results suggest that an increase in 20E titer might override an inhibitory effect of the brain on JH synthesis, phenocopying denervation. All together these findings provide compelling evidence that 20E acts as a developmental signal that ensures proper reactivation of JH synthesis in the mosquito pupae.  相似文献   

2.
Juvenile hormones (JHs) are synthesized by the corpora allata (CA) and play a key role in insect development. A decrease of JH titer in the last instar larvae allows pupation and metamorphosis to proceed. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa (or pharate adult) becomes again “competent” to synthesize JH, which would play an essential role orchestrating reproductive maturation. In the present study, we provide evidence that ecdysis triggering hormone (ETH), a key endocrine factor involved in ecdysis control, acts as an allatotropic regulator of JH biosynthesis, controlling the exact timing of CA activation in the pharate adult mosquito. Analysis of the expression of Aedes aegypti ETH receptors (AeaETHRs) revealed that they are present in the CA and the corpora cardiaca (CC), and their expression peaks 4 h before eclosion. In vitro stimulation of the pupal CA glands with ETH resulted in an increase in JH synthesis. Consistent with this finding, silencing AeaETHRs by RNA interference (RNAi) in pupa resulted in reduced JH synthesis by the CA of one day-old adult females. Stimulation with ETH resulted in increases in the activity of juvenile hormone acid methyltransferase (JHAMT), a key JH biosynthetic enzyme. Furthermore, inhibition of IP3R-operated mobilization of endoplasmic reticulum Ca2+ stores prevented the ETH-dependent increases of JH biosynthesis and JHAMT activity. All together these findings provide compelling evidence that ETH acts as a regulatory peptide that ensures proper developmental timing of JH synthesis in pharate adult mosquitoes.  相似文献   

3.
Juvenile hormone III (JH) is synthesized by the corpora allata (CA) and plays a key role in mosquito development and reproduction. A decrease in JH titer during the last instar larvae allows pupation and metamorphosis to proceed. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa once again synthesizes JH, which plays an essential role in orchestrating reproductive maturation. In spite of the importance of Aedes aegypti as a vector, a detailed study of the changes of JH hemolymph titers during the gonotrophic cycle has never been performed. In the present studies, using a high performance liquid chromatography coupled to a fluorescent detector (HPLC–FD) method, we measured changes in JH levels in the hemolymph of female mosquitoes during the pupal and adult stages. Our results revealed tightly concomitant changes in JH biosynthesis and JH hemolymph titers during the gonotrophic cycle of female mosquito. Feeding high sugar diets resulted in an increase of JH titers, and mating also modified JH titers in hemolymph. In addition these studies confirmed that JH titer in mosquitoes is fundamentally determined by the rate of biosynthesis in the CA.  相似文献   

4.
5.
Aedes aegypti allatostatin-C (AeaAST-C or PISCF-AST) is a strong and fast reversible inhibitor of juvenile hormone III (JH III) synthesis by the corpora allata (CA) of mosquitoes; however, its mechanism of action remains poorly understood. AeaAST-C showed no inhibitory activity in the presence of any of the intermediate precursors of JH III indicating that the AeaAST-C target is located before the entry of acetyl-CoA in the pathway. Stimulation experiments using different sources of carbon (glucose, pyruvate, acetate and citrate) suggest that AST-C acts after pyruvate is transformed to citrate in the mitochondria. In vitro inhibition of the citrate mitochondrial carrier (CIC) mimicked the effect of AeaAST-C, and was overridden by addition of citrate or acetate. Our results provide compelling evidence that AeaAST-C inhibits JH III synthesis by blocking the CIC carrier that transports citrate from the mitochondria to the cytosol, obstructing the production of cytoplasmic acetyl-CoA that sustains JH III synthesis in the CA of mosquitoes.  相似文献   

6.
刘艳  胜振涛  蒋容静  黄原  李胜 《昆虫学报》2007,50(12):1285-1292
保幼激素 (juvenile hormone,JH) 是通过甲羟戊酸途径合成的一类倍半萜化合物。以昆虫中普遍存在的JH Ⅲ为例,从分子水平上概述了JH合成途径中的各种酶,并对其中的两个关键酶:羟甲基戊二酰辅酶A还原酶和保幼激素酸甲基转移酶作了详细介绍。还从家蚕基因组数据库(http://silkworm.genomics.org.cn)中推测出了JH合成途径中大部分酶的编码基因,初探了JH合成的调节机制,讨论了JH合成的研究趋势。  相似文献   

