首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文利用重组大肠杆菌以甘油为底物发酵合成3.羟基丙酸,考察了不同pH对3.羟基丙酸产量及菌体生长的影响,发现在pH6.5条件下,细胞比生长速率达到最大值,延迟期也相对较短;而pH7.0有利于3-羟基丙酸的合成,控制pH7.0可以使3-羟基丙酸产量达到7.39g/L。基于不同pH条件下对细胞比生长速率和3-羟基丙酸比生成速率的分析,提出3.羟基丙酸分批发酵过程中的pH控制策略,即在发酵过程前5h将pH控制在6.5,5h~15h控制pH为7.0,此时有利于细胞生长;而后在15h-25h控制pH为7.5,25h后控制pH为7.0,从而使细胞具有较高的3.羟基丙酸比合成速率。在此控制策略下经过34h发酵3-羟基丙酸的终产量达到8.76g/L,比pH7.0条件下的3-羟基丙酸产量提高了18.54%。  相似文献   

2.
We engineered a type II methanotroph, Methylosinus trichosporium OB3b, for 3-hydroxypropionic acid (3HP) production by reconstructing malonyl-CoA pathway through heterologous expression of Chloroflexus aurantiacus malonyl-CoA reductase (MCR), a bifunctional enzyme. Two strategies were designed and implemented to increase the malonyl-CoA pool and thus, increase in 3HP production. First, we engineered the supply of malonyl-CoA precursors by overexpressing endogenous acetyl-CoA carboxylase (ACC), substantially enhancing the production of 3HP. Overexpression of biotin protein ligase (BPL) and malic enzyme (NADP+-ME) led to a ∼22.7% and ∼34.5% increase, respectively, in 3HP titer in ACC-overexpressing cells. Also, the acetyl-CoA carboxylation bypass route was reconstructed to improve 3HP productivity. Co-expression of methylmalonyl-CoA carboxyltransferase (MMC) of Propionibacterium freudenreichii and phosphoenolpyruvate carboxylase (PEPC), which provides the MMC precursor, further improved the 3HP titer. The highest 3HP production of 49 mg/L in the OB3b-MCRMP strain overexpressing MCR, MMC and PEPC resulted in a 2.4-fold improvement of titer compared with that in the only MCR-overexpressing strain. Finally, we could obtain 60.59 mg/L of 3HP in 42 h using the OB3b-MCRMP strain through bioreactor operation, with a 6.36-fold increase of volumetric productivity compared than that in the flask cultures. This work demonstrates metabolic engineering of type II methanotrophs, opening the door for using type II methanotrophs as cell factories for biochemical production along with mitigation of greenhouse gases.  相似文献   

3.
Development of sustainable technologies for the production of 3-hydroxypropionic acid (3HP) as a platform chemical has recently been gaining much attention owing to its versatility in applications for the synthesis of other specialty chemicals. Several proposed biological synthesis routes and strategies for producing 3HP from glucose and glycerol are reviewed presently. Ten proposed routes for 3HP production from glucose are described and one of which was recently constructed successfully in Escherichia coli with malonyl–Coenzyme A as a precursor. This resulted in a yield still far from the required level for industrial application. On the other hand, strategies employing engineered E. coli and Klebsiella pneumoniae capable of producing 3HP from glycerol are also evaluated. The titers produced by these recombinant strains reached around 3 %. At its current state, it is evident that a bulk of engineering works is yet to be done to acquire a biosynthesis route for 3HP that is acceptable for industrial-scale production.  相似文献   

4.
The pduP gene encodes a propionaldehyde dehydrogenase (PduP) was investigated for the role in 3-hydroxypropionic acid (3-HP) glycerol metabolism in Klebsiella pneumoniae. The enzyme assay showed that cell extracts from a pduP mutant strain lacked measurable dehydrogenase activity. Additionally, the mutant strain accumulated the cytotoxic intermediate metabolite 3-hydroxypropionaldehyde (3-HPA), causing both cell death and a lower final 3-HP titer. Ectopic expression of pduP restored normal cell growth to mutant. The enzymatic property of recombinant protein from Escherichia coli was examined, exhibiting a broad substrate specificity, being active on 3-HPA. The present work is thus the first to demonstrate the role of PduP in glycerol metabolism and biosynthesis of 3-HP.  相似文献   

