首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pyrethroid insecticides are the front line vector control tools used in bed nets to reduce malaria transmission and its burden. However, resistance in major vectors such as Anopheles arabiensis is posing a serious challenge to the success of malaria control.Herein, we elucidated the molecular and biochemical basis of pyrethroid resistance in a knockdown resistance-free Anopheles arabiensis population from Chad, Central Africa. Using heterologous expression of P450s in Escherichia coli coupled with metabolism assays we established that the over-expressed P450 CYP6P4, located in the major pyrethroid resistance (rp1) quantitative trait locus (QTL), is responsible for resistance to Type I and Type II pyrethroid insecticides, with the exception of deltamethrin, in correlation with field resistance profile. However, CYP6P4 exhibited no metabolic activity towards non-pyrethroid insecticides, including DDT, bendiocarb, propoxur and malathion. Combining fluorescent probes inhibition assays with molecular docking simulation, we established that CYP6P4 can bind deltamethrin but cannot metabolise it. This is possibly due to steric hindrance because of the large vdW radius of bromine atoms of the dihalovinyl group of deltamethrin which docks into the heme catalytic centre.The establishment of CYP6P4 as a partial pyrethroid resistance gene explained the observed field resistance to permethrin, and its inability to metabolise deltamethrin probably explained the high mortality from deltamethrin exposure in the field populations of this Sudano-Sahelian An. arabiensis. These findings describe the heterogeneity in resistance towards insecticides, even from the same class, highlighting the need to thoroughly understand the molecular basis of resistance before implementing resistance management/control tools.  相似文献   

2.
Polyphagous insect herbivores are adapted to many different secondary metabolites of their host plants. However, little is known about the role of ATP-binding cassette (ABC) transporters, a multigene family involved in detoxification processes. To study the larval response of the generalist Helicoverpa armigera (Lepidoptera) and the putative role of ABC transporters, we performed developmental assays on artificial diet supplemented with secondary metabolites from host plants (atropine-scopolamine, nicotine and tomatine) and non-host plants (taxol) in combination with a replicated RNAseq experiment. A maximum likelihood phylogeny identified the subfamily affiliations of the ABC transporter sequences. Larval performance was equal on the atropine-scopolamine diet and the tomatine diet. For the latter we could identify a treatment-specific upregulation of five ABC transporters in the gut. No significant developmental difference was detected between larvae fed on nicotine or taxol. This was also mirrored in the upregulation of five ABC transporters when fed on either of the two diets. The highest number of differentially expressed genes was recorded in the gut samples in response to feeding on secondary metabolites. Our results are consistent with the expectation of a general detoxification response in a polyphagous herbivore. This is the first study to characterize the multigene family of ABC transporters and identify gene expression changes across different developmental stages and tissues, as well as the impact of secondary metabolites in the agricultural pest H. armigera.  相似文献   

3.
Pyrethroid resistance is widespread in the malaria vector Anopheles gambiae leading to concerns about the future efficacy of bednets with pyrethroids as the sole active ingredient. The incorporation of pyriproxyfen (PPF), a juvenile hormone analogue, into pyrethroid treated bednets is being trialed in Africa. Pyrethroid resistance is commonly associated with elevated levels of P450 expression including CYPs 6M2, 6P2, 6P3, 6P4, 6P5, 6Z2 and 9J5. Having expressed these P450s in E. coli we find all are capable of metabolizing PPF. Inhibition of these P450s by permethrin, deltamethrin and PPF was also examined. Deltamethrin and permethrin were moderate inhibitors (IC50 1–10 μM) of diethoxyfluorescein (DEF) activity for all P450s apart from CYP6Z2 (IC50 > 10 μM), while PPF displayed weaker inhibition of all P450s (IC50 > 10 μM) except CYP's 6Z2 and 6P2 (IC50 1–10 μM). We found evidence of low levels of cross resistance between PPF and other insecticide classes by comparing the efficacy of PPF in inhibiting metamorphosis and inducing female sterility in an insecticide susceptible strain of An. gambiae and a multiple resistant strain from Cote d’Ivoire.  相似文献   

