首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Florida, a root weevil pest of citrus, Diaprepes abbreviatus, is more damaging and attains higher population density in some orchards on fine textured, poorly drained “flatwoods” soils than in those on the deep, coarse sandy soils of the central ridge. Previous research revealed that sentinel weevil larvae were killed by indigenous entomopathogenic nematodes (EPNs) at significantly higher rates in an orchard on the central ridge, compared to one in the flatwoods. We hypothesized that filling tree planting holes in a flatwoods orchard with sandy soil from the central ridge would provide a more suitable habitat for EPNs, thereby reducing weevil numbers and root herbivory. Fifty trees were planted in oversized planting holes filled with coarse sand and 50 trees were planted in native soil in a split plot design where whole plots were species of introduced EPNs and split plots were soil type. Each of Steinernema diaprepesi, Steinernema riobrave, Heterorhabditis indica, Heterorhabditis zealandica, or no EPNs were introduced into the rhizospheres in 10 plots of each soil type. During four years, EPN numbers in soil samples and the relative abundance of seven species of nematophagous fungi associated with nematodes were measured three times using real-time PCR. The efficacy of EPNs against sentinel weevil larvae was also measured three times by burying caged weevils in situ. EPN species richness (P = 0.001) and diversity (P = 0.01) were always higher in sand than native soil. Soil type had no effect on numbers of EPNs in samples, but EPNs were detected more frequently (P = 0.01) in plots of sandy soil than native soil in 2011. Two nematophagous fungi species, Paecilomyces lilacinus and Catenaria sp. were significantly more abundant in nematode samples from sandy soil on all three sampling dates. Efficacy of EPNs against weevil larvae was greater in sandy soil inoculated with S. diaprepesi (P = 0.03) in June 2010 and in all treatments in sandy soil in May 2011 (P = 0.03). Sixty-eight percent more adult weevils (P = 0.01) were trapped emerging from native soil during two years than from sandy soil. By May 2011, the cumulative number of weevils emerging from each plot was inversely related (P = 0.01) to the numbers of EPNs detected in plots and to EPN efficacy against sentinels. Three trees in sandy soil died as a result of root herbivory compared to 21 trees in native soil. Surviving trees in sandy soil had trunk diameters that were 60% larger (P = 0.001) and produced 85% more fruit (P = 0.001) than those in native soil. Although it is not possible to characterize all of the mechanisms by which the two soil treatments affected weevils and trees, substitution of sand for native soil was an effective means of conserving EPNs and shows promise as a cultural practice to manage D. abbreviatus in flatwoods citrus orchards with a history of weevil damage to trees.  相似文献   

2.
Information regarding the simultaneous evaluation of tillage and fertilization on the soil biological traits in canola production is not available. Therefore, field experiments were conducted in 2007–2010 in a split plot based on randomized complete block design with three replications. Main plots consisted of conventional tillage (CT); minimum tillage (MT) and no tillage (NT). Six strategies of fertilization including (N1): farmyard manure (cattle manure); (N2): compost; (N3): chemical fertilizers; (N4): farmyard manure + compost; (N5): farmyard manure + compost + chemical fertilizers and (N6): control, were arranged in sub plots. Results showed that the addition of organic manure increased the soil microbial biomass. No tillage system increased microbial biomass compared to other tillage systems. The activities of all enzymes were generally higher in the N4 treatment. The activity of phosphatase and urease tended to be higher in the no tillage treatment compared to the CT and MT treatments.  相似文献   

3.
Queensland fruit fly, Bactrocera tryoni (Froggatt), is the economically most significant Australian tephritid pest species with a large invasion potential, yet relatively little work on its biological control has been undertaken. Entomopathogenic nematodes (EPNs) are of potential interest for control of this fruit fly species as it pupates in the soil. Specifically, the pre-pupal stage of B. tryoni may present a unique window for EPN application, as fully developed larvae drop from infested fruit to the soil for pupation. For the first time, we tested the capacity of three EPN species with different foraging strategies, Steinernema feltiae, Steinernema carpocapsae and Heterorhabditis bacteriophora, to cause larval and pupal mortality in B. tryoni across a range of EPN concentrations (50, 100, 200, 500 and 1000 infective juveniles IJs cm-2), substrate moisture (10, 15, 20 and 25% w/v) and temperatures (15, 20, 25 and 30 °C). We found that all EPN species tested caused environment and density dependent mortality in the third larval instar while pupae were not affected. Steinernema feltiae caused high mortality across different IJ concentrations and over a wider moisture and temperature range than the other two EPN species. High mortality caused by S. carpocapsae and H. bacteriophora was more limited to high IJ concentrations and a narrower moisture and temperature range. Our findings highlight the potential of EPNs for the control of B. tryoni and warrant further laboratory and field experiments to evaluate their efficacy under the wide environmental conditions that B. tryoni can occur in.  相似文献   

