首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Treatment of oil sands process-affected water (OSPW) using biodegradation has the potential to be an environmentally sound approach for tailings water reclamation. This process is both economical and efficient, however, the recalcitrance of some OSPW constituents, such as naphthenic acids (NAs), require the pre-treatment of raw OSPW to improve its biodegradability. This study evaluated the treatment of OSPW using ozonation followed by fluidized bed biofilm reactor (FBBR) using granular activated carbon (GAC). Different organic and hydraulic loading rates were applied to investigate the performance of the bioreactor over 120 days. It was shown that ozonation improved the adsorption capacity of GAC for OSPW and improved biodegradation by reducing NAs cyclicity. Bioreactor treatment efficiencies were dependent on the organic loading rate (OLR), and to a lesser degree, the hydraulic loading rate (HLR). The combined ozonation, GAC adsorption, and biodegradation process removed 62 % of chemical oxygen demand (COD), 88 % of acid-extractable fraction (AEF) and 99.9 % of NAs under optimized operational conditions. Compared with a planktonic bacterial community in raw and ozonated OSPW, more diverse microbial communities were found in biofilms colonized on the surface of GAC after 120 days, with various carbon degraders found in the bioreactor including Burkholderia multivorans, Polaromonas jejuensis and Roseomonas sp.  相似文献   

2.
The development of biodegradation treatment processes for oil sands process-affected water (OSPW) has been progressing in recent years with the promising potential of biofilm reactors. Previously, the granular activated carbon (GAC) biofilm process was successfully employed for treatment of a large variety of recalcitrant organic compounds in domestic and industrial wastewaters. In this study, GAC biofilm microbial development and degradation efficiency were investigated for OSPW treatment by monitoring the biofilm growth on the GAC surface in raw and ozonated OSPW in batch bioreactors. The GAC biofilm community was characterized using a next-generation 16S rRNA gene pyrosequencing technique that revealed that the phylum Proteobacteria was dominant in both OSPW and biofilms, with further in-depth analysis showing higher abundances of Alpha- and Gammaproteobacteria sequences. Interestingly, many known polyaromatic hydrocarbon degraders, namely, Burkholderiales, Pseudomonadales, Bdellovibrionales, and Sphingomonadales, were observed in the GAC biofilm. Ozonation decreased the microbial diversity in planktonic OSPW but increased the microbial diversity in the GAC biofilms. Quantitative real-time PCR revealed similar bacterial gene copy numbers (>109 gene copies/g of GAC) for both raw and ozonated OSPW GAC biofilms. The observed rates of removal of naphthenic acids (NAs) over the 2-day experiments for the GAC biofilm treatments of raw and ozonated OSPW were 31% and 66%, respectively. Overall, a relatively low ozone dose (30 mg of O3/liter utilized) combined with GAC biofilm treatment significantly increased NA removal rates. The treatment of OSPW in bioreactors using GAC biofilms is a promising technology for the reduction of recalcitrant OSPW organic compounds.  相似文献   

3.
Batch experiments were performed to evaluate biodegradation of raw and ozonated oil sands process-affected water (OSPW) under denitrifying anoxic and nitrifying aerobic conditions for 33 days. The results showed both the anoxic and aerobic conditions are effective in degrading OSPW classical and oxidized naphthenic acids (NAs) with the aerobic conditions demonstrating higher removal efficiency. The reactors under nitrifying aerobic condition reduced the total classical NAs of raw OSPW by 69.1 %, with better efficiency for species of higher hydrophobicity. Compared with conventional aerobic reactor, nitrifying aerobic condition substantially shortened the NA degradation half-life to 16 days. The mild-dose ozonation remarkably accelerated the subsequent aerobic biodegradation of classical NAs within the first 14 days, especially for those with long carbon chains. Moreover, the ozone pretreatment enhanced the biological removal of OSPW classical NAs by leaving a considerably lower final residual concentration of 10.4 mg/L under anoxic conditions, and 5.7 mg/L under aerobic conditions. The combination of ozonation and nitrifying aerobic biodegradation removed total classical NAs by 76.5 % and total oxy-NAs (O3–O6) by 23.6 %. 454 Pyrosequencing revealed that microbial species capable of degrading recalcitrant hydrocarbons were dominant in all reactors. The most abundant genus in the raw and ozonated anoxic reactors was Thauera (~56 % in the raw OSPW anoxic reactor, and ~65 % in the ozonated OSPW anoxic reactor); whereas Rhodanobacter (~40 %) and Pseudomonas (~40 %) dominated the raw and ozonated aerobic reactors, respectively. Therefore, the combination of mild-dose ozone pretreatment and subsequent biological process could be a competent choice for OSPW treatment.  相似文献   