7.
In the cricket, Teleogryllus commodus, eggs, haemolymph of 7th and 8th (last)-larval instars, and haemolymph of adults of both sexes contain only juvenile hormone III. While in the male the hormone titre is independent of previous mating experience, juvenile hormone concentration in haemolymph taken from females 36–38 hr after mating (an event which is followed by oviposition) is at a level 5 times higher than that of virgin females. Based on data gleaned from several research groups the identification of juvenile hormone III as the exclusive juvenile hormone in the Order Orthopteroidea is discussed.  相似文献   

8.
Summary At the end of blastokinesis, serosal epitheliae of 4- to 5-day-old embryos of Locusta migratoria contain an immunohistologically detectable cytosolic protein (Mr 240 kDa) which is related to the juvenile hormone carrier-protein in the haemolymph of the same species and which binds tritiated juvenile hormone 3 (JH3) (Kd10–8 M). At this early stage of development the corpora allata of the embryo are not yet fully differentiated and do not synthesize JH3 in organ cultures. The earliest detectable JH3 production by corpora allata in isolated heads is on day 6. On the other hand, serosal epitheliae of 4- to 5-day-old embryos produce JH3 in organ cultures, as has been shown by methylation of (10-3H)-JH3-acid to (10-3H)-JH3, and by incorporation of tritiated CH3 from l-(methyl-3H)-methionine into JH3. Isolated heads and abdomens of the embryos used as donors for the serosal preparations did not show methyl transferase activity responsible for JH3 biosynthesis. The serosal cells represent a hitherto unrecognized source of methyl transferase activity and of JH3 production. Degradation of JH3 to JH3-acid was also observed.Dedicated to Professor Herbert Röller on the occasion of his 60th birthday  相似文献   

9.
《Journal of Asia》2020,23(3):689-693
Due to their target specificity and low-toxicity, insect growth regulators (IGRs) are regarded as promising alternatives to chemical insecticides. In this study, farnesol and farnesyl acetate exhibited juvenile hormone (JH)-based IGR activities. While farnesyl acetate showed JH agonist (JHA) activity in concentration-dependent manner, farnesol was identified as JH antagonist (JHAN) by interfering pyriproxyfen-mediated binding JH receptor complex. Both compounds showed mosquito larvicidal activities and caused retardation of ovarian growth of female Aedes albopictus by modulating the formation of JH receptor complex, expression of JH-inducible genes, and thereby disrupting JH-based endocrine regulations. These results suggested that farnesol and farnesyl acetate could be applicable for investigating underlying mechanisms of JH-regulated insect physiologies as well as developing novel eco-friendly insecticides.  相似文献   

10.
The cessation of juvenile hormone (JH) production is a key endocrine event that halts ovarian development and hence initiates diapause in females of the mosquito, Culex pipiens. The shutdown in endocrine activity of the corpora allata (CA), the source of JH, was manifested in the smaller size of CA in females reared under short daylengths (diapause) compared to those reared under long daylengths (nondiapause), as well as in low expression of the mRNA encoding allatotropin, the neuropeptide that promotes JH biosynthesis in the CA. Genes encoding both allatotropin and allatostatin were identified in C. pipiens, but only expression levels of allatotropin differed in the two types of females. Knockdown of allatotropin mRNA using RNA interference in females programmed for nondiapause resulted in a cessation of ovarian development akin to diapause. This arrest in development could be reversed with an application of JH. Our results thus suggest that suppression of allatotropin is a critical link in regulating the shutdown of the CA during diapause.  相似文献   

11.
Temporally distinct, head-mediated processes regulate vitellogenic development as well as juvenile hormone (JH)-mediated development of ovarian follicles of Aedes aegypti. In blood-fed adult mosquitoes, vitellogenic development is stimulated during the first day after blood is imbibed and JH secretion is stimulated 2 days later. JH secretion in recently ecdysed adult mosquitoes is stimulated during or shortly before ecdysis. These observations suggest that vitellogenesis follows blood-ingestion, whereas JH activity may secondarily be promoted by vitellogenesis. It may be that vitellogenesis and JH activity are mediated by different brain hormones  相似文献   

12.
Teneral reserves are utilized to initiate previtellogenic ovarian development in mosquitoes. Females having emerged with low teneral reserves have reduced juvenile hormone (JH) synthesis and previtellogenic development. We investigated what role JH, allatotropin (AT) and other head-factors play in the regulation of previtellogenic ovarian development and adult survivorship. Factors from the head are essential for corpora allata (CA) activation and reproductive maturation. We have shown that decapitation of females within 9-12h after adult ecdysis prevented normal development of the previtellogenic follicles; however maximum previtellogenic ovarian development could be induced in decapitated females by topically applying a JH analog. When females were decapitated 12 or more hours after emergence nutritional resources had been committed to ovarian development and survivorship was significantly reduced. To study if allatotropin levels correlated with teneral reserves, we measured AT titers in the heads of two adult phenotypes (large and small females) generated by raising larvae under different nutritional diets. In large mosquitoes AT levels increased to a maximum of 45 fmol in day 4; in contrast, the levels of allatotropin in the heads of small mosquitoes remained below 9 fmol during the 7 days evaluated. These results suggest that only when nutrients are appropriate, factors released from the brain induce the CA to synthesize enough JH to activate reproductive maturation.  相似文献   

