首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study isolated nine strains of aerobic phenol-degrading granules. These isolates (I1–I9) were characterized using 16S rRNA gene sequencing, with γ-Proteobacteria as the dominant strains in the aerobic granules. While most strains demonstrated either high phenol-degrading capabilities or auto-aggregation capabilities, three isolates, I2, I6, and I8 showed both features. These findings contradict the previous view that auto-aggregation and phenol degradation are mutually exclusive in aerobic granules. Strains I2 and I8 independently formed single-culture aerobic granules except for I3. Anti-microbial activity test results indicated that strains I2 and I8 inhibited growth of strain I3. However, co-culturing I3 with I2 or I8 helped to form granules.  相似文献   

2.
通过特异引物扩增环境中氨氧化细菌16S rDNAV2保守区域,将该片段克隆到T-easy载体上,PCR产物经测序和定量PCR扩增体系鉴定,证实PCR扩增产物为氨氧化细菌16S rDNA保守序列,以含该序列的重组质粒作为定量PCR监测氨氧化细菌数量的DNA标准品。用荧光定量PCR技术比较了五氯酚(PCP)对好氧颗粒污泥和活性污泥中氨氧化细菌数量的影响。结果表明,不加PCP的反应器中,好氧颗粒污泥和活性污泥中氨氧化细菌的数量分别为4.28×107±5.44×106cells/(g干污泥)和2.51×109±8.61×108cells/(g干污泥)。随着PCP浓度的增加(0~50mg/L),PCP对氨氧化细菌数量的影响不大(P>0.05),而且,污泥中氨氧化细菌的数量与氨氮的去除率无直接的正相关关系(P>0.05),PCP主要是抑制氨氧化细菌的代谢活性导致污泥氨氮去除效率降低。  相似文献   

3.
A pilot-scale Sequencing Batch Reactor was operated during 307 days in order to treat swine slurry characterized by its high variable composition: organic and nitrogen applied loading rates and C/N ratio were 1.4–6.3 kg CODs/(m3 d), 0.5–2.5 kg N/(m3 d) and 1.9–9.4 g CODs/(g N), respectively. Aerobic granules successfully developed in the reactor and their physical properties remained rather stable despite the feeding composition variability. Organic and ammonia removal efficiency reached 61–73% and 56–77%, respectively, however ammonia was mainly oxidized to nitrite. The reactor had a good biomass retention capacity to select for granular biomass. However, its efficiency to retain the solids present in the feeding was low. Aerobic granulation in SBR systems appears as an interesting alternative to treat slurry in small livestock facilities where the implementation of anaerobic digestion systems is not a feasible option or the removal of nitrogenous compounds is required.  相似文献   

4.
A phenanthrene (PHE) degrading bacterium strain BZ-3 was isolated from the crude oil contaminated soil in Binzhou, China. The isolate was identified as Pseudomonas sp. BZ-3 on the basis of 16S rRNA gene sequence. Various experiments were conducted to investigate the effect of pH, salinity and PHE concentration on the degradation efficiency of PHE. The degradation efficiency and degradation metabolites of PHE were detected by using GC–MS and HPLC-MS analyses. The strain BZ-3 could degrade 75% of PHE at an initial concentration of 50 mg/L under 20 g/L salinity in 7 days. PHE degradation kinetics was estimated in a first-order degradation rate model and the rate coefficient was calculated as 0.108 d−1. On the basis of the identified degradation metabolites, the strain BZ-3 could degrade PHE in the salicylate metabolic pathway. In a mixture system consisting of PHE and other PAHs including naphthalene (NA), anthracene (ANTH), and pyrene (PYR), the strain BZ-3 showed an efficiently degradation capability. Further study showed that the strain BZ-3 could also use NA, ANTH, PYR, xylene, 1-hydroxy-2-naphthoic acid, and hexane as the sole carbon and energy source, but did not grow on nitrobenzene-containing medium.  相似文献   