4.
Two sequencing batch reactors (SBR) were constructed and filled with different inocula of activated sludge (AS) and mature fine tailings (MFT) to treat oil sands process-affected water (OSPW). The COD was reduced by 82% in the AS-SBR and 43% in the MFT-SBR during phase I using 10% OSPW and 90% synthetic wastewater as reactor feed. However, COD removal reached 12% and 20% in the AS-SBR and the MFT-SBR, respectively, when 100% raw OSPW was fed into the reactors. Maximum removal of acid-extractable organics (AEO) was 8.7% and 16.6% in the AS-SBR and the MFT-SBR, respectively with a hydraulic retention time of one day. Pyrosequencing analysis revealed that Proteobacteria was the dominant phylum and beta- and gamma-Proteobacteria were dominant classes in both reactors. Evidence of a microbial community change was observed when influent raw OSPW was switched from 50 to 100%. More significant changes in the AS-SBR community were detected.  相似文献   

5.
AIMS: Naphthenic acids (NAs) are naturally occurring, linear and cyclic carboxylic surfactants associated with the acidic fraction of petroleum. NAs account for most of the acute aquatic toxicity of oil sands process-affected water (OSPW). The toxicity of OSPW can be reduced by microbial degradation. The aim of this research was to determine the extent of NA degradation by sediment microbial communities exposed to varying amounts of OSPW. METHODS AND RESULTS: Eleven wetlands, both natural and process-affected, and one tailings settling pond in Northern Alberta were studied. The natural wetlands and process-affected sites fell into two distinct groups based on their water chemistry. The extent of degradation of a 14C-labelled monocyclic NA surrogate [14C-cyclohexane carboxylic acid (CCA)] was relatively uniform in all sediments (approximately 30%) after 14 days. In contrast, degradation of a bicyclic NA surrogate [14C-decahydronaphthoic acid (DHNA)] was significantly lower in non process-affected sediments. Enrichment cultures, obtained from an active tailings settling pond, using commercially available NAs as the sole carbon source, resulted in the isolation of a co-culture containing Pseudomonas putida and Pseudomonas fluorescens. Quantitative GC-MS analysis showed that the co-culture removed >95% of the commercial NAs, and partially degraded the process NAs from OSPW with a resulting NA profile similar to that from 'aged wetlands'. CONCLUSIONS: Exposure to NAs induced and/or selected micro-organisms capable of more effectively degrading bicyclic NAs. Native Pseudomonas spp. extensively degraded fresh, commercial NA. The recalcitrant NAs resembled those found in process-affected wetlands. SIGNIFICANCE AND IMPACT OF THE STUDY: These results suggest that it may be possible to manipulate the existing environmental conditions to select for a microbial community exhibiting higher rates of NA degradation. This will have significant impact on the design of artificial wetlands for water treatment.  相似文献   