4.
An emerging organic citrus industry in Florida could benefit greatly from effective, non-conventional methods to mitigate losses from pests and diseases. We studied part of a soil food web in an organic orchard to learn ways to conserve and enhance biological control of insect pests by native entomopathogenic nematodes (EPNs). We evaluated two OMRI (Organic Materials Review Institute) approved cultural practices: (i) a mulch of commercially pelleted chicken manure, (ii) a commercial formulation of Purpureocillium lilacinus, and (iii) an un-amended control. Several soil nutrients (i.e. nitrogen, phosphate, and potassium) were affected by the amendments, but initial equilibrium values (T0) were restored by the last sampling time (T12). The plant parasitic nematode Tylenchulus semipenetrans increased in both treatments compared to the untreated control at T3 (P < 0.05). The oomycete Phytophthora nicotianae increased in the P. lilacinus plots at T1, marginally at T12, but decreased at T6 and T9. Steinernema diaprepesi, Heterorhabditis indica and Heterorhabditis zealandica were the only EPNs regularly detected in the orchard. Mulch increased numbers of H. zealandica at T6 and T9 (P < 0.05) and free living nematodes at T12 (P < 0.01). The nematophagous fungus (NF) P. lilacinus persisted in plots where it was augmented (P < 0.05), reaching a maximum level at T3 that was 17.5-fold greater than that in controls. Numbers of Paenibacillus sp. were directly related to both those of S. diaprepesi and Acrobeloides-group nematodes (P < 0.01), but inversely to the FLN counts (P < 0.05). The application of these two amendments did not produce strong changes in the EPN community but decreased the emergence from soil of adult Diaprepes abbreviatus, a root weevil pest. Thus, both amendments might contribute to citrus pest management under organic production.  相似文献   

5.
The impact of conservation tillage practices on soil carbon has been of great interest in recent years. Conservation tillage might have the potential to enhance soil carbon accumulation and alter the depth distribution of soil carbon compared to conventional tillage based systems. Changes in the soil organic carbon (SOC) as influenced by tillage, are more noticeable under long-term rather than short-term tillage practices. The objective of this study was to determine the impacts of long-term tillage on SOC and dissolved organic carbon (DOC) status after 19 years of four tillage treatments in a Hydragric Anthrosol. In this experiment four tillage systems included conventional tillage with rotation of rice and winter fallow system (CTF), conventional tillage with rotation of rice and rape system (CTR), no-till and ridge culture with rotation of rice and rape system (NT) and tillage and ridge culture with rotation of rice and rape system (TR). Soils were sampled in the spring of 2009 and sectioned into 0–10, 10–20, 20–30, 30–40, 40–50 and 50–60 cm depth, respectively.Tillage effect on SOC was observed, and SOC concentrations were much larger under NT than the other three tillage methods in all soil depths from 0 to 60 cm. The mean SOC concentration at 0–60 cm soil depth followed the sequence: NT (22.74 g kg?1) > CTF (14.57 g kg?1) > TR (13.10 g kg?1) > CTR (11.92 g kg?1). SOC concentrations under NT were significantly higher than TR and CTR (P < 0.01), and higher than CTF treatment (P < 0.05). The SOC storage was calculated on equivalent soil mass basis. Results showed that the highest SOC storage at 0–60 cm depth presented in NT, which was 158.52 Mg C ha?1, followed by CTF (106.74 Mg C ha?1), TR (93.11 Mg C ha?1) and CTR (88.60 Mg C ha?1). Compared with conventional tillage (CTF), the total SOC storage in NT increased by 48.51%, but decreased by 16.99% and 12.77% under CTR and TR treatments, respectively. The effect of tillage on DOC was significant at 0–10 cm soil layer, and DOC concentration was much higher under CTF than the other three treatments (P < 0.01). Throughout 0–60 cm soil depth, DOC concentrations were 32.92, 32.63, 26.79 and 22.10 mg kg?1 under NT, CTF, CTR and TR, and the differences among the four treatments were not significant (P > 0.05). In conclusion, NT increased SOC concentration and storage compared to conventional tillage operation but not for DOC.  相似文献   

