首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  总被引:4,自引:0,他引:4  
Plant protection against pathogens, pests and weeds has been progressively reoriented from a therapeutic approach to a rational use of pesticide chemicals in which consumer health and environmental preservation prevail over any other productive or economic considerations. Microbial pesticides are being introduced in this new scenario of crop protection and currently several beneficial microorganisms are the active ingredients of a new generation of microbial pesticides or the basis for many natural products of microbial origin. The development of a microbial pesticide requires several steps addressed to its isolation in pure culture and screening by means of efficacy bioassays performed in vitro, ex vivo, in vivo, or in pilot trials under real conditions of application (field, greenhouse, post-harvest). For the commercial delivery of a microbial pesticide, the biocontrol agent must be produced at an industrial scale (fermentation), preserved for storage and formulated by means of biocompatible additives to increase survival and to improve the application and stability of the final product. Despite the relative high number of patents for biopesticides, only a few of them have materialized in a register for agricultural use. The excessive specificity in most cases and biosafety or environmental concerns in others are major limiting factors. Non-target effects may be possible in particular cases, such as displacement of beneficial microorganisms, allergenicity, toxinogencity (production of secondary metabolites toxic to plants, animals, or humans), pathogenicity (to plants or animals) by the agent itself or due to contaminants, or horizontal gene transfer of these characteristics to non-target microorganisms. However, these non-target effects should not be evaluated in an absolute manner, but relative to chemical control or the absence of any control of the target disease (for example, toxins derived from the pathogen). Consumer concerns about live microbes due to emerging food-borne diseases and bioterrorism do not help to create a socially receptive environment to microbial pesticides. The future of microbial pesticides is not only in developing new active ingredients based on microorganisms beneficial to plants, but in producing self-protected plants (so-called plant-incorporated pesticides) by transforming agronomically high-value crop plants with genes from biological control agents  相似文献   

2.
Cryptostegia madagascariensis is a plant native from Madagascar, belonging to the Apocynaceae that is invading the native vegetation in Northeast Brazil and threatening the unique riverine formations dominated by the carnauba palm. Individuals of C. madagascariensis cultivated in the campus of the Universidade Federal de Viçosa, state of Minas Gerais, Brazil, showing leaf spot symptoms of unknown etiology were observed. Two fungal species were found associated to such leaf spots: Colletotrichum gloeosporioides and a new species of Pseudocercospora. The latter was named Pseudocercospora cryptostegiae-madagascariensis and described herein. The discovery of those two fungal pathogens on C. madagascariensis coincide with the recognition that the weedy vine that is involved in the infestations in the Northeast of Brazil is not Cryptostegia grandiflora as formerly reported. These mycological findings are of greater importance now since C. madagascariensis is likely to become a target for biological control together with its former status in Brazil of an ornamental plant of limited relevance.  相似文献   

3.
    
The rapid expansion of oil palm (OP) has led to its emergence as a commodity of strategic global importance. Palm oil is used extensively in food and as a precursor for biodiesel. The oil generates export earnings and bolsters the economy of many countries, particularly Indonesia and Malaysia. However, oil palms are prone to basal stem rot (BSR) caused by Ganoderma boninense which is the most threatening disease of OP. The current control measures for BSR management including cultural practices, mechanical and chemical treatment have not proved satisfactory. Alternative control measures to overcome the G. boninense problem are focused on the use of biological control agents and many potential bioagents were identified with little proven practical application. Planting OP varieties resistant to G. boninense could provide the ideal long-term solution to basal stem rot. The total resistance of palms to G. boninense has not yet been reported, and few examples of partial resistances have been observed. Importantly, basidiospores are now recognized as the method by which the disease is spread, and control methods require to be revaluated because of this phenomenon. Many methods developed to prevent the spread of the disease effectively are only tested at nursery levels and are only reported in national journals inhibiting the development of useful techniques globally. The initial procedures employed by the fungus to infect the OP require consideration in terms of the physiology of the growth of the fungus and its possible control. This review assesses critically the progress that has been made in BSR development and management in OP.  相似文献   