6.
In order to maximize the efficiency of methane fermentation on short-chain fatty acids, growth media containing acetic acid and butyric acid as major carbon sources were supplied to a thermophilic down-flow anaerobic packed-bed reactor. The organic loading rate (OLR) to the reactor ranged from 0.2 to 169 kg-dichromate chemical oxygen demand(CODcr)/m3-reactor/day, corresponding to a hydraulic retention time (HRT) of between 1.4 h and 20 days. Stable methane production was maintained at HRTs as short as 2 h (OLR=120 kg-CODcr/m3/day), with the short-chain fatty acids in the feed almost completely removed during the process. The apparent substrate removal efficiency, determined from the total CODcr values in the influent and effluent, was 75% at short HRTs. However, the actual substrate removal efficiency must have been greater than 75%, since a fraction of substrate was also utilized in microbial cell synthesis, and these cells were part of the measured total CODcr.  相似文献   

7.
This paper describes the thermophilic (55 °C) anaerobic biodegradation of a mixed feed composed of vinasses and cutting oil wastewater (COW) in a laboratory upflow anaerobic fixed-film reactor (UAFF) with a porous support medium. The experimental protocol was defined to examine the effect of increasing the percentage of cutting oil wastewater in the feed.The UAFF reactor was initially started-up with vinasses as the only carbon source at an organic loading rate of 22.3 kg COD/m3 day and HRT of 0.8 days using porous particles as the support (SIRAN). The percentage of organic matter composed of vinasses was subsequently reduced while increasing the amount of cutting oil until 100% of cutting oil wastewater was added in the feed. Four stages were considered in the study (0, 42.4, 66.6 and 100% COW). HRT was adjusted in order to maintain an approximately constant organic loading rate applied to the system. Under theses conditions, the UAFF reactor was subjected to a programme of steady-state operation with hydraulic retention times (HRT) in the range 0.8–0.15 days and organic loading rates (OLR) between 22.3 and 14.9 kg COD/m3 day in order to evaluate the treatment capacity of the system.The COD removal efficiency was found to be 87% COD and 94.6% TOC in the reactor when treating vinasses at 22.3 kg COD/m3 day. The volumetric methane level produced in the digester reached 0.45 m3/m3 day. After an operating period of 120 days, the reactor was fed with cutting oil wastewater (COW) as the only source of carbon. An OLR of 16.7 kg COD/m3 day was achieved with 85.8% COD removal efficiency (58.1%TOC) in the experimental UAFF reactor. Under these conditions the volumetric methane produced in the digester was negligible.Hence, COW can be removed, if not degraded, by anaerobic treatment in the presence of a biodegradable co-substrate. Wine vinasses degradation creates conditions for non-biological removal of COW constituents. More studies are necessary in order to test the mechanisms of organic removal when biodegradation apparently had ceased. Also, toxicity assays of COW are necessary to evaluate the toxicity to the methanogenic community.  相似文献   

8.
A novel polyethylene glycol (PEG) gel was fabricated and used as a carrier to immobilize Clostridium sp. LS2 for continuous hydrogen production in an upflow anaerobic sludge blanket (UASB) reactor. Palm oil mill effluent (POME) was used as the substrate carbon source. The optimal amount of PEG-immobilized cells for anaerobic hydrogen production was 12% (w/v) in the UASB reactor. The UASB reactor containing immobilized cells was operated at varying hydraulic retention times (HRT) that ranged from 24 to 6 h at 3.3 g chemical oxygen demand (COD)/L/h organic loading rate (OLR), or at OLRs that ranged from 1.6 to 6.6 at 12 h HRT. The best volumetric hydrogen production rate of 336 mL H2/L/h (or 15.0 mmol/L/h) with a hydrogen yield of 0.35 L H2/g CODremoved was obtained at a HRT of 12 h and an OLR of 5.0 g COD/L/h. The average hydrogen content of biogas and COD reduction were 52% and 62%, respectively. The major soluble metabolites during hydrogen fermentation were butyric acid followed by acetic acid. It is concluded that the PEG-immobilized cell system developed in this work has great potential for continuous hydrogen production from real wastewater (POME) using the UASB reactor.  相似文献   