6.
《Biological Control》2013,67(3):183-194
Since its first detection in 2005, the bacterial disease huanglongbing (HLB or citrus greening) has emerged as a critical threat to the citrus industry in Florida. An “Advanced Production System” (APS) could mitigate the impact of HLB by bringing citrus trees into production more quickly and economically than conventional citriculture methods. However, unlike conventional practices, APS fertigates plants daily, thereby changing the soil properties in ways that might impact soil biota. We tested the hypothesis that changes to soil properties caused by APS would affect the abundance of native entomopathogenic nematodes (EPNs) and/or the survival of augmented EPNs. The densities of organisms at different trophic levels were measured by real-time qPCR in three experiments conducted in an ongoing field experiment. Target organisms included 6 entompathogenic nematodes, 5 nematophagous fungi (NF) and a phoretic bacterium, Paenibacillus sp. Soil properties, free-living nematodes and citrus fibrous roots were also measured. Compared to soil under conventional citriculture (CC), APS increased soil pH and Mg content, while reducing the electrical conductivity, and content of K, Mn and Fe. The naturally occurring EPN Steinernema diaprepesi was 5 times less abundant in APS plots where these nematodes were more heavily encumbered by the phoretic bacterium Paenibacillus sp., which limits the foraging success of EPNs. In general, when EPNs were augmented in either treatment, fewer Steinernema riobrave than Heterorhabditis indica were recovered and recovery of both species declined rapidly over time. As seen with native S. diaprepesi, fewer augmented S. riobrave were recovered from APS plots in two of the three experiments, whereas the management system did not affect the recovery of H. indica. More of some endoparasitic and trapping NF were recovered from soil augmented with S. riobrave than with H. indica. However, variation in the responses of NF to the management systems suggests that these NF species were not primarily responsible for the steinernematid responses to APS. Although APS has the potential to reduce EPN populations and exacerbate herbivory by subterranean pests such as the root weevil Diaprepes abbreviatus, additional study of the physical causes of this effect may reveal ways to avoid the problem.  相似文献   

7.
Phragmites karka (Retz.) Trin, ex. steud, a perennial reed with creeping rhizome from the family Poaceae, is distributed as pure population in brackish water swamps. Populations primarily propagate using ramets but also produce numerous seeds which form part of the seed bank after dispersal and are exposed to extremes of temperature, drought, and salinity stress. Seeds were germinated under a range of salinity (0, 100, 200, 300, 400, 500 mM NaCl) and temperature (10/20 °C, 15/25 °C, 20/30 °C, 25/35 °C, night/day) regimes in 12 h light:12 h dark photoperiod or in complete darkness with 0, 5, 10, 25 mM CaCl2. Salinity, absence of light and high temperature (25/35 °C) reduced germination while calcium generally reversed this effect, more so at cooler temperature regimes. Calcareous soil around Karachi would help alleviate the salinity effect on the germination of P. karka and facilitate its survival.  相似文献   

8.
Rapid and periodic assessment of the impact of land cover change and climate variability on ecosystem services at regional levels is essential to understanding services and sustainability of ecosystems. This study focused on quantifying and assessing the changes in multiple ecosystem services in the Three-River Headwaters Region (TRHR), China in 2000–2012. Based on the widely used biophysical models including Integrated Valuation of Ecosystem Services and Trade-Offs (InVEST), Revised Wind Erosion Equation (RWSQ), and Carnegie-Ames-Stanford Approach (CASA) models, this study assessed the historical flow of regulating services, including soil conservation, water yield, and carbon sequestration, and provisioning service food provision. The soil conservation function of ecosystem was slightly enhanced as a whole, and water yield increased sharply, with both the soil conservation and water yield showing an increasing spatial homogenization. The net primary productivity (NPP) and food production increased substantially from 2000 to 2012. Ecosystem services are closely and complexly interlinked. The correlation analyses indicated a trade-off between the water yield and carbon sequestration, however, a synergy between soil conservation and carbon sequestration. Congruence between the three different ecosystem provisioning services, including pasture, meat, and grain, was found. There was also a synergy between food production and ecosystem carbon sequestration in the TRHR. Climatic variability and vegetation restoration are important for the ecosystem services flow. Correlation analyses showed that the increase in precipitation significantly enhanced the water yield (P < 0.01) and soil erosion (P < 0.01), while the temperature increase influenced positively the NPP (P < 0.1). The experience of ecological rehabilitation and the change in key ecosystem services in the TRHR exemplified the positive effects of environmental policies and the necessity of adopting an adaptive management approach. Thus the ecological construction and policy making should take climate variability into account, and facilitate synergies on multiple ecosystem services in order to maximize human well-being and preserve its natural ecosystems.  相似文献   