4.
The cotton bollworm Helicoverpa armigera and the tobacco budworm Heliothis virescens are closely related generalist insect herbivores and serious pest species on a number of economically important crop plants including cotton. Even though cotton is well defended by its major defensive compound gossypol, a toxic sesquiterpene dimer, larvae of both species are capable of developing on cotton plants. In spite of severe damage larvae cause on cotton plants, little is known about gossypol detoxification mechanisms in cotton-feeding insects. Here, we detected three monoglycosylated and up to five diglycosylated gossypol isomers in the feces of H. armigera and H. virescens larvae fed on gossypol-supplemented diet. Candidate UDP-glycosyltransferase (UGT) genes of H. armigera were selected by microarray studies and in silico analyses and were functionally expressed in insect cells. In enzymatic assays, we show that UGT41B3 and UGT40D1 are capable of glycosylating gossypol mainly to the diglycosylated gossypol isomer 5 that is characteristic for H. armigera and is absent in H. virescens feces. In conclusion, our results demonstrate that gossypol is partially metabolized by UGTs via glycosylation, which might be a crucial step in gossypol detoxification in generalist herbivores utilizing cotton as host plant.  相似文献   

5.
Gossypol is a polyphenolic secondary metabolite produced by cotton plants, which is toxic to many organisms. Gossypol's aldehyde groups are especially reactive, forming Schiff bases with amino acids of proteins and cross-linking them, inhibiting enzyme activities and contributing to toxicity. Very little is known about gossypol's mode of action and its detoxification in cotton-feeding insects that can tolerate certain concentrations of this compound. Here, we tested the toxicity of gossypol and a gossypol derivative lacking free aldehyde groups (SB-gossypol) toward Helicoverpa armigera and Heliothis virescens, two important pests on cotton plants. Larval feeding studies with these two species on artificial diet supplemented with gossypol or SB-gossypol revealed no detectable toxicity of gossypol, when the aldehyde groups were absent. A cytochrome P450 enzyme, CYP6AE14, is upregulated in H. armigera feeding on gossypol, and has been claimed to directly detoxify gossypol. However, using in vitro assays with heterologously expressed CYP6AE14, no metabolites of gossypol were detected, and further studies suggest that gossypol is not a direct substrate of CYP6AE14. Furthermore, larvae feeding on many other plant toxins also upregulate CYP6AE14. Our data demonstrate that the aldehyde groups are critical for the toxicity of gossypol when ingested by H. armigera and H. virescens larvae, and suggest that CYP6AE14 is not directly involved in gossypol metabolism, but may play a role in the general stress response of H. armigera larvae toward plant toxins.  相似文献   

6.
7.
8.
The insect pests are real threat to farmers as they affect the crop yield to a great extent. The use of chemical pesticides for insect pest control has always been a matter of concern as they pollute the environment and are also harmful for human health. Bt (Bacillus thuringensis) technology helped the farmers to get rid of the insect pests, but experienced a major drawback due to the evolution of insects gaining resistance towards these toxins. Hence, alternative strategies are high on demand to control insect pests. RNA-based gene silencing is emerging as a potential tool to tackle with this problem. In this study, we have shown the use of artificial microRNA (amiRNA) to specifically target the ecdysone receptor (EcR) gene of Helicoverpa armigera (cotton bollworm), which attacks several important crops like cotton, tomato chickpea, pigeon pea, etc and causes huge yield losses. Insect let-7a precursor miRNA (pre-miRNA) backbone was used to replace the native miRNA with that of amiRNA. The precursor backbone carrying the 21 nucleotide amiRNA sequence targeting HaEcR was cloned in bacterial L4440 vector for in vitro insect feeding experiments. Larvae fed with Escherichia coli expressing amiRNA-HaEcR showed a reduction in the expression of target gene as well as genes involved in the ecdysone signaling pathway downstream to EcR and exhibited mortality and developmental defects. Stem-loop RT-PCR revealed the presence of amiRNA in the insect larvae after feeding bacteria expressing amiRNA-HaEcR, which was otherwise absent in controls. We also found a significant drop in the reproduction potential (oogenesis) of moths which emerged from treated larvae as compared to control. These results demonstrate the successful use of an insect pre-miRNA backbone to express amiRNA for gene silencing studies in insects. The method is cost effective and can be exploited as an efficient and alternative tool for insect pest management.  相似文献   