5.
H2-producing bacteria were isolated from anaerobic granular sludge. Out of 72 colonies (36 grown under aerobic conditions and 36 under anaerobic conditions) arbitrarily chosen from the agar plate cultures of a suspended sludge, 34 colonies (15 under aerobic conditions and 19 under anaerobic conditions) produced H2 under anaerobic conditions. Based on various biochemical tests and microscopic observations, they were classified into 13 groups and tentatively identified as follows: From aerobic isolates,Aeromonas spp. (7 strains),Pseudomonas spp. (3 strains), andVibrio spp. (5 strains); from anaerobic isolates,Actinomyces spp. (11 strains),Clostridium spp. (7 strains), andPorphyromonas sp. When glucose was used as the carbon substrate, all isolates showed a similar cell density and a H2 production yield in the batch cultivations after 12h (2.24–2.74 OD at 600 nm and 1.02–1.22 mol H2/mol glucose, respectively). The major fermentation by-products were ethanol and acetate for the aerobic isolates, and ethanol, acetate and propionate for the anaerobic isolates. This study demonstrated that several H2 producers in an anaerobic granular sludge exist in large proportions and their performance in terms of H2 production is quite similar.  相似文献   

6.
A bacterium capable of utilising p-toluenesulphonamide was isolated from activated sludge. The isolated strain designated PTSA was identified as a Pseudomonas sp. using chemotaxonomic and genetic studies. Pseudomonas PTSA grew on p-toluenesulphonamide in a chemostat with approximately 90% release of sulphate and 80% release of ammonium. The isolate was also able to grow on 4-carboxybenzenesulphonamide and 3,4-dihydroxybenzoate but did not grow on p-toluenesulphonate. The transient appearance of 4-hydroxymethylbenzenesulphonamide and 4-carboxybenzenesulphonamide during p-toluenesulphonamide degradation proves oxidation of the methyl group is the initial attack in the biodegradation pathway. Both metabolites of p-toluenesulphonamide degradation were identified by high-performance liquid chromatography-mass spectrometry. 4-Carboxybenzenesulphonamide is probably converted into 3,4-dihydroxybenzoate and amidosulphurous acid. The latter is a chemically unstable compound in aqueous solutions and immediately converted into sulphite and ammonium. Both sulphite and ammonium were formed during degradation of 4-carboxybenzenesulphonamide.  相似文献   

7.
The aerobic biodegradation of lindane (γ-hexachlorocyclohexane) by a consortium of acclimated bacteria from sediment at a polluted site on the Suquia River, Cordoba, Argentina, is reported. The bacteria were acclimated for 30 days under aerobic conditions, using a minimal culture medium containing lindane (0.034 mM) as sole carbon source. Growth of the bacterial consortium decreased at a lindane concentration of 1.03 mM and was totally inhibited at 2.41 mM. The consortium showed initial lindane degradation rates of 4.92×10−3, 11.0×10−3 and 34.8×10−3 mM h−1 when exposed to lindane concentrations of 0.069, 0.137 and 0.412 mM, respectively. Chloride concentration increased during aerobic biodegradation, indicating lindane mineralization. A metabolite identified as γ-2,3,4,5,6-pentachlorocyclohexene appeared during the first 24 h of biodegradation. Four different bacteria, identified as Sphingobacterium spiritivorum, Ochrobactrum anthropi, Bosea thiooxidans and Sphingomonas paucimobilis, were isolated. Pure strains of B. thiooxidans and S. paucimobilis degraded lindane after 3 days of aerobic incubation. This is the first report of lindane biodegradation by B. thiooxidans.  相似文献   

8.
The synthesis and biodegradation of polyurethane foams obtained from environmentally benign processes were studied.Flexible polyurethane foams based on castor oil modified with maleic anhydride (MACO) were synthesized. The synthesis involved a single-stage process by mixing castor oil/MACO (weight ratios 75:25 and 25:75) and 2-4 toluene diisocyanate (TDI) in stoichiometric amount of OH:NCO. The biodegradability studies with cultures of a Pseudomonas sp. strain (DBFIQ-P36) involved incubation periods of 2 months at 37 °C. Polymers were characterized before and after biodegradation by Fourier Transform Infrared Spectroscopy (FT-IR), INSTRON mechanical tester, and Scanning Electron Microscopy (SEM). The results showed that the addition of MACO produces a considerable increase in the rate of degradation and an important change in the chemical and morphological structures. This is due to the presence of ester groups that are vulnerable to chemical hydrolysis and enzymatic attack. The eco-toxicity after the biodegradation was evaluated. Toxic compounds such as primary amines were identified by Gas Chromatography–Mass Spectrometry (GC–MS) in combination with Nuclear Magnetic Resonance (NMR) as degradation products.  相似文献   