4.
植物功能基因组学研究进展   总被引:9,自引:0,他引:9  
植物功能基因组学是从整体水平研究基因的功能及表达规律的科学。对植物功能基因组学的研究将助于我们对基因功能的理解和对植物性状的定性改造和利用。本文简要介绍了植物功能基因组学的概念、研究方法和最新研究进展。  相似文献   

5.
Five plant leaf extracts (Pine, Persimmon, Ginkgo, Magnolia and Platanus) were used and compared for their extracellular synthesis of metallic silver nanoparticles. Stable silver nanoparticles were formed by treating aqueous solution of AgNO3 with the plant leaf extracts as reducing agent of Ag+ to Ag0. UV-visible spectroscopy was used to monitor the quantitative formation of silver nanoparticles. Magnolia leaf broth was the best reducing agent in terms of synthesis rate and conversion to silver nanoparticles. Only 11 min was required for more than 90% conversion at the reaction temperature of 95 °C using Magnolia leaf broth. The synthesized silver nanoparticles were characterized with inductively coupled plasma spectrometry (ICP), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and particle analyzer. The average particle size ranged from 15 to 500 nm. The particle size could be controlled by changing the reaction temperature, leaf broth concentration and AgNO3 concentration. This environmentally friendly method of biological silver nanoparticles production provides rates of synthesis faster or comparable to those of chemical methods and can potentially be used in various human contacting areas such as cosmetics, foods and medical applications.  相似文献   

6.
影响引人微生物根部定殖的因素   总被引:13,自引:2,他引:13  
从外界引入的各类有益微生物如生防菌(BCA)和根际促生菌或增产菌(PGPR,YIB)到种子表面随其生根发芽而蔓延或直接到根表沿根分布定殖.外来微生物在根际定殖的过程为与根尖接触,沿根分布,最后在根际建立自己的种群.定殖的位点以PGPR为例,是表皮细胞间隙,或侧根、根毛基部.外来微生物在根际定殖动态变化的原因,由于根际生物的和非生物的因素引起的.生物因子除去外来微生物本身的生理特性,还有根际土著微生物与外来微生物的相互作用,更重要的是植物基因型对微生物定殖的影响.非生物因子包括土壤环境、土壤结构和含水量,土壤温度和土壤pH值均能影响外来微生物在根部的定殖.  相似文献   

7.
Among soil microorganisms, yeasts have received little attention as biocontrol agents of soil-borne fungal plant pathogens in comparison to bacterial, actinomycetes, and filamentous fungal antagonists. The mechanisms of action of potential antagonism by yeasts in relation to soil-borne fungal plant pathogens are expected to be similar to those involved with pathogens of aerial parts of the plant, including leaves and fruits. Several taxa of yeasts have been recorded as endophytes in plants, with a small proportion recorded to promote plant growth. The ability of certain taxa of yeasts to multiply rapidly, to produce antibiotics and cell wall-degrading enzymes, to induce resistance of host tissues, and to produce plant growth regulators indicates the potential to exploit them as biocontrol agents and plant growth promoters. More than ten genera of yeasts have been used to control postharvest diseases, especially of fruits. Suppression of classes of fungal pathogens of fruits and foliage that are similar to those associated with soil-borne fungal root pathogens, strongly suggests that yeasts also have potential for the biological control of diseases caused by soil-borne fungal plant pathogens, as is evident in reports of certain yeasts in suppressing some soil-borne fungal plant pathogens. This review explores the potential of soil yeasts to suppress a wider range of soil-borne fungal plant pathogens and to promote plant growth.  相似文献   

8.
目的

为解决山东金乡大蒜种植区连年重茬种植导致根腐病和产质量下降等问题, 使用中农绿康(北京)生物技术有限公司研发生产的植物微生态制剂进行试验示范。

方法

试验共设小区试验和大田示范两种模式, 小区试验共设4个处理: 处理1抗重茬微生态制剂+生物冲施肥, 处理2抗重茬微生态制剂+绿康威, 处理3抗重茬微生态制剂+生物冲施肥+绿康威, 处理4常规技术管理; 大田示范共设2处理, 处理1常规技术管理, 处理2抗重茬微生态制剂+生物冲施肥+绿康威。