5.
本文研究了静息细胞生物转化生产3-羟基丙酸的反应体系。考察了以甘油为底物,利用静息细胞转化生产3一羟基丙酸的相关因素,确定了最佳的转化条件:细胞浓度20g/L,甘油浓度20g/L,辅酶VB12浓度10mg/L,NAD+浓度0.15mmol/L,温度35℃,反应体系为0.05mol/LpH7.0Tris—HCl缓冲液。在上述条件下反应6h后,3-羟基丙酸的产量达到为3.17g/L,底物转化率为28.33%。由上述结果可知,采用静息细胞转化法为3-HP的生物合成提供了一种可能的方法。  相似文献   

6.
3-Hydroxypropionic acid (3-HP) is an attractive platform chemical, which can be used to produce a variety of commodity chemicals, such as acrylic acid and acrylamide. For enabling a sustainable alternative to petrochemicals as the feedstock for these commercially important chemicals, fermentative production of 3-HP is widely investigated and is centered on bacterial systems in most cases. However, bacteria present certain drawbacks for large-scale organic acid production. In this study, we have evaluated the production of 3-HP in the budding yeast Saccharomyces cerevisiae through a route from malonyl-CoA, because this allows performing the fermentation at low pH thus making the overall process cheaper. We have further engineered the host strain by increasing availability of the precursor malonyl-CoA and by coupling the production with increased NADPH supply we were able to substantially improve 3-HP production by five-fold, up to a final titer of 463 mg l−1. Our work thus led to a demonstration of 3-HP production in yeast via the malonyl-CoA pathway, and this opens for the use of yeast as a cell factory for production of bio-based 3-HP and derived acrylates in the future.  相似文献   

7.
In this work, a two-step process was developed for the production of 3-hydroxypropionic acid from glycerol. In the first step, glycerol was converted to 1,3-propanediol by Klebsiella pneumonia. In the second step, the 1,3-propanediol was converted into 3-hydroxypropionic acid by Gluconobacter oxydans. In a 7.0 L bioreactor, the whole process took 54 h, consumed 480 g glycerol and produced 242 g 3-hydroxypropionic acid. The conversion rate of glycerol to 3-hydroxypropionic acid was 50.4 % (g g?1). The final concentration of 3-hydroxypropionic acid arrived 60.5 g L?1. The process was effective for 3-HP production from glycerol and it might provide a new approach to the biosynthesis of 3-HP from a cheap starting material. Moreover, in this paper, it was first reported that the by-product of 3-hydroxypropionic acid production from 1,3-propandeiol was acrylic acid.  相似文献   

8.
Saccharomyces cerevisiae is widely used in the biotechnology industry for production of ethanol, recombinant proteins, food ingredients and other chemicals. In order to generate highly producing and stable strains, genome integration of genes encoding metabolic pathway enzymes is the preferred option. However, integration of pathway genes in single or few copies, especially those encoding rate-controlling steps, is often not sufficient to sustain high metabolic fluxes. By exploiting the sequence diversity in the long terminal repeats (LTR) of Ty retrotransposons, we developed a new set of integrative vectors, EasyCloneMulti, that enables multiple and simultaneous integration of genes in S. cerevisiae. By creating vector backbones that combine consensus sequences that aim at targeting subsets of Ty sequences and a quickly degrading selective marker, integrations at multiple genomic loci and a range of expression levels were obtained, as assessed with the green fluorescent protein (GFP) reporter system. The EasyCloneMulti vector set was applied to balance the expression of the rate-controlling step in the β-alanine pathway for biosynthesis of 3-hydroxypropionic acid (3HP). The best 3HP producing clone, with 5.45 g.L-1 of 3HP, produced 11 times more 3HP than the lowest producing clone, which demonstrates the capability of EasyCloneMulti vectors to impact metabolic pathway enzyme activity.  相似文献   

