首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Soil-dwelling predatory mites are natural enemies of various soil pest insects and mites. Both Gaeolaelaps aculeifer (Canestrini) and Stratiolaelaps scimitus (Womersley) are commercialized natural enemies of thrips, but there is little information on the predation rate of these predatory mites on different thrips species. We compared their predation capacities on three thrips species, Frankliniella occidentalis, F. intonsa, and Thrips palmi, which are major pests of various horticultural plants. The predatory rate of G. aculeifer was higher than that of S. scimitus. Both predator species fed on more T. palmi thrips than F. occidentalis or F. intonsa thrips, which may be attributable to the smaller body size of T. palmi than the other thrips. Predation rates of female adults were 2.6–2.8 times higher than those of deutonymphs in both species. Predation rates were not separated according to the various developmental stages (i.e., second instar larva, pupa, or adult) of thrips; however, deutonymphs fed on fewer adults than larvae or pupae of F. occidentalis. Our results suggest that both G. aculeifer and S. scimitus are active predators that can prey during any of their developmental stages and on any species of thrips tested.  相似文献   

2.
有机肥对稻飞虱种群及其天敌的影响   总被引:5,自引:0,他引:5  
有机肥区早稻白背飞虱(Sogatella furcifera Harvath)1—2龄若虫、3—5龄若虫及成虫发生量均明显低于单施化肥区,单施化肥区发生量为有机肥区的4.48—5.63倍;晚稻单施化肥区褐稻虱(Nilaparvata lugens Stal)1—2龄若虫、3—5龄若虫及成虫发生量为有机肥区的2.23—3.92倍;施用有机肥,蜘蛛、捕食性天敌昆虫与寄生性天敌昆虫的物种数(S)、Shonnon-Wiener多样性指数(H')与均匀度指数(E)均有不同程度的提高,与单施化肥区相比,未达到显著差异,以上表明,施用有机肥能显著降低稻飞虱种群的为害,有利于自然天敌的保护利用,恢复稻田生态环境。  相似文献   

3.
Cotton is one of the most economically important crops in China, while insect pest damage is the major restriction factor for cotton production. The strategy of integrated pest management (IPM), in which biological control plays an important role, has been widely applied. Nearly 500 species of natural enemies have been reported in cotton systems in China, but few species have been examined closely. Seventy-six species, belonging to 53 genera, of major arthropod predators and parasitoids of lepidoptera pests, and 46 species, belonging to 29 genera, of natural enemies of sucking pests have been described. In addition, microsporidia, fungi, bacteria and viruses are also important natural enemies of cotton pests. Trichogramma spp., Microplitis mediator, Amblyseius cucumeris, Bacillus thuringiensis and Helicoverpa armigera nuclear polyhedrosis virus (HaNPV) have been mass reared or commercially produced and used in China. IPM strategies for cotton pests comprising of cultural, biological, physical and chemical controls have been developed and implemented in the Yellow River Region (YRR), Changjiang River Region (CRR) and Northwestern Region (NR) of China over the past several decades. In recent years, Bt cotton has been widely planted for selectively combating cotton bollworm, H. armigera, pink bollworm, Pectinophora gossypiella, and other lepidopteran pest species. As a result of reduced insecticide sprays, increased abundance of natural enemies in Bt cotton fields efficiently prevents outbreaks of other pests such as cotton aphids. In contrast, populations of mirid plant bugs have increased dramatically due to a reduction in the number of foliar insecticide applications for control of the bollworms in Bt cotton, and now pose a key problem in cotton production. In response to this new pest issue in cotton production, control strategies including biological control measures are being developed in China.  相似文献   

4.
ABSTRACT

In Taiwan, the agricultural policy, ‘Reduce the consumption of pesticide to half in the next 10 years’, was launched in 2017. Pesticide application, which results in contamination of food by chemical residues, pest resistance, and other adverse ecological effects, is a growing public and environmental concern. Pest control by natural predators is, thus, the best alternative. Biological control methods implemented based on insights obtained from studies on pest behaviour, rearing, and various crop management modes, increase the possibility of controlling pests in modern organic agricultural systems. More than a decade has passed since the first introduction of a predatory insect in Taiwan for pest control (in the 1990s). Predatory and parasitic natural enemies, including lacewing, predatory stink bugs, Orius, and parasitic wasps, were initially used for controlling thrips, aphids, spider mites, whiteflies, and lepidopteran pests. At present, there exists a wide range of integrated pest management (IPM) methods incorporating other non-chemical, biological, and agricultural methods. However, recently, there has been an increase in research and development on the utilisation of natural enemies of insects and the associated food safety issues. Mass production and release, storage, and handling techniques of insect predators and parasitoids have been successful in recent years. The final goal of present day research is to develop natural enemy products and provide an IPM-based model to farmers for using natural enemies in agricultural production systems, thereby reducing pesticide application and ensuring food security.  相似文献   