结果

小区试验处理3施用抗重茬微生态制剂4 kg/亩拌种、生物冲施肥5 kg/亩冲施、绿康威稀释500倍液叶面喷施, 3种混合施用效果最好, 株高增长7.3%、叶绿素含量增加17%, 大蒜根腐病发病率降低46.9%, 商品率提高37.7%, 每亩产量增加17.52%, 投入产出比为1∶9.8;大田示范施用植物微生态制剂, 大蒜叶绿素含量增加6.3%, 大蒜根腐病发病率降低73.1%, 商品率提高13.5%, 每亩产量增加15.02%, 投入产出比为1∶8.2。

结论

施用植物微生态制剂能显著降低大蒜根腐病发病率, 并且提高大蒜商品率和产量, 增加了种植户的经济效益。

  相似文献   

9.
水果采后生物防治拮抗机理的研究进展   总被引:15,自引:0,他引:15  
近20年来,人们在水果采后生物防治领域里取得了显著的成绩。目前巳经分离获得了数百种对水果采后主要病害有明显拮抗效果的生物拮抗菌。很多拮抗菌经过生产中试,有的巳制成了生物药剂用于水果采后的商业化处理。有关拮抗菌的抑病机理研究也一直贯穿于采后生物防治的整个发展历程。本文在探讨了水果采后拮抗菌剂病机理的基础上,回顾了该领域的研究进展,并从拮抗菌与病原菌发生拮抗作用的4条主要途径入手,对该领域的研究成果及研究方法作一简要总结。  相似文献   

10.
Summary Formulations which are economical and which can deliver a viable organism are critical to developing successful biocontrol products for plant pathogens. In the present study, alginates derived from commercial kelp and produced byAzotobacter vinelandii isolates ATCC 9104 and 12 837 were compared in their ability to form stable, biodegradable granular formulations of the biocontrol fungiTalaromyces flavus andGliocladium virens. Bacteria were grown in shake flask cultures (180 rpm) at 32°C for 104 h. The cultures were monitored for pH, dissolved oxygen, glucose concentration, dry cell weight, and alginate dry weight. Aqueous solutions of the bacterial alginates, as well as the kelp-derived alginate products, gelled readily in 0.25 M calcium chloride. Mannuronate (M) and guluronate (G) compositions of the alginate samples were determined by circular dichroism. M/G ratios for cultures of isolate 12837 averaged 0.98±0.18; for isolate 9104, 1.59±0.12; and for kelp, 1.54±0.39. The viability ofT. flavus in the kelp and bacterial alginate formulations were similar over 84 days. An exploratory experiment indicated good viability ofG. virens using the same bacterial alginates. This study demonstrated a practical use for bacterial alginate as a potentially less costly substitute for kelp alginate in the preparation of biocontrol agent formulations.  相似文献   

11.
12.
Experiments investigating plant-herbivore interactions have primarily focused on above-ground herbivory, with occasional studies evaluating the effect of below-ground herbivores on plant performance. This study investigated the growth of the wetland perennial Lythrum salicaria (purple loosestrife) under three levels of root herbivory by the weevil Hylobiustransversovittatus and three levels of plant competition by the grass Phleumpratense in a common garden. Plant growth, flowering phenology, and biomass allocation patterns of purple loosestrife were recorded for two growing seasons. During the first year, root herbivory reduced plant height; plant competition delayed flowering; and the interaction of root herbivory and plant competition resulted in reductions in plant height, shoot weight and total dry biomass. Plant competition or larval feeding did not affect the biomass allocation pattern in the first year. These results indicate the importance of interactions of plant competition and herbivory in reducing plant performance – at least during the establishment period of purple loosestrife. In the second growing season, root herbivory reduced plant height, biomass of all plant parts, delayed and shortened the flowering period, and changed the biomass allocation patterns. Plant competition delayed flowering and reduced the dry weight of fine roots. The interaction of root herbivory and plant competition delayed flowering. Root herbivory was more important than plant competition in reducing the performance of established purple loosestrife plants. This was due, in part, to intense intraspecific competition among the grass individuals effectively preventing shoot elongation of P. pratense and resulting in a carpet like growth. Received: 3 April 1997 / Accepted: 27 July 1997  相似文献   

