首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fusarium head blight (FHB) is a destructive disease of wheat in Canada and Clonostachys rosea strain ACM941 has been identified as a promising biological control agent for managing FHB. In the present research the concentration and cultivar effects on the efficacy of CLO-1, a formulated product of C. rosea strain ACM941, in controlling FHB and deoxynivalenol (DON) contamination in wheat was studied. Of the eight concentrations ranging from 104 to 108 cfu mL−1 evaluated, significant effects were generally observed for concentrations at or above 106 cfu mL−1 in the greenhouse and field trials in 2009 and 2010. In the greenhouse, CLO-1 reduced the area under the disease progress curve (AUDPC) by 65–83%, Fusarium damaged kernels (FDK) by 68–92%, and DON by 51–95%. Under field conditions, CLO-1 reduced FHB index by 30–46%, FDK by 31–39%, and DON by 22–33%. These effects were numerically lower but not significantly different from those of the registered fungicide Folicur® (tebuconazole) used in these trials. When applied onto wheat cultivars differing in resistance to FHB in field trials in 2009 and 2010, CLO-1 was most effective on the moderately resistant cultivar AC Nass (representing the highest level of resistance commercially available) and least effective on the highly susceptible cultivar AC Foremost. Results of this study suggest that CLO-1 is a promising biocontrol product that may be used in combination with cultivar resistance for managing FHB in wheat.  相似文献   

2.
《Biological Control》2010,52(3):370-376
Fusarium head blight (FHB) caused by Gibberella zeae (anamorph = Fusarium graminearum) is a devastating disease that causes extensive yield and quality losses to wheat in humid and semi-humid regions of the world. Biological control has been demonstrated to be effective under laboratory conditions but a few biocontrol products have been effective under field conditions. The improvement in the physiological quality of biocontrol agents may improve survival under field conditions, and therefore, enhance biocontrol activity. Bacillus subtilis RC 218 and Brevibacillus sp. RC 263 were isolated from wheat anthers and showed significant effect on control of FHB under greenhouse assays. This study showed the effect of water availability measured as water activity (aW) using a growth medium modified with NaCl, glycerol and glucose on: (i) osmotic stress tolerance, (ii) viability in modified liquid medium, (iii) quantitative intracellular accumulation of betaine and ectoine and (iv) the biocontrol efficacy of the physiologically improved agents. Viability of B. subtilis RC 218 in NaCl modified media was similar to the control. Brevibacillus sp. RC 263 showed a limited adaptation to growth in osmotic stress. Betaine was detected in high levels in modified cells but ectoine accumulation was similar to the control cells. Biocontrol activity was studied in greenhouse assays on wheat inoculated at anthesis period with F. graminearum RC 276. Treatments with modified bacteria reduced disease severity from 60% for the control to below 20%. The physiological improvement of biocontrol agents could be an effective strategy to enhance stress tolerance and biocontrol activity under fluctuating environmental conditions.  相似文献   

3.
Fusarium culmorum can cause Fusarium head blight (FHB) disease of cereals, resulting in yield loss and contamination of grain with the trichothecene mycotoxin, deoxynivalenol (DON). In this study, we compared the efficacy of a biological control agent (Pseudomonas fluorescens strain MKB 158) with the biochemical chitosan (the deacetylated derivative of chitin) in controlling FHB disease of wheat and barley. Both agents were equally effective in reducing DON contamination of grain caused by F. culmorum. Under both glasshouse and field conditions, treatment with commercially available crabshell-derived chitosan reduced the severity of FHB symptom development on wheat and barley by ?74% (P ? 0.050). While treatment with P. fluorescens reduced the severity of FHB symptom development on these cereals by ?48% (P ? 0.050). Chitosan and P. fluorescens respectively prevented ?58 and ?35% of the FHB-associated reductions in 1000-grain weight in wheat and barley (P ? 0.050). Both agents significantly reduced the DON content of wheat and barley under both glasshouse and field conditions (P ? 0.050) and were equally efficacious in doing so (?74 and ?79% reductions due to chitosan and P. fluorescens, respectively). Crude chitin extracts from crabshells and crude chitosan-based formulations prepared from crabshells and eggshells were also tested under field conditions, but were not as effective as the commercial crabshell-derived preparation in controlling FHB disease. This is the first report on the use of chitosan for the control of Fusarium head blight disease and DON contamination of grain.  相似文献   