5.
Many studies in recent years have investigated the relationship between landscape complexity and pests, natural enemies and/or pest control. However, no quantitative synthesis of this literature beyond simple vote-count methods yet exists. We conducted a meta-analysis of 46 landscape-level studies, and found that natural enemies have a strong positive response to landscape complexity. Generalist enemies show consistent positive responses to landscape complexity across all scales measured, while specialist enemies respond more strongly to landscape complexity at smaller scales. Generalist enemy response to natural habitat also tends to occur at larger spatial scales than for specialist enemies, suggesting that land management strategies to enhance natural pest control should differ depending on whether the dominant enemies are generalists or specialists. The positive response of natural enemies does not necessarily translate into pest control, since pest abundances show no significant response to landscape complexity. Very few landscape-scale studies have estimated enemy impact on pest populations, however, limiting our understanding of the effects of landscape on pest control. We suggest focusing future research efforts on measuring population dynamics rather than static counts to better characterise the relationship between landscape complexity and pest control services from natural enemies.  相似文献   

6.
Pest control mediated by organisms such as parasitoids is a valuable ecosystem service, particularly with regard to high costs, low effectiveness, and detrimental effects of some agrochemicals. This study examined infestation rates and abundance of pests and their natural enemies in organic and conventional almond orchards in California, differing in landscape context, understory plant cover, and plant species richness. Parasitoids of the commercially most important insect pest of almond, the Navel Orangeworm (NOW) were studied by rearing NOW in collected overwintering nuts. The indirect impact of vertebrate natural enemies of NOW were estimated by counting empty nut shells with feeding marks by wild birds and various mammals, found at the orchard floor. Mean nut infestation by NOW ranged from 0.8% to 37% per orchard and was reduced by parasitism rates, ranging from 0% to 22%, and vertebrate nut damage, ranging from 2% to 96% per orchard. The parasitoids were facilitated by a high proportion of natural habitat surrounding the orchards and high proportion of understory ground cover with vegetation. The vertebrate natural enemies were facilitated by a high proportion of natural habitat surrounding the orchards and plant species richness in the orchard understory. In conclusion, this study shows that pest control mediated by vertebrates and invertebrates promoted by near natural habitats can lower pest pressure by NOW larvae in overwintering almond. In case of the vertebrate nut damage this service might only be temporal and turn into a dis-service during and after harvest because the vertebrates continue to feed on the nuts and may also cause injuries to the trees.  相似文献   

7.
寄生性和捕食性天敌昆虫成虫普遍存在通过取食蜜粉源植物补充营养的行为,这可不同程度地促进天敌昆虫性成熟、延长其寿命、提高其生殖力或寄生率,以及搜寻寄主效率和子代雌性比率,从而显著提高天敌昆虫在生物防治中的控害能力和效果。蜜粉源植物花的结构及植物对天敌昆虫产生的嗅觉、视觉信号和花蜜花粉对天敌昆虫产生的味觉信号又显著影响天敌昆虫选择蜜粉源植物的行为和结果。但是,蜜粉源植物也可成为害虫的补充营养植物,从而提高害虫的为害能力。因此,需深入研究不同蜜粉源植物对天敌昆虫及害虫的作用,趋利避害,才可能应用蜜粉源植物成功调控天敌与害虫的益害比,实现害虫的可持续控制。  相似文献   