9.
Two of the four sex pheromone components in the fall webworm Hyphantria cunea (Lepidoptera: Arctiidae), cis-9,10-epoxy-(3Z,6Z)-3,6-henicosadiene and cis-9,10-epoxy-(3Z,6Z)-1,3,6-henicosatriene, possess an epoxy ring within their molecules. These compounds have been suggested to be biosynthesized from dietary linolenic acid via the following enzymatic reactions; chain elongation, terminal desaturation (in the case of the latter component), decarboxylation, and epoxidation. The last step of this biosynthesis, epoxidation, is known to occur specifically in the sex pheromone gland of females. We identified the enzyme involved in the epoxidation of pheromone precursors by focusing on cytochromes P450, which are known to catalyze the oxidation of various compounds. Three P450-like sequences (Hc_epo1, Hc_epo2, and Hc_epo3) were identified in the cDNA library prepared from the sex pheromone gland of H. cunea. Among these clones, only Hc_epo1 was specifically expressed in the pheromone gland. The full-length sequence of Hc_epo1 contained an ORF of 1527 bp, which encoded a protein of 509 amino acids with a predicted molecular weight of 57.9 kDa. The deduced Hc_epo1 amino acid sequence possessed the characteristics of P450. A phylogenetic analysis of the sequence indicated that Hc_epo1 belonged to the CYP341B clade in the CYP341 family. Therefore, it was named CYP341B14. A subsequent functional assay using Sf-9 cells transiently expressing CYP341B14 demonstrated that this P450 protein was able to specifically epoxidize a (Z)-double bond at the 9th position in the pheromone precursor, (3Z,6Z,9Z)-3,6,9-henicosatriene.  相似文献   

10.
The Australian sheep blowfly, Lucilia cuprina, is a primary cause of sheep flystrike and a major agricultural pest. Cytochrome P450 enzymes have been implicated in the resistance of L. cuprina to several classes of insecticides. In particular, CYP6G3 is a L. cuprina homologue of Drosophila melanogaster CYP6G1, a P450 known to confer multi-pesticide resistance. To investigate the basis of resistance, a bicistronic Escherichia coli expression system was developed to co-express active L. cuprina CYP6G3 and house fly (Musca domestica) P450 reductase. Recombinant CYP6G3 showed activity towards the high-throughput screening substrates, 7-ethoxycoumarin and p-nitroanisole, but not towards p-nitrophenol, coumarin, 7-benzyloxyresorufin, or seven different luciferin derivatives (P450-Glo™ substrates). The addition of house fly cytochrome b5 enhanced the kcat for p-nitroanisole dealkylation approximately two fold (17.8 ± 0.5 vs 9.6 ± 0.2 min−1) with little effect on KM (13 ± 1 vs 10 ± 1 μM). Inhibition studies and difference spectroscopy revealed that the organochlorine compounds, DDT and endosulfan, and the organophosphate pesticides, malathion and chlorfenvinphos, bind to the active site of CYP6G3. All four pesticides showed type I binding spectra with spectral dissociation constants in the micromolar range suggesting that they may be substrates of CYP6G3. While no significant inhibition was seen with the organophosphate, diazinon, or the neonicotinoid, imidacloprid, diazinon showed weak binding in spectral assays, with a Kd value of 23 ± 3 μM CYP6G3 metabolised diazinon to the diazoxon and hydroxydiazinon metabolites and imidacloprid to the 5-hydroxy and olefin metabolites, consistent with a proposed role of CYP6G enzymes in metabolism of phosphorothioate and neonicotinoid insecticides in other species.  相似文献   