13.
A hemolymph juvenile hormone binding protein (JHBP) shuttles hydrophobic JH, a key hormone in regulation of the insect life cycle, from the site of the JH biosynthesis to the cells of target organs. We report complete NMR chemical shift assignments of Bombyx mori JHBP in the JH III-bound state.  相似文献   

14.
15.
Summary

We have identified a potential nuclear juvenile hormone (JH) receptor in the long hyaline tubules (LHT), part of the male accessory reproductive gland (MARG) of M. sanguinipes. The MARG was incubated in vitro with [3H]JH III, and the distribution of the [3H]JH III among the cellular fractions of the LHT was determined. Some 37±4% of the radioactivity was associated with the crude nuclear pellet, while the cytosolic, microsomal and mitochondrial fractions contained 30±3%, 23±2% and 10±1%, respectively. The bound JH III was measured in nuclear extracts of LHT from males up to 15 days post-eclosion. These results revealed that JH binding increased in an age-dependent manner up to day 7, then levelled off to day 12, to increase again on day 14. The nuclear-binding component in the LHT had a very strong affinity for JH III, with a KD value of 0.8 nM. Our observations are considered in relation to the potential site and mode of action of JH.  相似文献   

16.
17.
The control of developmental changes in Malpighian tubule cell structure and fluid secretion by 20-hydroxyecdysone and juvenile hormone in the skipper butterfly Calpodes ethlius were studied using (1) in vitro tissue culture, (2) in vivo injection and topical application and (3) tubule transplantation experiments. At pupation, 20-hydroxyecdysone initiates cell remodelling and switches off fluid secretion in the Malpighian tubules. Juvenile hormone inhibits these alterations provided that treatment is begun on the first day of the last larval stage. In the pupal stage, 20-hydroxyecdysone triggers the differentiation of adult cell structure which culminates in the renewal of fluid secretion. The results show that 20-hydroxyecdysone and juvenile hormone regulate Malpighian tubule function by altering cell structure and are discussed with respect to the hormonal reprogramming of the Malpighian tubule cells during development.  相似文献   

18.
19.
Regulation of juvenile hormone synthesis during pregnancy was investigated after determining the normal rates of synthesis in pregnancy and the second gonadotrophic cycle in Diploptera punctata by direct in vitro radiochemical assay.The low rate of juvenile hormone synthesis during early pregnancy is maintained by three factors: (1) the small ovary which is incapable of eliciting increased rates of juvenile hormone synthesis (2) an inhibitory centre in the brain acting via intact nerves to the corpora allata (similar to that in virgin females) and (3) an inhibitory centre in the brain acting via the haemolymph (elicited by embryos in the brood sac).The existence of two inhibitory centres in the brain is supported by the additive effect of denervating the corpora allata and removing embryos. Whereas these operations alone activated the corpora allata in 54 and 31% of the females, respectively, together they activated 87%, similar to the 91% activated by denervation alone in late pregnancy.The inhibition which remains after denervation of the corpora allata can be removed by decapitation and restored by implantation of the protocerebrum from a pregnant female but not from one developing oöcytes.The inhibition elicited by embryos in the brood sac can be overcome by introduction of a stimulatory ovary and/or substitution of active corpora allata.  相似文献   

20.
We describe a method for the routine determination of changes in juvenile hormone levels in insect eggs. The hormones are first converted into their diol derivatives, then they are purified from other lipids and separated by high-performance liquid chromatography (HPLC). The radioimmunoassay of the fractions was then determined. The method permits the simultaneous assay of ecdysteroids, and it was used for determining the hormonal changes in Bombyx eggs during the pre-diapause development. Our major finding is that the hormonal content of eggs dramatically increased prior to the initiation of diapause. This hormonal rise included ecdysone, 20-OH-ecdysone and 3 juvenile hormones. The HPLC retention time of the latter corresponded to JH1 JH2 and JH3. Subsequently, the embryos entered diapause and the hormonal content of eggs was reduced to traces of ecdysteroids. These dramatic changes in juvenile hormone levels during early embryogenesis raise a number of issues which are developed in the discussion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号