4.
Four chemicals [salicylic acid (SA), sodium salt of salicylic acid (NaSA), isonicotinic acid (INA), and DL-β-amino-n-butyric acid (BABA)] and the yeast antagonist Cryptococcus flavescens (=C. nodaensis nomen nudum) OH 182.9 were evaluated separately or together for the ability to reduce Fusarium head blight (FHB) of wheat in the greenhouse. When sprayed onto wheat heads at 3 days prior to pathogen challenge with Gibberella zeae, NaSA and INA at 10 mM significantly reduced FHB severity compared to the non-treated disease control. Applied at concentrations of 1 and 5 mM at 3 days before pathogen challenge, NaSA or INA in combination with OH 182.9 did not significantly reduce FHB severity compared to either treatment alone, though the lowest disease severity values frequently were associated with the combination treatments. When sprayed onto wheat heads just beginning to emerge from boot at 10 days prior to pathogen inoculation, NaSA, INA, and BABA at 1 mM significantly reduced FHB severity indicating that induced systemic resistance was at least partially responsible for the reduction of FHB disease. Induced FHB resistance was achieved by treating wheat with INA at concentrations as low as 0.1 mM. In only one instance was 100-kernel weight affected by any chemical or combination of chemicals with OH 182.9 treatment. Data from our studies in the greenhouse suggest that chemical inducers can induce resistance in wheat against FHB, and that further efforts are warranted to explore the potential of improved control of FHB disease by incorporating chemical inducers with the FHB biocontrol agent OH 182.9.  相似文献   

5.
Fusarium head blight (FHB) of wheat, caused by Fusarium graminearum and other Fusarium species, is a major disease problem for wheat production worldwide. To combat this problem, large-scale breeding efforts have been established. Although progress has been made through standard breeding approaches, the level of resistance attained is insufficient to withstand epidemic conditions. Genetic engineering provides an alternative approach to enhance the level of resistance. Many defense response genes are induced in wheat during F. graminearum infection and may play a role in reducing FHB. The objectives of this study were (1) to develop transgenic wheat overexpressing the defense response genes α-1-purothionin, thaumatin-like protein 1 (tlp-1), and β-1,3-glucanase; and (2) to test the resultant transgenic wheat lines against F. graminearum infection under greenhouse and field conditions. Using the wheat cultivar Bobwhite, we developed one, two, and four lines carrying the α-1-purothionin, tlp-1, and β-1,3-glucanase transgenes, respectively, that had statistically significant reductions in FHB severity in greenhouse evaluations. We tested these seven transgenic lines under field conditions for percent FHB disease severity, deoxynivalenol (DON) mycotoxin accumulation, and percent visually scabby kernels (VSK). Six of the seven lines differed from the nontransgenic parental Bobwhite line for at least one of the disease traits. A β-1,3-glucanase transgenic line had enhanced resistance, showing lower FHB severity, DON concentration, and percent VSK compared to Bobwhite. Taken together, the results showed that overexpression of defense response genes in wheat could enhance the FHB resistance in both greenhouse and field conditions.  相似文献   

6.
Forty-eight spring barley genotypes were evaluated for deoxynivalenol (DON) concentration under natural infection across 5 years at Harrington, Prince Edward Island. These genotypes were also evaluated for Fusarium head blight (FHB) severity and DON concentration under field nurseries with artificial inoculation of Fusarium graminearum by the grain spawn method across 2 years at Ottawa, Ontario, and one year at Hangzhou, China. Additionally, these genotypes were also evaluated for FHB severity under greenhouse conditions with artificial inoculation of F. graminearum by conidial suspension spray method across 3 years at Ottawa, Ontario. The objective of the study was to investigate if reactions of barley genotypes to artificial FHB inoculation correlate with reactions to natural FHB infection. DON concentration under natural infection was positively correlated with DON concentration (r = 0.47, P < 0.01) and FHB incidence (r = 0.56, P < 0.01) in the artificially inoculated nursery with grain spawn method. Therefore, the grain spawn method can be used to effectively screen for low DON. FHB severity, generated from greenhouse spray, however, was not correlated with DON concentration (r = 0.12, P > 0.05) under natural infection and it was not correlated with DON concentration (r = −0.23, P > 0.05) and FHB incidence (r = 0.19, P > 0.05) in the artificially inoculated nursery with grain spawn method. FHB severity, DON concentration, and yield were affected by year, genotype, and the genotype × year interaction. The effectiveness of greenhouse spray inoculation for indirect selection for low DON concentration requires further studies. Nine of the 48 genotypes were found to contain low DON under natural infection. Island barley had low DON and also had high yield.  相似文献   

7.