9.
Eight bacterial strains were isolated on kraft lignin (KL) containing mineral salt medium (L-MSM) agar with glucose and peptone from the sludge of pulp and paper mill. Out of these, ITRC-S8 was selected for KL degradation, because of its fast growth at highest tested KL concentration and use of various lignin-related low molecular weight aromatic compounds (LMWACs) as sole source of carbon and energy. The bacterium was identified by biochemical tests as Gram-positive, rod-shaped and non-motile. Subsequent 16S rRNA gene sequencing showed 95% base sequence homology and it was identified as Bacillus sp. In batch experiments, a decrease in pH was observed initially followed by an increase till it reached an alkaline pH, which did not alter the culture growth significantly. The bacterium reduced the colour and KL content of 500 mg l−1 KL in MSM, in the presence of glucose and peptone, at pH 7.6, temperature 30°C, agitation of 120 rpm and 6 days of incubation by 65 and 37% respectively. Significant reduction in colour and KL content in subsequent incubations is indicative of a co-metabolism mechanism, possibly due to initial utilization of added co-substrates for energy followed by utilization of KL as a co-metabolic. The degradation of KL by bacterium was confirmed by GC-MS analysis indicating formation of several LMWACs such as t-cinnamic acid, 3, 4, 5-trimethoxy benzaldehyde and ferulic acid as degradation products, which were not present in the control (uninoculated) sample. This favours the idea of biochemical modification of the KL polymer to a single monomer unit.  相似文献   

10.
Degradation and detoxification of a mixture of persistent compounds (2-chlorophenol, phenol and m-cresol) were studied by using pure and mixed indigenous cultures in aerobic reactors. Biodegradation assays were performed in batch and continuous flow reactors. Biodegradation was evaluated by determining total phenols, ultraviolet spectrophotometry and chemical oxygen demand (COD). Microbial growth was measured by the plate count method. Scanning electronic microscopy was employed to observe the microbial community in the reactor. Detoxification was evaluated by using Daphnia magna toxicity tests. Individual compounds were degraded by pure bacteria cultures within 27 h. The mixture of 2-clorophenol (100 mgl−1), phenol (50 mgl−1) and m-cresol (50 mgl−1) was degraded by mixed bacteria cultures under batch conditions within 36 h: 99.8% of total phenols and 92.5% of COD were removed; under continuous flow conditions 99.8% of total phenols and 94.9% of COD were removed. Mineralization of phenolic compounds was assessed by gas chromatography performed at the end of the batch assays and in the effluent of the continuous-flow reactor. Toxicity was not detected in the effluent of the continuous-flow reactor.  相似文献   

11.
Guo F  Zhang SH  Yu X  Wei B 《Bioresource technology》2011,102(11):6421-6428
To investigate the inducements of increase of cell hydrophobicity from aerobic biofloc (ABF) and granular sludge (AGS), in this study, as the first time the hydrophilic and hydrophobic bacterial communities were analyzed independently. Meanwhile, the effect of extracellular polymers (EPS) on the cell hydrophobicity is also studied. Few Bacteroidetes were detected (1.35% in ABF and 3.84% in AGS) in hydrophilic bacteria, whereas they are abundant in the hydrophobic cells (47.8% and 43% for ABF and AGS, respectively). The main species of Bacteroidetes changed from class Sphingobacteria to Flavobacteria in AGS. On the other hand, EPS is directly responsible to cell hydrophobicity. For AGS, cell hydrophobicity was sharply decreased after EPS extraction. Both quantity and property of the extracellular protein are related to hydrophobicity. Our results showed the variation of cell hydrophobicity was resulted from variations of both bacterial population and EPS.  相似文献   