8.
焦懿  赵苹 《生态学报》2001,21(7):1148-1152
白蜡虫雌虫产卵期是白蜡种虫生产的关键时期,在我国白蜡主产地区,选择有代表性的4个种虫产地,2个白蜡产地和4个虫蜡混产地,调查群落中白蜡虫天敌的物种组成和数量变化,并进行聚类分析和排序,在10个白蜡主产地内,共收集到各种天敌15种,分属于6科11属,各群落的物种组成变化较小,优势种为白蜡虫花翅跳小蜂Microterys ericeri Ishii、中华花翅跳小蜂M.sinicus Jiang、白蜡虫啮小蜂Tetrastichus kodaikanalensis Saraswat、白蜡蚧长角象Anthribus la-jievorus Chao和黑缘红瓢虫Chilocorus rubidus Hope。群落的优势集中指数较小,多样性指数和均匀性指数较高,群落相似性系数最高达97.46%,最低为75.92%。影响群落相似性的主要因子为白蜡产区不同、生态环境差异和优势种天敌的数量变化,根据聚类分析和排序,将10个不同产地白蜡虫天敌群落分为3类;第1类为种虫产地,优势种天敌发生和危害较轻;第2类为白蜡产地,白蜡虫天敌发生和危害极为严重,其种群数量为第1类的3.36倍,第3类虫蜡皆产,其天敌数量介于第1、2类之间,中华花翅跳小蜂种群数量在第1、3类群落中大致相等,第2类发生较较重,白蜡虫天敌的严重危害是造成蜡区不产种虫的主要原因之一。  相似文献   

9.
1. Egg parasitoids in the genus Anagrus (Hymenoptera: Mymaridae) are important mortality factors for grape leafhoppers ( Erythroneura elegantula ; Homoptera: Cicadellidae) in California vineyards, yet must overwinter in habitats external to these vineyards. Existing evidence suggests that French prune trees, which harbour the overwintering host Edwardsiana prunicola , planted adjacent to vineyards may enhance early-season abundance of Anagrus.
2. Anagrus overwintering in French prune tree refuges were labelled with the trace element rubidium in four separate experiments. Rubidium-labelled Anagrus were captured in adjacent vineyards in two of the experiments, confirming that French prune trees contribute to early-season Anagrus populations. Anagrus from refuges were captured at the most distant sampling positions, 100 m from refuges.
3. Use of rare element labelling has, for the first time, enabled the relative contribution of different sources to early-season colonization by this parasitoid to be quantified. Refuges contributed 1% and 34% of Anagrus colonizing two of the experimental vineyards, respectively. The remainder originated from overwintering habitats external to the French prune/vineyard system.
4. The spatial patterns of Anagrus originating from external overwintering habitats suggest that the French prune trees are generating a 'windbreak effect'. Anagrus dispersing within the windstream colonized vineyards at a higher-than-average rate immediately downwind of refuges.
5. The amount of colonization by Anagrus from external overwintering habitats was apparently related to the distance to presumed overwintering habitats. These findings demonstrate that both the number of natural enemies emerging from a refuge and the composition of the surrounding landscape are important in determining the impact of local, small-scale habitat manipulations.  相似文献   

10.
Floral plantings are often used in agriculture to attract pollinator communities, but they also play an important role in recruiting and establishing natural communities for natural pest control. Inconsistent effects of floral plantings for pest control may be a result of an absence of mechanistic insights and a reliance on the idea that simply increasing flower diversity will benefit these services. A more tailored set of flower species may be needed to benefit the natural enemies through provision of nectar and alternative prey. We used an outside pot experiment to investigate the effect of three flower plants (Fagopyrum esculentum, Vicia faba, and Trifolium pratense) on reducing aphid pests on four different plant cultivars of barley (Hordeum vulgare), over two years. We grew the four cultivars of barley alone, next to a single flower or next to a mixture of flowers, and observed aphid and natural enemy colonization across the growing season. Aphid population sizes were reduced on all barley cultivars grown next to a flower with stronger pest suppression when all flowers were present. Each flower species recruited a different community of non‐barley aphids that, in turn, varied in their ability to establish the natural enemy populations and subsequently the ability to reduce barley aphid populations. Overall, increased pest suppression in the mixed treatments was a result of numerous weaker interactions between different flower, aphid, and natural enemy species, rather than a few dominant interactions. Natural enemy communities could be enhanced by incorporating flower species that vary in their ability to attract and host alternative prey (i.e., non‐pest aphids) as well as suitable nectar provisioning. We can use our knowledge of ecological interactions to tailor floral plantings to increase the effectiveness of pest control services.  相似文献   