11.
GABA-activated RDL receptors are the insect equivalent of mammalian GABAA receptors, and play a vital role in neurotransmission and insecticide action. Here we clone the pore lining M2 region of the Varroa mite RDL receptor and show that it has 4 atypical residues when compared to M2 regions of most other insects, including bees, which are the major host of Varroa mites. We create mutant Drosophila RDL receptors containing these substitutions and characterise their effects on function. Using two electrode voltage clamp electrophysiology we show that one substitution (T6′M) ablates picrotoxin inhibition and increases the potency of GABA. This mutation also alters the effect of thymol, which enhances both insect and mammalian GABA responses, and is widely used as a miticide. Thymol decreases the GABA EC50 of WT receptors, enhancing responses, but in T6′M-containing receptors it is inhibitory. The other 3 atypical residues have no major effects on either the GABA EC50, the picrotoxin potency or the effect of thymol. In conclusion we show that the RDL 6′ residue is important for channel block, activation and modulation, and understanding its function also has the potential to prove useful in the design of Varroa-specific insecticidal agents.  相似文献   

12.
《Fungal biology》2014,118(9-10):776-784
Medicinal plants are used worldwide to treat a variety of ailments. Due to the provenance of medicinal plants, they are subjected to contamination by moulds, which may be responsible for spoilage and production of mycotoxins. The investigation was designed to throw light on mycological and mycotoxicological status of some medicinal plants from Pakistan and the result showed 30 % and 26.7 % samples were contaminated with aflatoxins and ochratoxin A, respectively. Mould contamination was present in 90 % samples, of which 70 % exceeded the permissible limits. Opium poppy, licorice root, and Indian rennet were most contaminated samples. The predominant moulds found were Aspergillus flavus, Aspergillus niger, Aspergillus parasiticus, and Penicillium spp. and 31 % of the 47 isolates tested were found to be toxigenic. The findings indicate that the contamination in the medicinal plants may contribute to adverse human health problems. This information would prove helpful for regulatory agencies to establish limits for these contaminants in medicinal plants and will explore ways for export of herbal products to countries where more stringent permissible limits of mycotoxins exist. The study is first of its kind in the country reporting natural occurrence of mycotoxins in medicinal plants in Pakistan.  相似文献   

13.
Response surface methodology (RSM) is a commonly used system to optimize cryoprotectants of biocontrol strains when they are subjected to preparations. Various kinds of cryoprotectants and centrifugal conditions were tested to improve the survival of biocontrol agents after freeze-drying. To determine the optimum levels of incorporation of three cryoprotectants (glucose, trehalose and xylitol) in the freeze-drying process of strain Bacillus amyloliquefaciens B1408, a range of experiments based on Box-Behnken Design (BBD) were conducted. The results indicated that the suitable centrifugation conditions were 5000 r/min,10 min and the optimum concentrations of cryoprotectants were glucose 1.00%, trehalose 4.74% and xylitol 1.45%. The proven survival rate of cells after freeze-drying was 91.24%. These results convincingly demonstrated that freeze-drying could be used to preparation of biocontrol strain B1408. This study provides a theoretical basis for commercial possibilities and formulation development.  相似文献   