9.
Uptake and release of nutrients from ponds used for lotus cultivation were measured in ponds under short-term (1 yr) cultivation with compost application (pond I) and under long-term (20 yr) cultivation without compost application (pond II). Total inflow loads of TN (irrigation water, rainfall and compost) during lotus cultivation period in ponds I and II were 72.3 and 34.3 kg ha?1 182 day?1, respectively. TN removal rates in ponds I and II were 77.3 and 49.8% of total inflow load, respectively. Major removal mechanisms of TN were attributed to microbial processes and uptake by lotus. The total outflow loads (infiltration and runoff) of TN during the lotus cultivation period were 13.9 kg ha?1 182 day?1 (19.2% of total inflow TN load) for pond I, and 11.3 kg ha?1 182 day?1 (32.9% of total inflow TN load) for pond II. For TP the total inflow loads (irrigation water, rainfall and compost) during lotus cultivation in ponds I and II were 80.8 and 1.9 kg ha?1 182 day?1, respectively. TP removal rates in ponds I and II were 84.9 and ?274.1% of total input, respectively. Phosphorus removal was attributed to lotus uptake and soil adsorption. The total outflow loads (infiltration and runoff) of TP during lotus cultivation period were 10.1 kg ha?1 182 day?1 (12.5% of total inflow TP load) for pond I, and 6.6 kg ha?1 182 day?1 (355.6% of total inflow TP load) for pond II. TN and TP in runoff from pond I (with compost) was higher than that in pond II (without compost), showing that TN and TP in runoff were strongly influenced by compost addition. Therefore, in order to satisfy established water-quality standards, the amount of compost used in lotus cultivation should be evaluated.  相似文献   

10.
The experiment was conducted to evaluate the effect of cow manure compost (CMC) application on leaching toxicity of leachate polluted soils by using Tetrahymena pyriformis (TP). Soils treated with various levels of leachate (0, 12.5 ml, 25 ml, 37.5 ml, and 50 ml leachate per 300 g soil) were amended with 0, 25 g and 50 g CMC, respectively. The results showed CMC application resulted in 7–18% lower leaching toxicity while excessive CMC has no significant benefit for decreasing leaching toxicity further. The alleviating effect of CMC on biotoxicity of soil extract was mainly attributed to either pH increase, high content of P and organic matter, or promotion on soil microbial metabolism and especially pH played an important role in alleviating effect. And the observations indicated that death rate (DR) of TP was more sensitive to leachate level respect to other biological parameters above and TP was effective as the test organism for leaching toxicity. Further studies are needed to unambiguously determine in-deep mechanism of toxicity impacts on TP posed by leachate pollutants.  相似文献   

