首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.

Background  

High enzyme loading is a major economic bottleneck for the commercial processing of pretreated lignocellulosic biomass to produce fermentable sugars. Optimizing the enzyme cocktail for specific types of pretreated biomass allows for a significant reduction in enzyme loading without sacrificing hydrolysis yield. This is especially important for alkaline pretreatments such as Ammonia fiber expansion (AFEX) pretreated corn stover. Hence, a diverse set of hemicellulases supplemented along with cellulases is necessary for high recovery of monosaccharides.  相似文献   

2.
Biorefining strives to recover the maximum value from each fraction, at minimum energy cost. In order to seek an unbiased and thorough assessment of the alleged opportunity offered by biomass fuels, the direct conversion of various lignocellulosic biomass was studied: aspen pulp wood (Populus tremuloides), aspen wood pretreated with dilute acid, aspen lignin, aspen logging residues, corn stalk, corn spathe, corn cob, corn stover, corn stover pellet, corn stover pretreated with dilute acid, and lignin extracted from corn stover. Besides the heating rate, the yield of liquid products was found to be dependent on the final liquefaction temperature and the length of liquefaction time. The major compounds of the liquid products from various origins were identified by GC-MS. The lignin was found to be a good candidate for the liquefaction process, and biomass fractionation was necessary to maximize the yield of the liquid bio-fuel. The results suggest a biorefinery process accompanying pretreatment, fermentation to ethanol, liquefaction to bio-crude oil, and other thermo-conversion technologies, such as gasification. Other biorefinery options, including supercritical water gasification and the effectual utilization of the bio-crude oil, are also addressed.  相似文献   

3.
A lignocellulosic decomposing fungus Z5 was isolated and identified as Aspergillus fumigatus, its capacity to produce cellulase was assessed under solid-state fermentation (SSF) using lignocellulosic materials as substrates. Cultivation conditions of A. fumigatus Z5 for cellulase production were optimized, results showed that for carboxymethyl cellulase (CMCase) and filter paper enzyme (FPase), the best condition was 50 °C, 80% initial moisture, initial pH 4.0 and 7% initial inoculum, the average activity of CMCase activity, FPase activity reached 526.3 and 144.6 U g−1 dry weight (dw) respectively, much higher than most of previous reports of this genus. Optimal temperature and pH for the CMCase activity of the crude enzyme were found to be 50 °C and 5.0, respectively. Zymogram analysis showed that eight kinds of CMCase were secreted by A. fumigatus Z5 when cellulose-containing materials were supplied in the culture. The crude enzyme secreted by the strain was further applied to hydrolyze pretreated corn stover and the enzymatic hydrolysate was used as substrate for ethanol production by Saccharomyces cerevisiae. The yield of bio-ethanol was 0.112 g g−1 dry substrate (gDS), suggesting that it is a promising fungus in the bio-ethanol production process.  相似文献   

4.
The celB gene of Caldicellulosiruptor saccharolyticus was cloned and expressed in Escherichia coli to create a recombinant biocatalyst for hydrolyzing lignocellulosic biomass at high temperature. The GH5 domain of CelB hydrolyzed 4-nitrophenyl-β-d-cellobioside and carboxymethyl cellulose with optimum activity at pH 4.7-5.5 and 80 °C. The recombinant GH5 and CBM3-GH5 constructs were both stable at 80 °C with half-lives of 23 h and 39 h, respectively, and retained >94% activity after 48 h at 70 °C. Enzymatic hydrolysis of corn stover and cellulose pretreated with the ionic liquid 1-ethyl-3-methylimidazolium acetate showed that GH5 and CBM3-GH5 primarily produce cellobiose, with product yields for CBM3-GH5 being 1.2- to 2-fold higher than those for GH5. Confocal microscopy of bound protein on cellulose confirmed tighter binding of CBM3-GH5 to cellulose than GH5, indicating that the enhancement of enzymatic activity on solid substrates may be due to the substrate binding activity of CBM3 domain.  相似文献   