9.
Classified as a distinct species in 1980, Lactobacillus reuteri strains have been used in probiotic formulations for intestinal and urogenital applications. In the former, the primary mechanism of action of L. reuteri SD2112 (ATCC 55730) has been purported to be its ability to produce the antibiotic 3-hydroxypropionaldehyde (3-HPA), also known as reuterin. In the vagina, it has been postulated that probiotic Lactobacillus reuteri RC-14 does not require reuterin production but mediates a restoration of the normal microbiota via hydrogen peroxide, biosurfactant, lactic acid production, and immune modulation. The aim of the present study was to determine whether strain RC-14 produced reuterin. Using PCR and DNA dot blot analyses, numerous Lactobacillus species, including RC-14, were screened for the presence of the gene encoding the large subunit of glycerol dehydratase (gldC), the enzyme responsible for reuterin production. In addition, lactobacilli were grown in glycerol-based media and both high-performance liquid chromatography and a colorimetric assay were used to test for the presence of reuterin. L. reuteri RC-14 was determined to be negative for gldC sequences, as well as for the production of reuterin when cultured in the presence of glycerol. These findings support that the probiotic effects of L. reuteri RC-14, repeatedly demonstrated during numerous studies of the intestine and vagina, are independent of reuterin production.  相似文献   

10.
甘油脱水酶是甘油转化3-羟基丙酸生物合成途径中的关键性限速酶,然而底物甘油的存在会抑制该酶的活性,从而引起3-羟基丙酸合成量的下降.因此解除底物甘油对甘油脱水酶活性的抑制作用,是提高生物合成3-羟基丙酸产量的方法之一.克隆来源于克雷伯氏菌(Klebsiella pneumoniae)的甘油脱水酶编码基因dhaB、甘油脱...  相似文献   

11.
Odd-chain fatty acids (OCFAs) and their derivatives have attracted increasing attention due to their wide applications in the chemical, fuel, and pharmaceutical industry. However, most natural fatty acids are even-chained, and OCFAs are rare. In this work, a novel pathway was designed and established for de novo synthesis of OCFAs via 3-hydroxypropionic acid (3-HP) as the intermediate in Saccharomyces cerevisiae. First, the OCFAs biosynthesis pathway from 3-HP was confirmed, followed by an optimization of the precursor 3-HP. After combining these strategies, a de novo production of OCFAs at 74.8 mg/L was achieved, and the percentage of OCFAs in total lipids reached 20.3%, reaching the highest ratio of de novo-produced OCFAs. Of the OCFAs produced by the engineered strain, heptadecenoic acid (C17:1) and heptadecanoic acid (C17:0) accounted for 12.1% and 7.6% in total lipid content, respectively. This work provides a new and promising pathway for the de novo bio-production of OCFAs.  相似文献   

12.
生物法合成3-羟基丙酸的研究进展   总被引:1,自引:0,他引:1  
从3-羟基丙酸的性质出发,介绍了生物法合成3-羟基丙酸以及它在生物体内的五种代谢途径,此外还简要介绍了3-羟基丙酸在合成生物聚酯、抗植物病虫害上的一些应用。  相似文献   

13.
Carbon monoxide (CO) is a promising carbon source for producing value-added biochemicals via microbial fermentation. However, its microbial conversion has been challenging because of difficulties in genetic engineering of CO-utilizing microorganisms and, more importantly, maintaining CO consumption which is negatively affected by the toxicity of CO and accumulated byproducts. To overcome these issues, we devised mutualistic microbial consortia, co-culturing Eubacterium limosum and genetically engineered Escherichia coli for the production of 3-hydroxypropionic acid (3-HP) and itaconic acid (ITA). During the co-culture, E. limosum assimilated CO and produced acetate, a toxic by-product, while E. coli utilized acetate as a sole carbon source. We found that this mutualistic interaction dramatically stabilized and improved CO consumption of E. limosum compared to monoculture. Consequently, the improved CO consumption allowed successful production of 3-HP and ITA from CO. This study is the first demonstration of value-added biochemical production from CO using a microbial consortium. Moreover, it suggests that synthetic mutualistic microbial consortium can serve as a powerful platform for the valorization of CO.  相似文献   