11.
Variations in the soil carbon sequestration capability of different types of salt marsh soils at Chongming Dongtan and its influencing factors were studied by analyzing the soil organic carbon (SOC) content, organic matter input and microbial activities. The results indicated that the total SOC content at Area A (southeast of Dongtan, sandy soil with Phragmites communis) was only 46.11% of that of Area B (northeast of Dongtan, clay soil with mixed P. communis and Spartina alterniflora) (P = 0.000 < 0.05), but their organic matter input per year was almost identical. These findings implied that Area B had a lower output of SOC. The microbial biomass at Area A was 3.83 times greater than that at Area B (P = 0.049 < 0.05); the soil catalase and invertase activities at Area A, which were related to carbon metabolism, were 60.31% (P = 0.006 < 0.05) and 34.33% (P = 0.021 < 0.05) higher than at Area B, respectively; and the soil respiration at Area A was also higher than at Area B. These findings implied that the microbial activities at Area A were greater than those at Area B, and therefore the carbon metabolism was rapid, resulting in increased SOC output at Area A. Increased water content and salinity in the clay soil at Area B may inhibit the microbial activities, thereby reducing the decomposition of the organic matter and enhancing carbon sequestration. In addition, some artificial measures for controlling spread of S. alterniflora at Area B (mowing/digging and tillage (M + D); mowing/digging and tillage/waterlogging (M + D + W)) were found to generally improve the microbial activity of soil, thereby increasing SOC output. However, when the two different physical controlling modes were compared, the SOC and microbial activities of the soil subjected to the M + D + W treatment were relatively high and low, respectively, due to waterlogging restraining the microbial metabolism. These findings indicated that the difference in microbial activities was the important factor leading to variability in the SOC sequestration capability between Areas A and B. Additionally, with the exception of soil texture and vegetation types, environmental conditions and artificial turbulence also influenced microbial activities of soil, and hence SOC output and organic carbon sequestration capability.  相似文献   

12.
Inappropriate farm practices can increase greenhouse gases (GHGs) emissions and reduce soil organic carbon (SOC) sequestration, thereby increasing carbon footprints (CFs), jeopardizing ecosystem services, and affecting climate change. Therefore, the objectives of this study were to assess the effects of different tillage systems on CFs, GHGs emissions, and ecosystem service (ES) values of climate regulation and to identify climate-resilient tillage practices for a winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) cropping system in the North China Plain (NCP). The experiment was established in 2008 involving no-till with residue retention (NT), rotary tillage with residue incorporation (RT), sub-soiling with residue incorporation (ST), and plow tillage with residue incorporation (PT). The results showed that GHGs emissions from agricultural inputs were 6432.3–6527.3 kg CO2-eq ha−1 yr−1 during the entire growing season, respectively. The GHGs emission from chemical fertilizers and irrigation accounted for >80% of that from agricultural inputs during the entire growing season. The GHGs emission from agricultural inputs were >2.3 times larger in winter wheat than that in the summer maize season. The CFs at yield-scale during the entire growing season were 0.431, 0.425, 0.427, and 0.427 without and 0.286, 0.364, 0.360, and 0.334 kg CO2-eq kg−1 yr−1 with SOC sequestration under NT, RT, ST, and PT, respectively. Regardless of SOC sequestration, the CFs of winter wheat was larger than that of summer maize. Agricultural inputs and SOC change contributed mainly to the component of CFs of winter wheat and summer maize. The ES value of climate regulation under NT was ¥159.2, 515.6, and 478.1 ha−1 yr−1 higher than that under RT, ST, and PT during the entire growing season. Therefore, NT could be a preferred “Climate-resilient” technology for lowering CFs and enhancing ecosystem services of climate regulation for the winter wheat–summer maize system in the NCP.  相似文献   

13.
The pink shrimp (Farfantepenaeus duorarum) has been selected as an ecological indicator to assess ecological effects on estuaries of implementation of the Comprehensive Everglades Restoration Plan that seeks to restore historical freshwater flows and nearshore salinity regimes in southern Florida. Concern over altered freshwater delivery impacts on pink shrimp productivity was expressed as early as the 1960s. The present review assessed pink shrimp scientific literature of the past 75+ years (>500 publications) to glean information relevant to understanding potential influence of freshwater management on pink shrimp productivity. The review was organized around “Essential Fish Habitat” metrics concerning abundance, growth, survival, distribution, productivity, and behavior. It summarizes previous pink shrimp field, laboratory, and modeling studies. Where possible, statistical analyses and meta-analyses of previously published data were performed to investigate consistency among independent findings. Pink shrimp occur in a wide range of salinities (0.5–67 ppt). A majority of studies (53.3%) reported maximal abundance between ∼20 to 35 ppt salinities. One laboratory study reported maximal growth at 30 ppt. Meta-analysis of reported growth rates did not yield results due to non-convergence of regression models. Reported survival was maximal at ∼30 ppt and remained high (>80% survival) across salinities of ∼15 to 40 ppt. A regression model that combined survival data across studies confirmed a previously reported parabolic relationship between salinity and survival; in this regression, 35 ppt maximized survival. Productivity, conditional upon survival and growth, was maximized at polyhaline (18–30 ppt) conditions. Inshore hypersalinity (>40 ppt) may elicit young pink shrimp behavioral cues counterproductive to settlement in nearshore areas. Virtually no information exists regarding postlarval pink shrimp movement or preference relative to salinity gradients. Realization and preservation of nearshore polyhaline conditions and elimination of hypersalinity should maximize growth, survival, and density, thus improving pink shrimp productivity. New and updated statistical models predicting pink shrimp distribution, abundance, growth, survival, and productivity relative to salinity conditions are needed to better guide freshwater management decisions.  相似文献   