9.
A bioreactor cascade with a submerged biofilm is proposed to treat young landfill leachate of jbel chakir landfill site south west from capital Tunis, Tunisia. The prototype was run under different organic loading charges varying from 0.6 to 16.3 kg TOC m−3 day−1. Without initial pH adjustment total organic carbon (TOC) removal rate varied between 65% and 97%. The total reduction of COD reached 92% at a hydraulic retention time of 36 h. However, the removal of total kjeldahl nitrogen for loading charges of 0.5 kg N m−3 day−1 reached 75%. The adjustment of pH to 7.5 improved nitrogen removal to a rate of 85% for loading charge of 1 kg N m−3 day−1. The main bacterial groups responsible for a simultaneous removal of organic carbon and nitrogen belonged to Bacillus, Actinomyces, Pseudomonas and Burkholderia genera. These selected isolates showed a great capacity of degradation at different leachate concentrations of total organic carbon.  相似文献   

10.
The removal of 5 mg 1–1 1,2-dichloroethane [(CH2Cl)2] was studied in two granular activated carbon (GAC) reactors run with hydraulic retention times of below 1 h. One reactor was operated abiotically. The other one was inoculated with microorganisms able to degrade (CH2Cl)2. While the (CH2Cl)2-adsorption capacity of the non-inoculated GAC reactor was exhausted after 20 days, it apparently did not exhaust for at least 170 experimental days in the biologically activated system because (CH2Cl)2 was removed to over 95% as a result of the microbial degradation. The biodegradation was quantified: during the passage through the biologically activated GAC reactor, (CH2Cl)2 (5± mg l–1) disappeared, chloride ions (3.3±0.2 mg l–1) were produced, and oxygen (4 to 6 mg l–1) was consumed. Removal of 30% of GAC at the entrance of the reactor, which visibly carried most of the biomass, and its replacement by virgin GAC at the end of the column did not change the apparent (CH2Cl)2removal capacity of the GAC column, indicating that still enough biomass was available to degrade most of the chemical fed. After the addition of the virgin carbon, the effluent concentration fell for a short period of time from about 200 g l–1 to below 100 g l–1, indicating partial adsorption of the non-degraded (CH2Cl)2 at the end of the reactor by the virgin carbon. Thus, the modification of the adsorption process by inoculation and maintenance of bacteria with special degradation capabilities resulted in a lower consumption of GAC and thus led to an extended service life of the GAC columns.  相似文献   

11.
Hollow-fiber membrane bioreactors were developed with granular activated carbon (GAC) for the biodegradation of phenol using Pseudomonas putida. Hollow fibers showed similar structure with/without GAC incorporated; while GAC hollow fiber had a stronger phenol adsorption capacity. In batch biotransformation experiments, complete depletion of 1000 mg phenol l−1 (at which concentration free cells cannot grow) was accomplished in the reactor within 18 h in the hybrid bioreactor, comparing with 23 h in the GAC free bioreactor. Desorption and bioregeneration of the hollow-fiber membrane were believed to be the key for the enhancement of bioreactor performance. At continuous running, the GAC bioreactor showed its superiority over the GAC free bioreactor during start-up and elevated loading phase. More than 90% of the phenol was transformed in the GAC bioreactor when the phenol loading was <24 mg h−1. The better bioreactor performance may be due to the enhanced mass transportation and adsorption capacity with the incorporation of GAC.  相似文献   

12.
The biological removal of phenol was studied in a multi-stage fixed-film reactor at phenol concentrations in the range of 190–900 mg l−1, hydraulic loadings of 0.02–0.22 m3 m−2 day−1 and temperatures of 20–35°C. Phenol removals up to 99.9% were obtained at 20°C but the efficiency decreased as the loading rate or phenol concentration was increased. The reactor coped with organic overloads better than with hydraulic overloads. Removal efficiencies increased as temperature was increased. Reactor performance was stable under extreme loadings and the reactor was capable of handling a ten-fold increase in loading with less than 20% loss in phenol removal efficiency. A large amount of attached biomass was retained in the reactor and was mostly present in the first stage where the majority of organic removal occurred.  相似文献   