5.
Cellulase and bovine serum albumin (BSA) were added to Avicel cellulose and solids containing 56% cellulose and 28% lignin from dilute sulfuric acid pretreatment of corn stover. Little BSA was adsorbed on Avicel cellulose, while pretreated corn stover solids adsorbed considerable amounts of this protein. On the other hand, cellulase was highly adsorbed on both substrates. Adding a 1% concentration of BSA to dilute acid pretreated corn stover prior to enzyme addition at 15 FPU/g cellulose enhanced filter paper activity in solution by about a factor of 2 and beta-glucosidase activity in solution by about a factor of 14. Overall, these results suggested that BSA treatment reduced adsorption of cellulase and particularly beta-glucosidase on lignin. Of particular note, BSA treatment of pretreated corn stover solids prior to enzymatic hydrolysis increased 72 h glucose yields from about 82% to about 92% at a cellulase loading of 15 FPU/g cellulose or achieved about the same yield at a loading of 7.5 FPU/g cellulose. Similar improvements were also observed for enzymatic hydrolysis of ammonia fiber explosion (AFEX) pretreated corn stover and Douglas fir treated by SO(2) steam explosion and for simultaneous saccharification and fermentation (SSF) of BSA pretreated corn stover. In addition, BSA treatment prior to hydrolysis reduced the need for beta-glucosidase supplementation of SSF. The results are consistent with non-specific competitive, irreversible adsorption of BSA on lignin and identify promising strategies to reduce enzyme requirements for cellulose hydrolysis.  相似文献   

6.
Enzyme hydrolysis of pretreated cellulosic materials slows as the concentration of solid biomass material increases, even though the ratio of enzyme to cellulose is kept constant. This form of inhibition is distinct from substrate and product inhibition, and has been noted for lignocellulosic materials including wood, corn stover, switch grass, and corn wet cake at solids concentrations greater than 10 g/L. Identification of enzyme inhibitors and moderation of their effects is of considerable practical importance since favorable ethanol production economics require that at least 200 g/L of cellulosic substrates be used to enable monosaccharide concentrations of 100 g/L, which result in ethanol titers of 50 g/L. Below about 45 g/L ethanol, distillation becomes energy inefficient. This work confirms that the phenols: vanillin, syringaldehyde, trans-cinnamic acid, and hydroxybenzoic acid, inhibit cellulose hydrolysis in wet cake by endo- and exo-cellulases, and cellobiose hydrolysis by β-glucosidase. A ratio of 4 mg of vanillin to 1 mg protein (0.5 FPU) reduces the rate of cellulose hydrolysis by 50%. β-Glucosidases from Trichoderma reesei and Aspergillus niger are less susceptible to inhibition and require about 10× and 100× higher concentrations of phenols for the same levels of inhibition. Phenols introduced with pretreated cellulose must be removed to maximize enzyme activity.  相似文献   

7.
Corn stover was pretreated with FeCl3 to remove almost all of the hemicellulose present and then hydrolyzed with cellulase and β-glucosidase to produce glucose. Enzymatic hydrolysis of corn stover that had been pretreated with FeCl3 at 160 °C for 20 min resulted in an optimum yield of 98.0%. This yield was significantly higher than that of untreated corn stover (22.8%). FeCl3 pretreatment apparently damaged the surface of corn stover and significantly increased the enzymatic digestibility, as evidenced by SEM and XRD analysis data. FTIR analysis indicated that FeCl3 pretreatment could disrupt almost all the ether linkages and some ester linkages between lignin and carbohydrates but had no effect on delignification. The FeCl3 pretreatment technique, as a novel pretreatment method, enhances enzymatic hydrolysis of lignocellulosic biomass by destructing chemical composition and altering structural features.  相似文献   