12.
13.
N-Methylpyrrolidone (NMP), a kind of nitrogen-containing heterocyclic pollutant, is widely used in chemical industry. Microbial degradation is an important environmental fate process in soil and water, however, the microbial metabolic mechanism is still unknown. Strain NMD-4, capable of utilizing NMP as the sole source of carbon and nitrogen, was isolated from the activated sludge of a pesticide plant in Jiangsu, China, and identified as Paracoccus sp. based on its physiological–biochemical properties, as well as 16S rRNA gene sequence analysis. The degradation characteristic of NMP by strain NMD-4 was studied in a liquid culture, and the metabolic pathway of NMP by the strain was investigated. Two metabolites, 1-methyl-2,5-pyrrolidinedione and succinic acid, were detected and identified by liquid chromatography-mass spectrometry analysis, and a plausible microbial degradation pathway of NMP was proposed by the first time.  相似文献   

14.
【背景】2-吡啶甲酸具有高毒性、致癌性,能长期稳定存在于水体中,从而对环境造成危害。【目的】开发一种能够高效经济处理含2-吡啶甲酸废水的技术。【方法】筛选一株在好氧条件下以2-吡啶甲酸为唯一碳、氮、能源的菌株,考察该菌株的降解性能,建立降解动力学模型。【结果】经过16S r RNA基因序列分析,该菌株被鉴定为金黄杆菌(Chryseobacterium sp.),命名为ZD2。当2-吡啶甲酸初始浓度为100、200、400、600和800 mg/L时,ZD2完全降解2-吡啶甲酸的时间分别为10、18、22、78和114 h。零级动力学模型较好地描述了2-吡啶甲酸的降解行为,当初始浓度为100-400 mg/L时,降解速率常数随着浓度的增加而增加,并于400 mg/L时达到最大;600-800 mg/L时,降解速率常数开始下降,呈现抑制作用。【结论】菌株ZD2对2-吡啶甲酸的降解效果较好,能够为处理实际的2-吡啶甲酸工业废水提供理论依据。  相似文献   

15.
A Gram-negative, strictly aerobic, diplococcoid bacterium (strain D2-3T) was isolated from the biofilter of a recirculating marine aquaculture system. Phylogenetic analysis of the 16S rRNA gene sequence of D2-3T indicated that the new organism occupied a novel lineage within the -1 subclass of Proteobacteria and was related to the genera Rhodothalassium, Azospirillum, Craurococcus, Acidiphilium, and Tistrella. The highest sequence similarity (90.8%) of the 16S rRNA gene sequence of D2-3T was to that of Candidatus “Alysiosphaera europaea”. D2-3T was mesophilic, heterotrophic, required sea salt, and had a pH optimum of 8.0. Growth in the presence of light resulted in the formation of pink colonies, a 25% increased cell yield, and a slightly increased growth rate. D2-3T contained carotenoids and low amounts of bacteriochlorophyll a. Membranes of D2-3T contained b-type cytochromes. The G+C content of the DNA was 60.3±0.1 mol%. Phylogenetic, morphological, physiological, and biochemical analyses demonstrated that D2-3T represented a new aerobic phototrophic genus, for which the name Geminicoccus roseus gen. nov., sp. nov. is proposed for the type species (D2-3T=DSM 18922T=ATCC BAA-1445T).  相似文献   

16.
A new bacterial strain PH-06 was isolated using enrichment culture technique from river sediment contaminated with 1,4-dioxane, and identified as belonging to the genus Mycobacterium based on 16S rRNA sequencing (Accession No. EU239889). The isolated strain effectively utilized 1,4-dioxane as a sole carbon and energy source and was able to degrade 900 mg/l 1,4-dioxane in minimal salts medium within 15 days. The key degradation products identified were 1,4-dioxane-2-ol and ethylene glycol, produced by monooxygenation. Degradation of 1,4-dioxane and concomitant formation of metabolites were demonstrated by GC/MS analysis using deuterium labeled 1,4-dioxane (1,4-dioxane-d8). In addition to 1,4-dioxane, this bacterium could also transform structural analogues such as 1,3-dioxane, cyclohexane and tetrahydrofuran when pre-grown with 1,4-dioxane as the sole growth substrate. Our results suggest that PH-06 can maintain sustained growth on 1,4-dioxane without any other carbon sources.  相似文献   