11.
Wildflower plantings can support local abundance of natural enemies, but their influence on biological control of pests in adjacent crop fields is less well documented. To test whether biological control is enhanced by these plantings, we established native, perennial wildflowers in areas adjacent to highbush blueberry fields. Once wildflowers were established we found greater abundance of natural enemies in the fields adjacent to wildflower plantings compared with those adjacent to unenhanced control field perimeters. Predaceous arthropods, including spiders, hoverflies, and lady beetles, were among the most common natural enemies observed and collected in the blueberry fields. Using corn earworm eggs, Helicoverpa zea (Lepidoptera: Noctuidae), as sentinel prey, we found a similar pattern of biological control, with higher biological control services index values in fields adjacent to the wildflower plantings than in the unenhanced control fields. Our results provide evidence for the ability of wildflower plantings to support natural enemy populations in agricultural landscapes, and to potentially provide local enhancement of biological control in adjacent crops.  相似文献   

12.
薇甘菊的生物防治及其天敌在中国的新发现   总被引:14,自引:0,他引:14  
薇甘菊(Mikania mixeantha H.B.K.)为原产中南美洲的菊科假泽兰属攀缘草本植物,现在广泛分布于东南亚地区并对我国南方部分地区的农林业生产造成严重危害。由于施用化学除草剂会对环境造成污染,所以生物防治更为可靠。大量工作表明,一些真菌和昆虫有望被用来进行薇甘菊的生物控制。本文中报道的薇甘菊天敌小蓑蛾(Acanthopsyche sp.)为国内首次发现,为薇甘菊的生物防治提供了新的线索和启示。  相似文献   

13.
半自然农田边界与相邻农田步甲和蜘蛛的时空分布   总被引:2,自引:0,他引:2  
分别于小麦、玉米收获前后,采用陷阱法调查了华北地区典型农业景观中具有不同植被结构的农田边界及其相邻农田中两类重要天敌类群步甲和蜘蛛的多样性.通过比较农田生境及相邻农田边界间两类天敌群落的时空分布格局及其与相邻半自然生境植被群落的相关关系,探讨半自然农田边界对两类天敌类群的保护作用.结果表明: 整个取样季节农田边界处蜘蛛的多度显著高于农田内部;而步甲多样性在农田与边界间无显著性差异,仅呈现不同的群落结构;作物收获后蜘蛛分科数在边界处的增加以及在农田的减少,显示了蜘蛛在农田和边界之间的迁移活动.边界植被结构对蜘蛛和步甲多样性有不同影响:边界较高的草本层盖度和较低的乔木层盖度有利于增加农田中某些步甲优势种的多样性;而较高的草本层盖度有利于增加皿蛛科蜘蛛的多样性.因此,半自然生境的存在可以通过天敌在农田和边界之间的迁移运动促进农田天敌多样性的维持;但不同类型半自然生境植被群落结构可能影响其对不同天敌群落多样性的维持和保护作用.为促进农业景观对天敌的保护作用,提高其害虫控制功能,需要深入了解不同天敌的生境需求及食物需求,精心设计有利于天敌多样性维持的半自然生境.  相似文献   

14.
Brassicas are major vegetable crops in China but the systems for growing the crops are complex. During the last 30 years, the area of vegetable crops has increased steadily, however, the control of insect pests on brassica vegetables has largely relied on the heavy use of chemical insecticides, resulting in high levels of resistance, insecticide residues hazardous to human health and other serious consequences. Nevertheless, efforts to develop practical and sustainable integrated pest management (IPM) strategies for brassica vegetables have been implemented. Here we first review the work on surveys of natural enemies of insect pests in brassicas and describe the biology and ecology of a few important parasitoids. We then introduce the progress of conservation biological control by reviewing studies on evaluation of natural enemies and selective insecticides, the work on the development of action thresholds and some successful examples of IPM field trials at the cropping system level. The successful examples of IPM practices in brassicas show the great potential of conservation biological control to reduce chemical pesticide input and improve vegetable production in the future.  相似文献   

15.
The biological control service supplied to croplands is a result of the predator community present within a focal crop, which is likely influenced by surrounding landscape composition and configuration. In this study, using cage experiments in two regions near Santiago, we determined if predator communities supplied a significant biological control service in alfalfa fields, examined how the abundance of exotic and native coccinellids, as well as other key predator groups, influenced biological control of aphids and measured how landscape composition and heterogeneity at three spatial scales influenced this service. We found that predators significantly suppressed aphid populations in both regions, but the relative importance of predators versus landscape variables on biological control differed between regions. In the region where predators were abundant, biological control was higher and related to the abundance of native coccinellids and syrphids, highlighting the importance of native species as providers of crucial ecological services. In the region where predators were not abundant, biological control was lower, and it was related to landscape composition, being positively associated with the abundance of woodlots and urban habitats, and negatively associated with fruit crops in the landscape. Therefore, landscape effects on biological control service may be weaker than local factors, and only become important when local predator abundance is low.  相似文献   