8.
Penicillium echinulatum was evaluated as a cellulolytic enzyme producer in shaking flasks and bioreactor submerged culture using sugarcane bagasse as carbon source. Sodium hydroxide delignified steam-exploded pretreated bagasse (SDB) and hydrothermal pretreated bagasse had a maximum filter paper activity (FPase) of 2.4 and 2.6 FPU/mL, respectively. Delignified acid pretreated bagasse and Celufloc 200TM (CE) carbon sources displayed maximum FPase of 1.3 and 1.6 FPU/mL while in natura bagasse (INB) provided the lowest enzyme activity, ca. 0.4 FPU/mL. Measurement of surface specific area of lignocellulosic material and scanning electron microscopic images showed a possible correlation between fungal mycelia accessibility to lignocellulosic particles and obtained cellulolytic enzyme activity of fermentation broth. Fed-batch experiments performed in a controlled bioreactor attained the highest value of FPase of 3.7 FPU/mL, enzyme productivity of 25.7 FPU/L h, and enzyme yield from cellulose equal to 134 FPU/g with SDB. Enzyme hydrolysis of steam-pretreated bagasse accomplished with the obtained supernatant of fermentation broth (10 FPU/g of biomass and 5 % w/v) performed better than commercial cellulose complex. The results showed that P. echinulatum has potential to be used as an on-site enzyme platform aiming second bioethanol production from sugarcane lignocellulosic residue.  相似文献   

9.
Han Y  Chen H 《Bioresource technology》2008,99(14):6081-6087
Purification and characterization of beta-glucosidase from corn stover was performed and the enzyme was tried in SSF to evaluate the suitability of plant glycosyl hydrolases in lignocellulose conversion. A beta-glucosidase with M(w) of 62.4 kDa was purified to homogeneity from post-harvest corn stover. The following physicochemical and kinetic parameters of the beta-glucosidase were studied respectively: optimum temperature, thermal stability, optimum pH, pH stability, K(m), V(max), V(i), cellobiose inhibition, tryptic peptide mass spectrometry and effect of metal ions and other reagents on the activity. The beta-glucosidase activity on salicin was optimal at pH 4.8 and 37 degrees C. The unique property of optimum temperature makes the beta-glucosidase potentially useful in SSF. In SSF of steam explosion pretreated corn stover, the supplementation of the purified beta-glucosidase was more effective than Aspergillus niger beta-glucosidase.  相似文献   

10.
A comprehensive review of the literature shows that enzyme hydrolysis efficiency decreases with increased solids loadings at constant enzyme:cellulose ratios for pretreated lignocellulosic substrates. In seeking a mechanistic explanation for this phenomenon, we found that a nitrogen atmosphere enhances enzyme hydrolysis and minimizes the decrease in glucose yields as solids loadings are increased in an agitated bioreactor. For liquid hot water pretreated corn stover, at solids loadings of both 100 and 200 g/L and hydrolyzed for 72 hr in a 1 L bioreactor at pH 5.0 with 3.6 mg protein per g biomass, glucose yields were 55% in a nitrogen atmosphere versus 45% in air with agitation and about 34% without agitation. While mixing promotes biomass/enzyme contact and disperses sugars released during hydrolysis that would otherwise cause product inhibition, nitrogen gas displaces air, avoiding deactivation of cellulases by oxygen. The nitrogen effect points to a facile approach of enhancing hydrolysis at high solids loadings.  相似文献   

11.
Biological pretreatment of lignocellulosic biomass by white‐rot fungus can represent a low‐cost and eco‐friendly alternative to harsh physical, chemical, or physico‐chemical pretreatment methods to facilitate enzymatic hydrolysis. In this work, solid‐state cultivation of corn stover with Phlebia brevispora NRRL‐13018 was optimized with respect to duration, moisture content and inoculum size. Changes in composition of pretreated corn stover and its susceptibility to enzymatic hydrolysis were analyzed. About 84% moisture and 42 days incubation at 28°C were found to be optimal for pretreatment with respect to enzymatic saccharification. Inoculum size had little effect compared to moisture level. Ergosterol data shows continued growth of the fungus studied up to 57 days. No furfural and hydroxymethyl furfural were produced. The total sugar yield was 442 ± 5 mg/g of pretreated corn stover. About 36 ± 0.6 g ethanol was produced from 150 g pretreated stover per L by fed‐batch simultaneous saccharification and fermentation (SSF) using mixed sugar utilizing ethanologenic recombinant Eschericia coli FBR5 strain. The ethanol yields were 32.0 ± 0.2 and 38.0 ± 0.2 g from 200 g pretreated corn stover per L by fed‐batch SSF using Saccharomyces cerevisiae D5A and xylose utilizing recombinant S. cerevisiae YRH400 strain, respectively. This research demonstrates that P. brevispora NRRL‐13018 has potential to be used for biological pretreatment of lignocellulosic biomass. This is the first report on the production of ethanol from P. brevispora pretreated corn stover. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:365–374, 2017  相似文献   

12.