17.
The impact of two-step inoculation of indigenous strains and their synergistic effect in the scaling-up of petroleum hydrocarbons biodegradation from a mineral-based medium (MBM) to a two-phase composting process were investigated. After isolating the strains KA3 and KA4 from heavy oily sludge (HOS), their emulsification index (E24), bacterial adhesion to hydrocarbon (BATH), and oil degradation efficiency were evaluated in the MBM. Then, they were inoculated twice into the composting bioreactors lasted for the primary 8 weeks as the first phase (FP) and subsequent 8 weeks as the second phase (SP). The results indicated that the consortium of the two strains degraded 16-61% of crude oil (1-5% concentration) in the MBM. In the composting reactors, removals of 20 g kg−1 initial concentration of total petroleum hydrocarbons (TPH) were found to be 63.95, 61.00, and 89.35% for the strains KA3, KA4, and their consortium, respectively. The computed biodegradation constants indicated the synergistic effect of the two strains and the effectiveness of the second-step inoculation. The study demonstrated the successful scaling-up of HOS biodegradation from MBM to the two-phase composting process through two-step inoculation of the isolated strains.  相似文献   

18.
A moderately thermophilic Gram-positive, sporulating, rod-shaped strain of Bacillus with nitrile-degrading activity was isolated from polluted industrial waters. Whole cells and cell-free extracts from the end of exponential growth phase expressed 7.6 nkat mg−1 and 2.0 nkat mg−1 benzonitrile-degrading activity, respectively, after cultivation in a fermentor with complex medium containing benzonitrile as an inducer. The benzonitrile degradation took place via the nitrilase pathway directly to benzoic acid without intermediate formation of benzamide. Samples with benzonitrilase activity of 7.6 nkat mg−1 converted 3 mg benzonitrile in 1 h at 45°C. The half-life of benzonitrilase activity for a whole cell suspension and for cells immobilized in 2% agar was 4.5 min and 6 min at 70°C without substrate and 3 min at 90°C with substrate, respectively. The nitrilase had a broad substrate spectrum. The active biocatalyst obtained by immobilization was used in a continuous process and total biodegradation of 14.1 mM benzonitrile and 37.2 mM 4-cyanopyridine in a column bioreactor at 50°C for 5 h was achieved.  相似文献   

19.
Summary A bacterium tentatively identified as anErwinia sp. was isolated from sewage by enrichment on methanol and lignin. Several mutants developed from this strain were studied for their ability to degrade aromatic ethers. Different concentrations of the chemicals were incubated with the organisms and the degradation was estimated by high-performance liquid chromatography (HPLC). Among these mutants, one isolate,Erwinia sp. strain CU3614, showed resistance to copper ions (>20 mM CuSO4) and the ability to degrade 4-hydroxydiphenyl ether (4-HDPE), 4-chlorodiphenyl ether (4-CDPE), 4-nitrodiphenyl ether (4-NDPE) and 2,7-dichlorodibenzo-p-dioxin (2,7-DCDD) in the presence of copper ions. Increased concentrations of copper in the medium resulted in higher degradation of 4-HDPE. Further studies with copper-sensitive mutants obtained fromErwinia sp. CU3614 by Tn5 transposon-induced mutagenesis showed a corresponding decrease in the ability to degrade 4-HDPE. These results suggest the presence of a copper-associated activity in the biotransformation of aromatic ethers.  相似文献   

20.
A novel Klebsiella sp. strain LSSE-H2 (CGMCC No. 1624) was isolated from dye-contaminated soil based on its ability to metabolize carbazole as a sole source of carbon and nitrogen. This strain efficiently degraded carbazole from either aqueous and biphasic aqueous–organic media, displaying a high denitrogenation activity and a high level of solvent tolerance. LSSE-H2 could completely degrade 12 mmol/L carbazole after 56 h of cultivation. The co-culture of LSSE-H2 and Pseudomonas delafieldii R-8 strains can degrade approximately 92% of carbazole (10 mmol/L) and 94% of dibenzothiophene (3 mmol/L) from model diesel in 12 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号