13.
Summary Start-up and operation of a fluidized-bed reactor were investigated with butyrate or butyrate plus acetate as sole substrates. Start-up could be enhanced by increasing the amount of inoculum and by providing balanced substrate concentrations in a wellbuffered synthetic wastewater. High-rate degradation of butyrate to methane and carbon dioxide was achieved with a maximum organic loading rate (OLR) of 34.5 kg chemical oxygen demand (COD)/m3·d at a hydraulic retention time (HRT) of 0.47 d and with a COD removal efficiency of 87%.  相似文献   

14.
The catalytically oxidized olive mill wastewater (OMW) was subjected to continuous anaerobic treatment using two treatment schemes. The 1st step in both schemes was an up-flow anaerobic sludge blanket (UASB) reactor (2 0 l). The 2nd step was either a hybrid UASB reactor or a classical one (1 0 l, each). The 1st stage was operated at constant hydraulic retention time (HRT) of 24 h. The organic loading rate (OLR) varied from 3.4 to 4.8 kgCOD/m3 d depending on the quality of the pretreated wastewater. The results obtained indicated that, the 1st step UASB reactor achieved a COD percentage removal value of 53.9%. Corresponding total BOD5 and TSS removal were 51.5% and 68.3%, respectively.The results obtained indicated that the hybrid UASB reactor as a 2nd step produced better quality effluent as compared to the classical one. This could be attributed to the presence of the packing curtain sponge with active biomass in the sedimentation part of hybrid UASB reactor which minimizes suspended solids washout, consequently enhancement of the efficiency of the reactor.Available data showed that a two stage system consisting of a classical and a hybrid UASB reactor operated at a total HRT of 48 h and OLR of 2.0 kgCOD/m3 d provided promising results. Removal values of CODtotal, BOD5 total, TOC, VFA, oil and grease were 83%, 84%, 81%, 93% and 81%, respectively. Based on the available data, the use of a two stage anaerobic system consisting of a classical UASB reactor followed by a hybrid UASB as a post-treatment step for catalytically oxidized OMW is recommended.  相似文献   

15.
Denitrifying sulfide removal (DSR) processes simultaneously convert sulfide, nitrate, and chemical oxygen demand from industrial wastewater into elemental sulfur, dinitrogen gas, and carbon dioxide, respectively. The failure of a DSR process is signaled by high concentrations of sulfide in reactor effluent. Conventionally, DSR reactor failure is blamed for overcompetition for heterotroph to autotroph communities. This study indicates that the elementary sulfur produced by oxidizing sulfide that is a recoverable resource from sulfide-laden wastewaters can be reduced back to sulfide by sulfur-reducing Methanobacterium sp. The Methanobacterium sp. was stimulated with excess organic carbon (acetate) when nitrite was completely consumed by heterotrophic denitrifiers. Adjusting hydraulic retention time of a DSR reactor when nitrite is completely consumed provides an additional control variable for maximizing DSR performance.  相似文献   

16.
The study was aimed at treating the complex, combined wastewater generated in Mangolpuri industrial cluster. It was considered as a low strength wastewater with respect to its organic content. Anaerobic treatment of this wastewater was studied using an anaerobic hybrid reactor (AHR) which combined the best features of both the upflow anaerobic sludge blanket (UASB) reactor and anaerobic fluidized bed rector (AFBR). The performance of the reactor under different organic and hydraulic loading rates were studied. The COD removal reached 94% at an organic loading rate (OLR) of 2.08 kg COD m(-3)d(-1) at an hydraulic retention time (HRT) of 6.0 h. The granules developed were characterized in terms of their diameter and terminal settling velocity.  相似文献   