Background

Enzymes for plant cell wall deconstruction are a major cost in the production of ethanol from lignocellulosic biomass. The goal of this research was to develop optimized synthetic mixtures of enzymes for multiple pretreatment/substrate combinations using our high-throughput biomass digestion platform, GENPLAT, which combines robotic liquid handling, statistical experimental design and automated Glc and Xyl assays. Proportions of six core fungal enzymes (CBH1, CBH2, EG1, β-glucosidase, a GH10 endo-β1,4-xylanase, and β-xylosidase) were optimized at a fixed enzyme loading of 15 mg/g glucan for release of Glc and Xyl from all combinations of five biomass feedstocks (corn stover, switchgrass, Miscanthus, dried distillers' grains plus solubles [DDGS] and poplar) subjected to three alkaline pretreatments (AFEX, dilute base [0.25% NaOH] and alkaline peroxide [AP]). A 16-component mixture comprising the core set plus 10 accessory enzymes was optimized for three pretreatment/substrate combinations. Results were compared to the performance of two commercial enzymes (Accellerase 1000 and Spezyme CP) at the same protein loadings.

Results

When analyzed with GENPLAT, corn stover gave the highest yields of Glc with commercial enzymes and with the core set with all pretreatments, whereas corn stover, switchgrass and Miscanthus gave comparable Xyl yields. With commercial enzymes and with the core set, yields of Glc and Xyl were highest for grass stovers pretreated by AP compared to AFEX or dilute base. Corn stover, switchgrass and DDGS pretreated with AFEX and digested with the core set required a higher proportion of endo-β1,4-xylanase (EX3) and a lower proportion of endo-β1,4-glucanase (EG1) compared to the same materials pretreated with dilute base or AP. An optimized enzyme mixture containing 16 components (by addition of α-glucuronidase, a GH11 endoxylanase [EX2], Cel5A, Cel61A, Cip1, Cip2, β-mannanase, amyloglucosidase, α-arabinosidase, and Cel12A to the core set) was determined for AFEX-pretreated corn stover, DDGS, and AP-pretreated corn stover. The optimized mixture for AP-corn stover contained more exo-β1,4-glucanase (i.e., the sum of CBH1 + CBH2) and less endo-β1,4-glucanase (EG1 + Cel5A) than the optimal mixture for AFEX-corn stover. Amyloglucosidase and β-mannanase were the two most important enzymes for release of Glc from DDGS but were not required (i.e., 0% optimum) for corn stover subjected to AP or AFEX. As a function of enzyme loading over the range 0 to 30 mg/g glucan, Glc release from AP-corn stover reached a plateau of 60-70% Glc yield at a lower enzyme loading (5-10 mg/g glucan) than AFEX-corn stover. Accellerase 1000 was superior to Spezyme CP, the core set or the 16-component mixture for Glc yield at 12 h, but the 16-component set was as effective as the commercial enzyme mixtures at 48 h.