14.
《农业工程》2014,34(3):148-153
The Yellow River Delta wetland, located at the southern coast of Bohai Gulf, provides important ecosystem services such as flood control, water purification, biodiversity conservation, nutrient removal and carbon sequestration, shoreline stabilization, tourism attraction and wetland products maintains in the Yellow River Delta. This study assessed how agricultural activities in a reclamation wetland changed soil pH, soil electric conductivity, soil nutrient and soil particle size as compared to natural vegetation by using a combination of field experiments and lab analysis. The vegetation type included adjacent alfalfa field (Medicago sativa), cotton field (Gossypium spp.), Chinese tamarisk shrub (Tamarix chinensis), and reed marsh (Phragmites sage). The results indicated that the soil pH was higher (pH > 8) in alfalfa field and cotton field, and alfalfa field and reed marsh had significant function in reducing soil salt content, soil electric conductivity of alfalfa field at 0–30 cm were 140.38 ± 14.36, 114.48 ± 14.36, 125.30 ± 11.37 μs/cm. The effect of different vegetation types on soil nutrient was significant (P < 0.05). Soil organic matter at 0–10 cm in Chinese tamarisk shrub and reed marsh was 21.66 ± 3.82 g/kg and 16.51 ± 4.60 g/kg, which was higher than that of alfalfa field (10.47 ± 2.36 g/kg) and cotton field (9.82 ± 1.27 g/kg), but soil total nitrogen content in alfalfa field was the highest, which is significantly higher than that of cotton field, Chinese tamarisk shrub and reed marsh(P < 0.05), the content of soil total nitrogen at 0–10 cm and 10–20 cm was 7.67 ± 0.38 g/kg and 5.97 ± 0.51 g/kg, respectively, while the content of available P and available K was reversed. The difference of soil particle size between layers was not significant (P > 0.05), the sand content of Chinese tamarisk shrub soils in 0–10 cm was the highest, the next was alfalfa field and cotton field, and the content of silt and clay in reed marsh was higher than the others. The correlation and significant degree between soil particle size and soil nutrient was related with vegetation types, and soil organic matter was significantly positively correlated with soil silt and clay content on the alfalfa field. The results demonstrated that wetland cultivation was one of the most important factors influencing on the nutrient fate and reserves in soil, which could lead to rapid nutrient release and slow restoration through abandon cultivation. Consequently, compared with cotton field, alfalfa field is more favorable to sustainable management of wetland cultivation in the Yellow River Delta. It should be considered in wetland restoration projects planning.  相似文献   

15.
Influences of vegetation management on soil erosion have been extensively studied. However, interactive effects between land use and soil are poorly documented in literature. Given the importance of understanding such effects for successful watershed management, the objective of this study was to examine the land use–soil interactive effects on water and sediment yields for the 117,845-ha drainage area upstream of the U.S. Geological Survey flow gauging station 08101000 in the Cowhouse Creek watershed located in north central Texas. The examination was implemented using the Soil and Water Assessment Tool (SWAT), a distributed watershed model that has been widely used to tackle problems relevant to nonpoint source pollution. A SWAT model was calibrated and validated in accordance with the observed daily streamflows at this gauging station. Subsequently, the calibrated model was used to examine changes of water and sediment yields as a result of the conversion of range brush to range grasses on an individual soil basis. The results indicated that for the study area, the removal of range brush would result in an annual water yield increase of 24 mm ha?1 treated area. However, the removal on an upland soil with a moderately high permeability was predicted to increase the annual water yield by 80 mm ha?1 treated area, while it would result in a small increase of annual sediment loading (4.2 t ha?1 treated area) and a minimal alteration to the existing spatial patterns of sediment sources. The increase of water yield would be larger for the removal of range brush on a soil that is adjacent to the stream channels. For a given soil, the predicted water yield increase was greater for the wetter hydrologic condition than that for the drier one. A reasonable generalization of this study was that the development of best management practices for watershed health and sustainability may need to take into account land use–soil interactive effects on an individual soil basis.  相似文献   