Background  

The fungal pathogen Fusarium graminearum causes Fusarium Head Blight (FHB) disease on wheat which can lead to trichothecene mycotoxin (e.g. deoxynivalenol, DON) contamination of grain, harmful to mammalian health. DON is produced at low levels under standard culture conditions when compared to plant infection but specific polyamines (e.g. putrescine and agmatine) and amino acids (e.g. arginine and ornithine) are potent inducers of DON by F. graminearum in axenic culture. Currently, host factors that promote mycotoxin synthesis during FHB are unknown, but plant derived polyamines could contribute to DON induction in infected heads. However, the temporal and spatial accumulation of polyamines and amino acids in relation to that of DON has not been studied.  相似文献   

8.
Deoxynivalenol (DON) is a common mycotoxin contaminating corn and wheat and conjugated forms are also present. Recent studies have suggested that current analytical methods for DON analysis in feedstuffs do not detect conjugated forms in the absence of hydrolysis. The aim of the current study, therefore, was to determine the optimal conditions in which conjugated DON in corn and wheat can be hydrolyzed by trifluoromethanesulfonic acid (TFMSA). The optimal hydrolysis procedure was determined based on reaction duration, reaction temperature and TFMSA concentration. Total DON concentrations were determined using ELISA with free DON concentrations determined by ELISA and GC–MS. The optimal hydrolysis conditions for determination of conjugated DON in corn were found to be 0.5 M TFMSA incubated for 20 min at 22 °C. Optimal conditions for wheat samples were 0.5 M TFMSA incubated for 40 min at 40 °C. Using these optimal hydrolysis conditions, 10 corn samples and 10 wheat samples were analyzed to determine the presence of conjugated DON. All samples contained conjugated DON with an increase of 8–70% for DON in corn following hydrolysis and an increase of 7–75% for DON in wheat. This hydrolysis procedure will aid in the accurate determination of total DON and conjugated DON in feedstuffs.  相似文献   

9.
The impact of moisture on the development of Fusarium head blight (FHB) and accumulation of deoxynivalenol (DON) in Fusarium-infected wheat was examined. The field experiments were designed as split-split-plot with five replicates. Main plots were durations of mist-irrigation [14, 21, 28 and 35 days after inoculation (DAI)]; sub-plots were wheat cultivar; and sub-sub-plots were F. graminearum isolates differing in aggressiveness and DON production capacity. The wheat cultivars ‘Alsen’ (moderately resistant), ‘2375’ (moderately susceptible) and ‘Wheaton’ (susceptible) were inoculated at anthesis. Severity of FHB was assessed 21 days after inoculation. Visually scabby kernels (VSK) and mycotxin content (DON, 15-AcDON, 3-AcDON and nivalenol) were determined on harvested grain. The damage to grain, as measured by VSK, was significantly lower in the treatments receiving the least amount of mist-irrigation (14 DAI) suggesting that extended moisture promotes disease development. DON was, however, significantly lower in the 35-DAI misting treatment than in treatments receiving less post-inoculation moisture. The reduction of DON observed in treatments receiving extended mist-irrigation was greatest in ‘Wheaton’ which recorded the highest FHB severity, VSK and DON of the cultivars examined. Our results suggest that DON and other trichothecenes may be reduced by late-season moisture despite increased grain colonization. We suggest that leaching may explain much of the reduction of mycotoxins, and that differences in tissue morphology and metabolism may determine the rate of leaching from specific tissues.  相似文献   

10.

Key message

The major QTL for FHB resistance from hexaploid wheat line PI 277012 was successfully introgressed into durum wheat and minor FHB resistance QTL were detected in local durum wheat cultivars. A combination of these QTL will enhance FHB resistance of durum wheat.