Conclusion

The results in this paper demonstrate that GENPLAT can be used to rapidly produce enzyme cocktails for specific pretreatment/biomass combinations. Pretreatment conditions and feedstock source both influence the Glc and Xyl yields as well as optimal enzyme proportions. It is predicted that it will be possible to improve synthetic enzyme mixtures further by the addition of additional accessory enzymes.  相似文献   

13.
Gao J  Weng H  Zhu D  Yuan M  Guan F  Xi Y 《Bioresource technology》2008,99(16):7623-7629
The production of extracellular cellulases by a newly isolated thermoacidophilic fungus, Aspergillus terreus M11, on the lignocellulosic materials was studied in solid-state fermentation (SSF). The results showed that the high-level cellulase activity was produced at 45 degrees C pH 3 and moisture 80% with corn stover and 0.8% yeast extract as carbon and nitrogen sources. 581 U endoglucanase activity, 243 U filter paper activity and 128 U beta-glucosidase activity per gram of carbon source were obtained in the optimal condition. Endoglucanase and beta-glucosidase exhibited their maximum activity at pH 2 and pH 3, respectively, and both of them showed remarkable stability in the range of pH 2-5. The activities of endoglucanase and beta-glucosidase were up to the maximum at 70 degrees C and maintained about 65% and 53% of their original activities after incubation at 70 degrees C for 6h. The enzyme preparations from this strain were used to hydrolyze Avicel. Higher hydrolysis yields of Avicel were up to 63% on 5% Avicel (w/v) for 72 h with 20 U FPase/g substrate.  相似文献   

14.
The cellulolytic Clostridium cellulovorans has been engineered to produce n-butanol from low-value lignocellulosic biomass by consolidated bioprocessing (CBP). The objective of this study was to establish a robust cellulosic biobutanol production process using a metabolically engineered C. cellulovorans. First, various methods for the pretreatment of four different corn-based residues, including corn cob, corn husk, corn fiber, and corn bran, were investigated. The results showed that better cell growth and a higher concentration of n-butanol were produced from corn cob that was pretreated with sodium hydroxide. Second, the effects of different carbon sources (glucose, cellulose and corn cob), basal media and culture pH values on butanol production were evaluated in the fermentations performed in 2-L bioreactors to identify the optimal CBP conditions. Finally, the engineered C. cellulovorans produced butanol with final concentration >3 g/L, yield >0.14 g/g, and selectivity >3 g/g from pretreated corn cob at pH 6.5 in CBP. This study showed that the fermentation process engineering of C. cellulovorans enabled a high butanol production directly from agricultural residues.  相似文献   

15.
A range of lignocellulosic feedstocks (including agricultural, softwood and hardwood substrates) were pretreated with either sulfur dioxide-catalyzed steam or an ethanol organosolv procedure to try to establish a reliable assessment of the factors governing the minimum protein loading that could be used to achieve efficient hydrolysis. A statistical design approach was first used to define what might constitute the minimum protein loading (cellulases and β-glucosidase) that could be used to achieve efficient saccharification (defined as at least 70% glucan conversion) of the pretreated substrates after 72 hours of hydrolysis. The likely substrate factors that limit cellulose availability/accessibility were assessed, and then compared with the optimized minimum amounts of protein used to obtain effective hydrolysis. The optimized minimum protein loadings to achieve efficient hydrolysis of seven pretreated substrates ranged between 18 and 63 mg protein per gram of glucan. Within the similarly pretreated group of lignocellulosic feedstocks, the agricultural residues (corn stover and corn fiber) required significantly lower protein loadings to achieve efficient hydrolysis than did the pretreated woody biomass (poplar, douglas fir and lodgepole pine). Regardless of the substantial differences in the source, structure and chemical composition of the feedstocks, and the difference in the pretreatment technology used, the protein loading required to achieve efficient hydrolysis of lignocellulosic substrates was strongly dependent on the accessibility of the cellulosic component of each of the substrates. We found that cellulose-rich substrates with highly accessible cellulose, as assessed by the Simons' stain method, required a lower protein loading per gram of glucan to obtain efficient hydrolysis compared with substrates containing less accessible cellulose. These results suggest that the rate-limiting step during hydrolysis is not the catalytic cleavage of the cellulose chains per se, but rather the limited accessibility of the enzymes to the cellulose chains due to the physical structure of the cellulosic substrate.  相似文献   