16.
The hypothesis of associations of environmental soil heterogeneity with citrus tree decline and Diaprepes abbreviatus (L.) root weevil variability was tested in two flatwoods fields of ‘Hamlin’ orange trees (Citrus sinensis (L.) Osb.). Studies were conducted on a loamy, poorly drained Mollisol in Osceola County, central Florida in 2002, and on a sandy, poorly drained Spodosol in DeSoto County, south-west Florida during 2001–2003. Adult weevils were monitored using 50 Tedders traps arranged in a 34 m × 25 m grid at the Osceola site, and using 100 identical traps in a 30 m × 15 m grid at the DeSoto site. Soil water content (SWC), texture, pH, Ca, Mg, Fe, Cu and other nutrients were measured at each trap. Soil was strongly acidic (pH 4.9 ± 0.4) at the Osceola site but near neutral (pH 6.6 ± 0.4) at the DeSoto site. The Mehlich-I extractable soil Mg and Ca were correlated to soil pH and SWC in both soils, and extractable Fe was related to pH, SWC and Mg in the Spodosol (0.30 < R2 < 0.65, P < 0.01). The weevil density was high in areas low in soil Mg and Ca in the acidic Mollisol, but high in areas with high soil pH, and Mg and low sand content in the near neutral Spodosol (P < 0.05). Tree decline was associated with soil Fe concentrations >40 mg kg−1 in the Mollisol (P < 0.01). Weevil density was low at a soil pH between 5.7 and 6.2. The range of spatial dependence of weevil population, soil pH, SWC, Fe, Mg and sand varied between 60 and 100 m in the Mollisol and the Spodosol. Soil-weevil-tree simple and multivariate linear models were established to put into practices for predicting and controlling the weevil population and tree decline in the future. Differences in site characteristics suggested the need for site-specific weevil and citrus tree management.  相似文献   

17.
The aim of this study was to evaluate the effect of different concentrations of the entomopathogenic nematodes (EPNs) Heterorhabditis bacteriophora HP88 and Heterorhabditis indica LPP1 on the reproductive biology of partially engorged females of Dermacentor nitens. Four groups were formed, with each group containing 10 females and exposed to concentrations of 0, 75, 300, and 1200 nematodes for each female. This procedure was performed separately for each nematode. The following biological parameters were evaluated: egg mass weight, egg production index, hatching percentage, and percentage of control. H. bacteriophora HP88 at the two highest concentrations (300 and 1200 EPNs/female) caused a reduction (p < 0.05) on the egg mass and egg production index. Was noted a significant reduction (p < 0.05) in the percentage of hatched in all the treated groups. For H. indica LPP1, all treatments resulted in decreased (p < 0.05) values for all the parameters. The percentages of controls obtained at concentrations of 75, 300, and 1200 EPNs/female were 56.3, 89.3, and 98.8 and 77.5, 77.1, and 95.9 for H. bacteriophora HP88 and H. indica LPP1, respectively. Therefore, it is concluded that these nematodes showed pathogenicity toward partially engorged females of D. nitens, thereby negatively affecting the reproductive biology of this tick.  相似文献   