14.
氧化葡萄糖酸杆菌生物催化1,3-丙二醇合成3-羟基丙酸   总被引:1,自引:0,他引:1  
3-羟基丙酸是一种潜在的重要化工产品,可作为中间体合成多种有经济价值的工业用化合物。文中利用氧化葡萄糖酸杆菌生物催化1,3-丙二醇合成3-羟基丙酸。首先在50 mL摇瓶中(转化体系为10 mL)考察细胞加入量、底物和产物浓度等对催化反应的影响。在此基础上,在2 L鼓泡塔中(转化体系为1 L),采取适当的补料方式和生物转化与分离相耦合的手段解除抑制,以提高目标产物终浓度。结果表明:高底物和产物浓度通过降低反应初速度抑制转化的进行,并确定了最佳催化反应条件为6 g/L菌体量,pH 5.5。利用流加补料方式维持反应体系中底物浓度在15~20 g/L,经过60 h的反应,3-羟基丙酸的浓度达到60.8 g/L,生产强度为1.0g/(L.h),转化率为84.3%。采用生物转化与分离相耦合的方法,经过50 h的转化反应,3-羟基丙酸的总产量达76.3 g/L,生产强度为1.5 g/(L.h),转化率83.7%。研究结果对利用氧化葡萄糖酸杆菌的不完全氧化醇类化合物特性实现其在工业生物催化中的应用具有一定的指导意义。  相似文献   

15.
根据GenBank中的序列设计引物,克隆芽孢杆菌中的β-脱卤酶基因(命名为bhd)。以pET30a(+)为载体、Escherichia coli BL21(DE3)-CondonPlus为宿主菌,实现了bhd的高效表达。使用HisTrapTMFF亲和层析柱纯化重组β-脱卤酶,分子量约为23.1 kD。酶学性质研究表明,纯化的重组β-脱卤酶水解3-氯丙酸制备3-羟基丙酸的最适反应体系为30°C,100 mmol/L,pH 7.0的磷酸钠缓冲液。在最适反应条件下,重组β-脱卤酶的比活为16.2 U/mg,Km和Vmax分别为3.26μmol/L和17.86 mmol/(min.g protein)。在最适反应条件下,以10 mmol/L 3-氯丙酸为底物,反应36 h的转化率在93%以上。  相似文献   

16.

Objective

To improve 1,3-propanediol production in Klebsiella pneumoniae, the effects of puuC expression in lactate- and lactate/2,3-butanediol-deficient strains were assessed.

Results

Overexpression of puuC (encoding an aldehyde dehydrogenase) inhibited 1,3-propanediol production and increased 3-hydroxypropionic acid formation in both lactate- and lactate/2,3-butanediol-deficient strains. An improvement in 1,3-propanediol production was only achieved in a lactate-deficient strain via moderate expression of puuC; at the end of the fermentation, 1,3-propanediol productivity increased by 14 % compared with the control. Further comparative analysis of the metabolic flux distributions in different strains indicated that 3-hydroxypropionic acid formation could play a considerable role in cell metabolism in K. pneumoniae.

Conclusion

An improvement in 3-hydroxypropionic acid formation would be beneficial for cell metabolism, which can be accomplished by enhancing 1,3-propanediol productivity in a lactate-deficient strain via moderate expression of puuC.
  相似文献   

17.
Most expression systems are tailored for model organisms rather than nonmodel organisms. However, heterologous gene expression in model organisms constrains the innate advantages of original strain carrying gene of interest. In this study, T7 expression system was developed in nonmodel bacterium Klebsiella pneumoniae for production of chemicals. First, we engineered a recombinant K. pneumoniae strain harboring two vectors. One vector was used to express T7 RNA polymerase (T7 RNAP) which would drive the expression of egfp in the other vector. This recombinant strain demonstrated 15.73-fold of fluorescence relative to wild-type K. pneumoniae and showed similar level of fluorescence to recombinant Escherichia coli overexpressing egfp. When egfp was replaced by puuC, an endogenous aldehyde dehydrogenase catalyzing 3-hydroxypropionic acid (3-HP) biosynthesis in K. pneumoniae, the recombinant strain coexpressing T7 RNAP and PuuC showed high-level PuuC expression. In shake-flask cultivation, this recombinant strain produced 1.72 g/L 3-HP in 24 hr, which was 3.24 times that of wild-type K. pneumoniae (0.53 g/L). To mitigate plasmid burden, the vector expressing T7 RNAP was eliminated, but the T7 RNAP expression cassette was integrated into K. pneumoniae genome. The resulting strain harboring only PuuC expression vector produced 2.44 g/L 3-HP in 24 hr under shake-flask conditions, which was 1.46 times that of the strain harboring both T7 RNAP and PuuC expression vectors. In bioreactor cultivation, this strain generated 67.59 g/L 3-HP and did not show significantly halted growth. Overall, these results indicate that the engineered T7 expression system functioned efficiently in K. pneumoniae. This study provides a paradigm for the development of T7 expression system in prokaryotes.  相似文献   