14.
15.
Transposable elements (TEs) are widespread in insect's genomes. However, there are wide differences in the proportion of the total DNA content occupied by these repetitive sequences in different species. We have analyzed the TEs present in R. prolixus (vector of the Chagas disease) and showed that 3.0% of this genome is occupied by Class II TEs, belonging mainly to the Tc1-mariner superfamily (1.65%) and MITEs (1.84%). Interestingly, most of this genomic content is due to the expansion of two subfamilies belonging to: irritans himar, a well characterized subfamily of mariners, and prolixus1, one of the two novel subfamilies here described. The high amount of sequences in these subfamilies suggests that bursts of transposition occurred during the life cycle of this family. In an attempt to characterize these elements, we performed an in silico analysis of the sequences corresponding to the DDD/E domain of the transposase gene. We performed an evolutionary analysis including network and Bayesian coalescent-based methods in order to infer the dynamics of the amplification, as well as to estimate the time of the bursts identified in these subfamilies. Given our data, we hypothesized that the TE expansions occurred around the time of speciation of R. prolixus around 1.4 mya. This suggestion lays on the “Transposon Model” of TE evolution, in which the members of a TE population that are replicative active are present at multiple loci in the genome, but their replicative potential varies, and of the “Life Cycle Model” that states that when present-day TEs have been involved in amplification bursts, they share an ancestral copy that dates back to this initial amplification.  相似文献   

16.
17.
Arylalkylamine N-acyltransferase like 2 (AANATL2) catalyzes the formation of N-acylarylalkylamides from the corresponding acyl-CoA and arylalkylamine. The N-acylation of biogenic amines in Drosophila melanogaster is a critical step for the inactivation of neurotransmitters, cuticle sclerotization, and melatonin biosynthesis. In addition, D. melanogaster has been used as a model system to evaluate the biosynthesis of fatty acid amides: a family of potent cell signaling lipids. We have previously showed that AANATL2 catalyzes the formation of N-acylarylakylamides, including long-chain N-acylserotonins and N-acyldopamines. Herein, we define the kinetic mechanism for AANATL2 as an ordered sequential mechanism with acetyl-CoA binding first followed by tyramine to generate the ternary complex prior to catalysis. Bell shaped kcat,app – acetyl-CoA and (kcat/Km)app – acetyl-CoA pH-rate profiles identified two apparent pKa,app values of ∼7.4 and ∼8.9 that are critical to catalysis, suggesting the AANATL2-catalyzed formation of N-acetyltyramine occurs through an acid/base chemical mechanism. Site-directed mutagenesis of a conserved glutamate that corresponds to the catalytic base for other D. melanogaster AANATL enzymes did not produce a substantial depression in the kcat,app value nor did it abolish the pKa,app value attributed to the general base in catalysis (pKa ∼7.4). These data suggest that AANATL2 catalyzes the formation of N-acylarylalkylamides using either different catalytic residues or a different chemical mechanism relative to other D. melanogaster AANATL enzymes. In addition, we constructed other site-directed mutants of AANATL2 to help define the role of targeted amino acids in substrate binding and/or enzyme catalysis.  相似文献   

18.
19.
20.
Culex mosquitoes have emerged as important model organisms for mosquito biology, and are disease vectors for multiple mosquito-borne pathogens, including West Nile virus. We characterized epoxide hydrolase activities in the mosquito Culex quinquefasciatus, which suggested multiple forms of epoxide hydrolases were present. We found EH activities on epoxy eicosatrienoic acids (EETs). EETs and other eicosanoids are well-established lipid signaling molecules in vertebrates. We showed EETs can be synthesized in vitro from arachidonic acids by mosquito lysate, and EETs were also detected in vivo both in larvae and adult mosquitoes by LC-MS/MS. The EH activities on EETs can be induced by blood feeding, and the highest activity was observed in the midgut of female mosquitoes. The enzyme activities on EETs can be inhibited by urea-based inhibitors designed for mammalian soluble epoxide hydrolases (sEH). The sEH inhibitors have been shown to play diverse biological roles in mammalian systems, and they can be useful tools to study the function of EETs in mosquitoes. Besides juvenile hormone metabolism and detoxification, insect epoxide hydrolases may also play a role in regulating lipid signaling molecules, such as EETs and other epoxy fatty acids, synthesized in vivo or obtained from blood feeding by female mosquitoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号