Abstract

Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease of durum wheat. To combat the disease, great efforts have been devoted to introgress FHB resistance from its related tetraploid and hexaploid wheat species into adapted durum cultivars. However, most of the quantitative trait loci (QTL) for FHB resistance existing in the introgression lines are not well characterized or validated. In this study, we aimed to identify and map FHB resistance QTL in a population consisting of 205 recombinant inbred lines from the cross between Joppa (a durum wheat cultivar) and 10Ae564 (a durum wheat introgression line with FHB resistance derived from the hexaploid wheat line PI 277012). One QTL (Qfhb.ndwp-2A) from Joppa and two QTL (Qfhb.ndwp-5A and Qfhb.ndwp-7A) from 10Ae564 were identified through phenotyping of the mapping population for FHB severity and DON content in greenhouse and field and genotyping with 90K wheat Infinium iSelect SNP arrays. Qfhb.ndwp-2A explained 14, 15, and 9% of the phenotypic variation, respectively, for FHB severity in two greenhouse experiments and for mean DON content across the two greenhouse environments. Qfhb.ndwp-5A explained 19, 10, and 7% of phenotypic variation, respectively, for FHB severity in one greenhouse experiment, mean FHB severity across two field experiments, and mean DON content across the two greenhouse experiments. Qfhb.ndwp-7A was only detected for FHB severity in the two greenhouse experiments, explaining 9 and 11% of the phenotypic variation, respectively. This study confirms the existence of minor QTL in North Dakota durum cultivars and the successful transfer of the major QTL from PI 277012 into durum wheat.
  相似文献   

11.
The effect of nitrogen on Fusarium Head Blight (FHB) in a susceptible barley cultivar was investigated using gel-based proteomics. Barley grown with either 15 or 100 kg ha? 1 N fertilizer was inoculated with Fusarium graminearum (Fg). The storage protein fraction did not change significantly in response either to N level or Fg, whereas eighty protein spots in the water-soluble albumin fraction increased and 108 spots decreased more than two-fold in intensity in response to Fg. Spots with greater intensity in infected plants contained fungal proteins (9 spots) and proteolytic fragments of plant proteins (65 spots). Identified fungal proteins included two superoxide dismutases, l-xylulose reductase in two spots, peptidyl prolyl cis–trans isomerase and triosephosphate isomerase, and proteins of unknown function. Spots decreasing in intensity in response to Fg contained plant proteins possibly degraded by fungal proteases. Greater spot volume changes occurred in response to Fg in plants grown with low nitrogen, although proteomes of uninfected plants were similar for both treatments. Correlation of proteome changes with measurement of Fusarium-damaged kernels, fungal biomass and mycotoxin levels indicated that increased Fusarium infection occurred in barley with low N and suggests control of N fertilization as a possible way to minimise FHB in barley.  相似文献   

12.
Fusarium head blight (FHB) caused by Gibberella zeae (anamorph = Fusarium graminearum) is a devastating disease that causes extensive yield and quality losses to wheat in humid and semi-humid regions of the world. Biological control has been demonstrated to be effective under laboratory conditions but a few biocontrol products have been effective under field conditions. The improvement in the physiological quality of biocontrol agents may improve survival under field conditions, and therefore, enhance biocontrol activity. Bacillus subtilis RC 218 and Brevibacillus sp. RC 263 were isolated from wheat anthers and showed significant effect on control of FHB under greenhouse assays. This study showed the effect of water availability measured as water activity (aW) using a growth medium modified with NaCl, glycerol and glucose on: (i) osmotic stress tolerance, (ii) viability in modified liquid medium, (iii) quantitative intracellular accumulation of betaine and ectoine and (iv) the biocontrol efficacy of the physiologically improved agents. Viability of B. subtilis RC 218 in NaCl modified media was similar to the control. Brevibacillus sp. RC 263 showed a limited adaptation to growth in osmotic stress. Betaine was detected in high levels in modified cells but ectoine accumulation was similar to the control cells. Biocontrol activity was studied in greenhouse assays on wheat inoculated at anthesis period with F. graminearum RC 276. Treatments with modified bacteria reduced disease severity from 60% for the control to below 20%. The physiological improvement of biocontrol agents could be an effective strategy to enhance stress tolerance and biocontrol activity under fluctuating environmental conditions.  相似文献   

13.
K20 is a novel amphiphilic aminoglycoside capable of inhibiting many fungal species. K20's capabilities to inhibit Fusarium graminearum the causal agent wheat Fusarium head blight (FHB) and to this disease were examined. K20 inhibited the growth of F. graminearum (minimum inhibitory concentrations, 7.8–15.6 mg L?1) and exhibited synergistic activity when combined with triazole and strobilurin fungicides. Application of K20 up to 720 mg L?1 to wheat heads in the greenhouse showed no phytotoxic effects. Spraying wheat heads in the greenhouse with K20 alone at 360 mg L?1 lowered FHB severity below controls while combining K20 with half–label rates of Headline (pyraclostrobin) improved its disease control efficacy. In field trials, spraying K20 at 180 mg L?1 and 360 mg L?1 combined with half-label rates of Headline, Proline 480 SC (prothioconazole), Prosaro 421 SC (prothioconazole + tebuconazole), and Caramba (metconazole) reduced FHB indices synergistically. In addition, the K20 plus Proline 480 SC combination reduced levels of the mycotoxin deoxinivalenol by 75 % compared to the control. These data suggest that K20 may be useful as a fungicide against plant diseases such as FHB particularly when combined with commercial fungicides applied at below recommended rates.  相似文献   