16.
Thermobifida fusca was grown on cellulose (Solka-Floc), xylan or corn fiber and the supernatant extracellular enzymes were concentrated. SDS gels showed markedly different protein patterns for the three different carbon sources. Activity assays on a variety of synthetic and natural substrates showed major differences in the concentrated extracellular enzyme activities. These crude enzyme preparations were used to hydrolyze corn fiber, a low-value biomass byproduct of the wet milling of corn. Approximately 180 mg of reducing sugar were produced per gram of untreated corn fiber. When corn fiber was pretreated with alkaline hydrogen peroxide, up to 429 mg of reducing sugars were released per gram of corn fiber. Saccharification was enhanced by the addition of beta-glucosidase or by the addition of a crude xylanase preparation from Aureobasidium sp.  相似文献   

17.
In this study an industrial Saccharomyces cerevisiae yeast strain capable of fermenting ethanol from pretreated lignocellulosic material was engineered. Genes encoding cellulases (endoglucanase, exoglucanase and β-glucosidase) were integrated into the chromosomal ribosomal DNA and delta regions of a derivative of the K1-V1116 wine yeast strain. The engineered cellulolytic yeast produces ethanol in one step through simultaneous saccharification and fermentation of pretreated biomass without the addition of exogenously produced enzymes. When ethanol fermentation was performed with 10% dry weight of pretreated corn stover, the recombinant strain fermented 63% of the cellulose in 96 h and the ethanol titer reached 2.6% v/v. These results demonstrate that cellulolytic S. cerevisiae strains can be used as a platform for developing an economical advanced biofuel process.  相似文献   

18.
SWAT watershed model simulated biomass yield and pollutant loadings were integrated with associated economic costs of farm production and transport to study two dedicated energy crops, switchgrass and Miscanthus, and corn stover, as feedstocks for a cellulosic biorefinery. A multi-level spatial optimization (MLSOPT) framework was employed to get spatially explicit cropping plans for a watershed under the assumption that the watershed supplies biomass to a hypothetical biorefinery considering both the biochemical and the thermochemical conversion pathways. Consistent with previous studies, the perennial grasses had higher biomass yield than corn stover, with considerably lower sediment, nitrogen, and phosphorus loadings, but their costs were higher. New insights were related to the tradeoffs between cost, feedstock production, and the level and form of environmental quality society faces as it implements the Renewable Fuel Standard. Economically, this involved calculating the farthest distance a biorefinery would be willing to drive to source corn residue before procuring a single unit of perennial grasses from productive agricultural soils.  相似文献   

19.
Production of two industrially important products, xylanase and itaconic acid (IA), by Aspergillus terreus NRRL 1960 from agricultural residues was investigated within a biorefinery concept. Biological pretreatment was applied to lignocellulosic materials by using A. terreus, which produced xylanase while growing on agricultural residues. For IA production, already grown cells were transferred into a new medium. The first step provided not only the pretreatment of lignocellulosic material in order to be used as feedstock but also production of xylanase. For this purpose, cotton stalk, sunflower stalk and corn cob were used as carbon sources as lignocellulosic material. Among them, the highest xylanase production was obtained on corn cob. By application of two-step fermentation, about 70 IU/mL xylanase and 18 g/L IA production levels were achieved. This study shows the stepwise usage potential of the microorganism as a tool in a biorefinery concept.  相似文献   

20.
Supercritical CO2 (SC-CO2), a green solvent suitable for a mobile lignocellulosic biomass processor, was used to pretreat corn stover and switchgrass at various temperatures and pressures. The CO2 pressure was released as quickly as possible by opening a quick release valve during the pretreatment. The biomass was hydrolyzed after pretreatment using cellulase combined with β-glucosidase. The hydrolysate was analyzed for the amount of glucose released. Glucose yields from corn stover samples pretreated with SC-CO2 were higher than the untreated sample’s 12% glucose yield (12 g/100 g dry biomass) and the highest glucose yield of 30% was achieved with SC-CO2 pretreatment at 3500 psi and 150 °C for 60 min. The pretreatment method showed very limited improvement (14% vs. 12%) in glucose yield for switchgrass. X-ray diffraction results indicated no change in crystallinity of the SC-CO2 treated corn stover when compared to the untreated, while SEM images showed an increase in surface area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号