18.
As climate change is an important environmental issue, the conventional petrochemical-based processes to produce valuable chemicals are being shifted toward eco-friendly biological-based processes. In this study, 3-hydroxypropionic acid (3-HP), an industrially important three carbon (C3) chemical, was overproduced by metabolically engineered Escherichia coli using glycerol as a sole carbon source. As the first step to construct a glycerol-dependent 3-HP biosynthetic pathway, the dhaB1234 and gdrAB genes from Klebsiella pneumoniae encoding glycerol dehydratase and glycerol reactivase, respectively, were introduced into E. coli to convert glycerol into 3-hydroxypropionaldehyde (3-HPA). In addition, the ydcW gene from K. pneumoniae encoding γ-aminobutyraldehyde dehydrogenase, among five aldehyde dehydrogenases examined, was selected to further convert 3-HPA to 3-HP. Increasing the expression level of the ydcW gene enhanced 3-HP production titer and reduced 1,3-propanediol production. To enhance 3-HP production, fed-batch fermentation conditions were optimized by controlling dissolved oxygen (DO) level and employing different feeding strategies including intermittent feeding, pH-stat feeding, and continuous feeding strategies. Fed-batch culture of the final engineered E. coli strain with DO control and continuous feeding strategy produced 76.2 g/L of 3-HP with the yield and productivity of 0.457 g/g glycerol and 1.89 g·L−1·h−1, respectively. To the best of our knowledge, this is the highest 3-HP productivity achieved by any microorganism reported to date.  相似文献   

19.
Klebsiella pneumoniae is a Gram-negative facultative anaerobe that metabolizes glycerol efficiently under both aerobic and anaerobic conditions. This microbe is considered an outstanding biocatalyst for transforming glycerol into a variety of value-added products. Crude glycerol is a cheap carbon source and can be converted by K. pneumoniae into useful compounds such as lactic acid, 3-hydroxypropionic acid, ethanol, 1,3-propanediol, 2,3-butanediol, and succinic acid. This review summarizes glycerol metabolism in K. pneumoniae and its potential as a microbial cell factory for the production of commercially important acids and alcohols. Although many challenges remain, K. pneumoniae is a promising workhorse when glycerol is used as the carbon source.  相似文献   

20.
Homeostasis of oral microbiota can be maintained through microbial interactions. Previous studies showed that Streptococcus oligofermentans, a non-mutans streptococci frequently isolated from caries-free subjects, inhibited the cariogenic Streptococcus mutans by the production of hydrogen peroxide (HP). Since pH is a critical factor in caries formation, we aimed to study the influence of pH on the competition between S. oligofermentans and S. mutans in biofilms. To this end, S. mutans and S. oligofermentans were inoculated alone or mixed at 1:1 ratio in buffered biofilm medium in a 96-well active attachment model. The single- and dual-species biofilms were grown under either constantly neutral pH or pH-cycling conditions. The latter includes two cycles of 8 h neutral pH and 16 h pH 5.5, used to mimic cariogenic condition. The 48 h biofilms were analysed for the viable cell counts, lactate and HP production. The last two measurements were carried out after incubating the 48 h biofilms in buffers supplemented with 1% glucose (pH 7.0) for 4 h. The results showed that S. oligofermentans inhibited the growth of S. mutans in dual-species biofilms under both tested pH conditions. The lactic acid production of dual-species biofilms was significantly lower than that of single-species S. mutans biofilms. Moreover, dual-species and single-species S. oligofermentans biofilms grown under pH-cycling conditions (with a 16 h low pH period) produced a significantly higher amount of HP than those grown under constantly neutral pH. In conclusion, S. oligofermentans inhibited S. mutans in biofilms not only under neutral pH, but also under pH-cycling conditions, likely through HP production. S. oligofermentans may be a compelling probiotic candidate against caries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号