14.
15.
At anthesis, under field conditions at Fundulea, each of 6 Romanian winter wheat genotypes was inoculated with 3Fusarium graminearum isolates used individually.Fusarium head blight (FHB) was assessed according to the following traits: relative weight of spikes (RWS), percentage of Fusarium damaged kernels (FDK), relative weight of kernels per head (RWKH), area under the disease progress curve (AUDPC) and deoxynivalenol (DON) content in total sample of kernels. Correlations between these traits and parameters revealed important differences between examined wheat genotypes in: DON accumulation, progress of FHB development, yield reduction, and models of host — pathogen interactions in theTriticum - Fusarium pathosystem. Significant correlations between different attributes of FHB were found forFusarium isolate 1 which is a moderate producer of DON (0.89 μg g-1). Weight of spike was significantly correlated with weight of kernels per spike (r = 0.93**) and with percentage of damaged kernels (r = - 0.87**), while FDK was highly correlated with RWKH (r = - 0.85*) and with DON content (r = 0.82*). Area under the disease progress curve was also found to be significantly correlated with DON content (r = 0.86*).  相似文献   

16.
The proximity of a biological control agent and its associated anti-microbial metabolites to pathogens on plant surfaces can determine the outcome of disease control. In this study we investigated whether deficiencies in inoculum deposition and localization could explain the inability of the biological control agent Bacillus amyloliquefaciens strain TrigoCor to consistently control Fusarium head blight in the field, despite producing effective and consistent disease control in greenhouse settings. Using epifluorescent stereomicroscopy and confocal laser scanning microscopy, we visualized the coverage of wheat spike surfaces by Bacillus post-application in greenhouse and field environments, and determined that there are large unprotected areas on wheat spikes sprayed with commercial-scale field equipment, as compared to typical greenhouse applications. Additionally, we found that in conditions of low relative humidity, antifungal compounds produced by Bacillus were not able to diffuse across wheat surfaces in biologically relevant amounts, further suggesting that the inadequate coverage of wheat surfaces by Bacillus could be directly limiting disease control. Bacillus cells were easily rinsed off wheat surfaces within 8 h of application, indicating that rainfastness might be an additional limitation of biological control in field settings. Finally, we observed the inhibition of Fusarium graminearum spore germination by TrigoCor inoculum on wheat surfaces, confirming this as a mode of action for TrigoCor biocontrol. Future optimization efforts for biological control agents applied to above-ground plant parts should focus on enhancing the rainfastness, quantity, and spatial coverage of the inoculum on plant surfaces.  相似文献   

17.
《Cytokine》2015,72(2):132-138
The purpose of this study was to determine if vitamin D status before supplementation influences the cytokine response after supplemental vitamin D. Forty-six reportedly healthy adults (mean(SD); age, 32(7) y; body mass index (BMI), 25.3(4.5) kg/m2; serum 25-hydroxyvitamin D (25(OH)D), 34.8(12.2) ng/mL) were randomly assigned (double blind) to one of three groups: (1) placebo (n = 15), or supplemental vitamin D (cholecalciferol) at (2) 4000 (n = 14) or (3) 8000 IU (n = 17). Supplements were taken daily for 35 days. Fasting blood samples were obtained before (Baseline, Bsl) and 35-days after (35-d) supplementation. Serum 25(OH)D, 1,25-dihydroxyvitamin D (1,25(OH)D), cytokines, and intact parathyroid hormone with calcium were measured in each blood sample. Supplemental vitamin D increased serum 25(OH)D (4000 IU, ≈29%; 8000 IU, ≈57%) and 1,25(OH)D (4000 IU, ≈12%; 8000 IU, ≈38%) without altering intact parathyroid hormone or calcium. The vitamin D metabolite increases in the supplemental vitamin D groups (n = 31) were dependent on initial levels as serum 25(OH)D (r = −0.63, p < 0.05) and 1,25(OH)D (r = −0.45, p < 0.05) at Bsl correlated with their increases after supplementation. Supplemental vitamin D increased interferon (IFN)-γ and interleukin (IL)-10 in subjects that were vitamin D insufficient (serum 25(OH)D < 29 ng/mL) compared to sufficient (serum 25(OH)D  30 ng/mL) at Bsl. We conclude that supplemental vitamin D increase a pro- and anti-inflammatory cytokine in those with initially low serum 25(OH)D.  相似文献   