16.
Most ecosystems are subjected to multiple stressors derived from natural and anthropogenic sources and community responses to human disturbance in naturally stressful habitats may differ from those in more benign habitats. We examined the influence of a natural (geology-driven acidity) vs. human-induced stress (land drainage) and their interaction on the composition and concordance of stream diatom, bryophyte and invertebrate communities. To account for differing drainage impacts in circumneutral (sedimentation) and naturally acid (reduced pH and increased metal concentrations) streams we investigated concordance in three groups of streams: reference (circumneutral and naturally acidic reference), circumneutral (reference and drained) and naturally acidic (reference and drained) streams. We expected diatoms to respond more strongly to anthropogenic acidification and more weakly to sedimentation compared to bryophytes and invertebrates. We expected overall strong concordance among the three taxonomic groups, but especially so in reference streams. All three organism groups had distinct species composition in naturally acidic vs. circumneutral streams. Concordance between communities was overall strong, especially so in the reference streams. All groups responded to drainage disturbance in both types of streams. Invertebrates were slightly less responsive to increased acidification in the naturally acidic streams but were more affected by sedimentation in the circumneutral streams than were the other two groups. The natural stressor affected communities more than the anthropogenic stressors. Naturally stressed communities were affected by an anthropogenic stressor as much as those in more benign habitats, although the additional stressor was similar to the initial stress (further reduction of stream pH). Naturally acid streams may need special concern in bioassessment because models based on circumneutral reference sites will likely produce biased predictions for these streams.  相似文献   

17.
Integrated pest management (IPM) programs emphasize the combination of tactics, such as chemical and biological control, to maintain pest populations below economic thresholds. Although combining tactics may provide better long-term sustainable pest suppression than one tactic alone, in many cases, insecticides and natural enemies are incompatible. Insecticides can disrupt natural enemies through lethal and sub-lethal means causing pest resurgence or secondary pest outbreaks. Legislative actions such as the Food Quality Protection Act (US) and the Directive on Sustainable Use of Pesticides (EU) have placed greater restrictions on insecticides used in agriculture, potentially enhancing biological control. Here we focus on the effects of insecticides on biological control, and potential mitigation measures that can operate at different scales. At the farm scale, natural enemies can be conserved through the use of selective insecticides, low doses, special formulations, creation of refugia, special application methods, and targeted applications (temporal or spatial). At the landscape scale, habitat quality and composition affect the magnitude of biological control services, and the degree of mitigation against the effects of pesticides on natural enemies. Current research is teasing apart the relative importance of local and landscape effects of pesticides on natural enemies and the ecosystem services they provide, and the further development of this area will ultimately inform the decisions of policy makers and land managers in terms of how to mitigate pesticide effects through habitat manipulation.  相似文献   

18.
Studies in polytunnels were conducted to investigate the effects of ultraviolet (UV)‐blocking films on naturally occurring insect pests and their arthropod natural enemies on a cucumber crop. Within tunnels clad with Antibotrytis (blocks light < 400 nm) and UVI/EVA (UV transmitting), 5.8 and 23.4 times more aphids, respectively, were recorded on traps compared with those on traps within tunnels clad with XL 385 (blocks light < 385 nm). When all plants within the UVI/EVA tunnels had become heavily infested with aphids, half of the plants in XL 385 tunnels were uninfested. More Coleoptera and thrips (approximately two times) were recorded under the UVI/EVA film than under the UV‐blocking films, but for other arthropod pests (e.g. whitefly, leafhoppers), clear conclusions could not be drawn as low numbers were recorded. Substantial numbers of chalcid parasitoids and syrphids were found under the UV‐blocking films, but further research is needed to evaluate fully the effect of such films on biological control of aphids. Higher syrphid numbers and more aphid mummies were recorded under the UVI/EVA film, probably because of the higher numbers of aphids present in tunnels clad with this film. The potential that UV‐blocking films have as an effective component of commercial Integrated Pest Management (IPM) systems, for protected horticultural crops, is discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号