17.
Performance and Microbial Structure of a Combined Biofilm Reactor   总被引:2,自引:0,他引:2  
A novel combined biofilm reactor was established and applied as a single treatment unit for carbon and nitrogen removal of wastewater. The nitrogen removal performance of the reactor at different levels of organic carbon (COD) loading was investigated when the influent total nitrogen (TN) loading was 0.74 g TN/m2 day. Continuous experimental results demonstrated that 80% nitrogen was eliminated when the influent COD loading ranged between 2.06 g and 3.92 g COD/m2 day. Microbial composition in the reactor was analyzed using fluorescent in situ hybridization (FISH) and conventional batch tests. The relative abundance of ammonia-oxidizing bacteria in the aerobic zone of the reactor measured by FISH was consistent with the result from conventional batch tests.  相似文献   

18.
The performance of an anaerobic expanded bed reactor has been examined during the treatment of a synthetic low strength waste whose consistency and composition were constant. The organic loading rates used were in the range 0.2–5 kg total organic carbon m?3 day?1 and the removal efficiencies varied from 89 to 52%. Comparing these results with those obtained previously for the treatment of domestic sewage, whose strength and composition was very variable, showed that not only can higher removal efficiencies be achieved with the synthetic waste but also that a significantly better (R2 > 0.85, as opposed to <0.5) correlation between data could be obtained. This indicates the potential danger of using synthetic feedstocks for the prediction of reactor performance under real conditions.  相似文献   

19.
Batch tests to measure maximum acetate utilization rates were used to determine the distribution of acetate utilizers in expanded-bed sand and expanded-bed granular activated carbon (GAC) reactors. The reactors were fed a mixture of acetate and 3-ethylphenol, and they contained the same predominant aceticlastic methanogen, Methanothrix sp. Batch tests were performed both on the entire reactor contents and with media removed from the reactors. Results indicated that activity was evenly distributed within the GAC reactors, whereas in the sand reactor a sludge blanket on top of the sand bed contained approximately 50% of the activity. The Monod half-velocity constant (Ks) for the acetate-utilizing methanogens in two expanded-bed GAC reactors was searched for by combining steady-state results with batch test data. All parameters necessary to develop a model with Monod kinetics were experimentally determined except for Ks. However, Ks was a function of the effluent 3-ethylphenol concentration, and batch test results demonstrated that maximum acetate utilization rates were not a function of the effluent 3-ethylphenol concentration. Addition of a competitive inhibition term into the Monod expression predicted the dependence of Ks on the effluent 3-ethylphenol concentration. A two-parameter search determined a Ks of 8.99 mg of acetate per liter and a Ki of 2.41 mg of 3-ethylphenol per liter. Model predictions were in agreement with experimental observations for all effluent 3-ethylphenol concentrations. Batch tests measured the activity for a specific substrate and determined the distribution of activity in the reactor. The use of steady-state data in conjunction with batch test results reduced the number of unknown kinetic parameters and thereby reduced the uncertainty in the results and the assumptions made.  相似文献   

20.
A lab-scale anaerobic filter process was operated for the treatment of purified terephthalic acid (PTA) wastewater, and the influences of organic loading disturbances on the process performance were investigated. After about 15 month operation, the COD removal efficiency was maintained at 79% under the volumetric loading rate of 5.05 kg-COD/m3/d and the hydraulic retention time (HRT) of 50 h. Interestingly, this performance could be further enhanced over 85% by applying a step-increase/decrease of the HRT, which was mainly due to the increased p-toluate degradation. In the shock loading tests of four major pollutants (benzoate, acetate, terephthalate and p-toluate), it was found that the overall process performance was adversely affected by all the shock loadings, indicating that the syntrophic microbial consortium involved in the PTA wastewater treatment is highly sensitive to the organic loading disturbances. The complex inhibition effects of the benzoate and acetate on the terephthalate and p-toluate degradations were mainly responsible for this sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号