18.
Fusarium graminearum is the main causal agent of Fusarium head blight (FHB) of small grain cereals, but the importance of weeds in the FHB disease cycle and the establishment of F. graminearum in agroecosystems are still not fully understood. The objective of this study was to determine the potential role of weeds present within cereal crop rotations as alternative hosts. F. graminearum was isolated from different organs of asymptomatic weeds sampled from six fields with cereal-crop rotations in Lithuania for two consecutive years (2015 and 2016). The fungi were identified using morphological and molecular methods. Out of 57 weed species that were investigated, 41 (71.9%) harboured F. graminearum isolates. Twenty five weed species were identified as new, previously undocumented, hosts. The majority (73.3%) of the isolates of F. graminearum from this study belonged to the 15ADON genotype while a smaller proportion (23.4%) belonged to the 3ADON genotype. All F. graminearum isolates that were assessed induced FHB symptoms on artificially inoculated spring wheat tested in the field.  相似文献   

19.
Microspore and anther cultures provide an opportunity to create haploid and doubled haploid plants within a single season, thereby reducing the time and cost of cultivar development. Microspore and anther culture has been widely used and incorporated into wheat breeding programs in many countries, but little is known about the effectiveness of these techniques on South African germplasm. By using two responsive genotypes, isolated microspore culture was shown as more effective at revealing androgenic competence, and was used to evaluate the response of four South African inbred lines and two hybrids. Inbred lines A and B were highly responsive (336 and 207 embryo-like structures [ELS] per 100 anthers, respectively), line D was slightly responsive (5.1 ELS per 100 anthers) while line C was recalcitrant. The hybrid A × C was highly responsive (274 ELS per 100 anthers), and B × D did not respond at all. Green plant regeneration in a local genotype was very low (1% for line B) compared to that of foreign genotype (17% for Pavon 76). Similarly to other wheat genotypes grown around the world, the responsiveness of the South African varieties is also very variable. Thus, more efforts are needed so that isolated microspore culture can become a general tool in breeding programs.  相似文献   

20.
We studied the immunomodulatory effect of 1,25(OH)2D3 on single cell expression of IFN-γ and TNF-α cytokines in T cell subsets of pulmonary tuberculosis (PTB) patients (n = 22) and normal healthy subjects (n = 22). Peripheral blood mononuclear cells (PBMCs) were cultured with live Mycobacterium tuberculosis (MTB) with or without 1,25(OH)2D3 (10?7 M) for 48 h. T cell subsets positive for IFN-γ and TNF-α were enumerated by flow cytometry and the culture supernatants were assayed for both the cytokines using ELISA. In both NHS and PTB patients, a significantly reduced percentage of IFN-γ and TNF-α expressing CD3+, CD3+CD4+ and CD3+CD8+ T cells were observed in cultures stimulated with live MTB and treated with 1,25(OH)2D3 compared to cultures without 1,25(OH)2D3 (NHS; CD3+ IFN-γ+: p < 0.0001; CD3+TNF-α +: p = 0.0292 and PTB; CD3+ IFN-γ+: p = 0.0292; CD3+ TNF-α +: p = 0.0028). The levels of IFN-γ and TNF-α in the culture supernatants of 1,25(OH)2D3 treated cultures were also found to be significantly decreased in both groups (NHS; IFN-γ: p = 0.0001; TNF-α: p < 0.0001) and (PTB; IFN-γ: p < 0.0001; TNF-α: p < 0.0001). A positive correlation was observed between IFN-γ and TNF-α expressing CD3+CD8+ T cells in MTB stimulated cultures treated with or without 1,25(OH)2D3 in NHS (p = 0.0001; p = 0.001, respectively) and PTB patients (p = 0.002; p = 0.005, respectively). The present study revealed the suppressive effect of 1,25(OH)2D3 on single cell expression of IFN-γ and TNF-α by CD3+CD4+ and CD3+CD8+ T cells in pulmonary tuberculosis. This suppressive effect of 1,25(OH)2D3 on proinflammatory and Th1 cytokine positive cells might have a role in reducing inflammation at the site of infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号