18.
《Aquatic Botany》2007,86(3):213-222
Melaleuca ericifolia Sm. (Swamp paperbark) is a common tree species in freshwater and brackish wetlands in southern and eastern Australia. The survival of this species in many wetlands is now threatened by increased salinity and inappropriate water regimes. We examined the response of 5-month-old M. ericifolia seedlings to three water depths (exposed, waterlogged and submerged) at three salinities (2, 49 and 60 dS m−1). Increasing water depth at the lowest salinity did not affect survival, but strongly inhibited seedling growth. Total biomass, leaf area and maximum root length were highest in exposed plants, intermediate in waterlogged plants and lowest in submerged plants. Although completely submerged plants survived for 10 weeks at the lowest salinity, they demonstrated negative growth rates and were unable to extend their shoots above the water surface. At the higher salinities, M. ericifolia seedlings were intolerant of waterlogging and submergence: all plants died after 9 weeks at 60 dS m−1. Soil salinities increased over time, and by Week 10, exceeded external water column salinities in both the exposed and waterlogged treatments. In exposed sediment, ∼90% of plants survived for 10 weeks at 60 dS m−1 even though soil salinities reached ∼76 dS m−1. No mortality occurred in the exposed plants at 49 dS m−1, and small but positive relative growth rates were recorded at Week 10. We conclude that at low salinities M. ericifolia seedlings are highly tolerant of sediment waterlogging, but are unlikely to tolerate prolonged submergence. However, at the higher salinities, M. ericifolia seedlings are intolerant of waterlogging and submergence and died rapidly after 5 weeks exposure to this combination of environmental stressors. This research demonstrates that salinity may restrict the range of water regimes tolerated by aquatic plants.  相似文献   

19.
Pot experiments were performed to evaluate the phytoremediation capacity of plants of Atriplex halimus grown in contaminated mine soils and to investigate the effects of organic amendments on the metal bioavailability and uptake of these metals by plants. Soil samples collected from abandoned mine sites north of Madrid (Spain) were mixed with 0, 30 and 60 Mg ha−1 of two organic amendments, with different pH and nutrients content: pine-bark compost and horse- and sheep-manure compost. The increasing soil organic matter content and pH by the application of manure amendment reduced metal bioavailability in soil stabilising them. The proportion of Cu in the most bioavailable fractions (sum of the water-soluble, exchangeable, acid-soluble and Fe–Mn oxides fractions) decreased with the addition of 60 Mg ha−1 of manure from 62% to 52% in one of the soils studied and from 50% to 30% in the other. This amendment also reduced Zn proportion in water-soluble and exchangeable fractions from 17% to 13% in one of the soils. Manure decreased metal concentrations in shoots of A. halimus, from 97 to 35 mg kg−1 of Cu, from 211 to 98 mg kg−1 of Zn and from 1.4 to 0.6 mg kg−1 of Cd. In these treatments there was a higher plant growth due to the lower metal toxicity and the improvement of nutrients content in soil. This higher growth resulted in a higher total metal accumulation in plant biomass and therefore in a greater amount of metals removed from soil, so manure could be useful for phytoextraction purposes. This amendment increased metal accumulation in shoots from 37 to 138 mg pot−1 of Cu, from 299 to 445 mg pot−1 of Zn and from 1.8 to 3.7 mg pot−1 of Cd. Pine bark amendment did not significantly alter metal availability and its uptake by plants. Plants of A. halimus managed to reduce total Zn concentration in one of the soils from 146 to 130 mg kg−1, but its phytoextraction capacity was insufficient to remediate contaminated soils in the short-to-medium term. However, A. halimus could be, in combination with manure amendment, appropriate for the phytostabilization of metals in mine soils.  相似文献   

20.
Fire is not an integral part of terrestrial ecosystems in temperate Europe, nevertheless prescribed burning is proposed to be an alternative to traditional management applied to grasslands. Thus, anthropogenic fire represents a serious challenge to plant species, and there is no information on how the recruitment of species responds to fire. The aim of our study was to assess the effect of fire on seed germination of 16 herbaceous grassland and ruderal species belonging to four common families. We first assessed the fuel load in open habitats in early spring and measured soil temperatures during experimental fires. After that we performed a controlled pot experiment involving heat treatments and experimental fire applied to seeds and followed their germination. Our measurements showed that maximum temperatures are between 73 °C and 264 °C on the ground surface and fire passage is fast, with short residence times of high temperatures. In deeper soil layers (1 cm and 5 cm), temperature increase is negligible. Seed germination of half of the species was decreased by the passage of fire, and a heat shock of 100 °C for 5 min had an even stronger adverse effect. Seeds of three Fabaceae species were stimulated by heat or fire, while negative effects prevailed among species belonging to other families. Anthropogenic fire in grasslands of temperate Europe might reduce recruitment by seed, particularly in species of the Asteraceae and Poaceae, two very important families with a large representation in temperate grasslands. Our results indicate that prescribed burning should be carefully applied in order not to endanger the local persistence of grassland species whose seedling emergence is negatively affected by fire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号