13.
Hyperparasites can play a crucial role in the control of a host-parasite interaction if they are successfully established in the community. We investigated the specific traits of the hyperparasite and those of the release event which allow a successful regulation of primary parasite populations. This study has been motivated by the case study of chestnut-Cryphonectria parasitica-Cryphonectria Hypovirus interaction. We use a model of SIR/SIS type which assumes a limited diffusion of the parasite. Our model emphasizes the thresholds for invasion linked to the ecological specificities of both the pathogen and the hyperparasite (transmission rates and virulence) and to the initial conditions of the system (population sizes of the different categories). The predictions are consistent with data on the observed spread of the virus. "Mild" strains of the hyperparasite, characterized by a high vertical transmission rate and low virulence, are more prone to establish than "severe" strains. It also demonstrates that the horizontal transmission of the virus, which is controlled by a vegetative incompatibility system in the fungus, is not the unique constraint for the virus establishment. This study may contribute to theoretical and practical aspects of the biological control of plant diseases with a hyperparasite and to the ecology of biological invasions.  相似文献   

14.
Sesame is an important vegetable crop for the production of oil in Korea. The main obstacle of sesame cultivation is the occurrence of damping-off diseases and wilt caused by a complex of soil-borne pathogens in fields cultivated for two or more successive years. To protect sesame seedlings against these diseases, Paenibacillus polymyxa E681, a plant growth-promoting rhizobacterium (PGPR) previously shown to suppress disease incidence and promote growth on cucumber and pepper in the greenhouse and field experiments, was evaluated for its capacity for biological control and growth promotion in vitro and in situ. Seed treatment with strain E681 alone did not show consistent protection. Therefore, seed pelleting with strain E681 was attempted to increase the seed size and improve the stability and effectiveness of biocontrol capacity by strain E681. Through screening of pelleting materials, a combination of clay and vermiculite was selected for further experiments to enhance seed germination and root colonization of strain E681 on sesame. In greenhouse trials, formulations of strain E681 reduced disease incidence in disease-conducive soil. In the field, pelleting of sesame seeds with strain E681 significantly reduced pre- and post-emergence damping-off compared to the non-treated or pelleting alone controls; pelleting also promoted the plant growth and the grain yield. Furthermore, the efficacy of strain E681 for biological control and plant growth promotion was improved by sesame seed pelleting compared to the treatment with strain E681 alone. Hence, the application of strain E681 via seed pelleting offers potential to overcome some of the problems associated with successive years of sesame cultivation.  相似文献   

15.
荧光假单胞菌(Pseudomonas fluorescens)是一种重要的植物根际促生菌,它能够产生藤黄绿脓菌素、2,4-二乙酰基藤黄酚、硝吡咯菌素、吩嗪-1-羧酸等抗生性次级代谢产物,可抑制多种病原物,在农作物土传病害的生物防治研究中具有重要意义.总结了荧光假单胞菌中已确立的抗生性次级代谢产物的合成机制,重点阐述了相关基因的结构、功能,以及利用生物工程技术对荧光假单胞菌进行遗传操作的最新进展,同时对荧光假单胞菌在生物防治中的应用和其作为生防菌剂的前景进行了展望.  相似文献   

16.
植物中蛋白类蛋白酶抑制剂的研究进展   总被引:5,自引:0,他引:5  
介绍植物蛋白类蛋白酶抑制剂(proteinase inhibitor)近年来的研究进展,包括其分类、生理功能及应用研究.  相似文献   

17.
    
Both weed science and plant invasion science deal with noxious plants. Yet, they have historically developed as two distinct research areas in Europe, with different target species, approaches and management aims, as well as with diverging institutions and researchers involved. We argue that the strengths of these two disciplines can be highly complementary in implementing management strategies and outline how synergies were created in an international, multidisciplinary project to develop efficient and sustainable management of common ragweed, Ambrosia artemisiifolia. Because this species has severe impacts on human health and is also a crop weed in large parts of Europe, common ragweed is one of the economically most important plant invaders in Europe. Our multidisciplinary approach combining expertise from weed science and plant invasion science allowed us (i) to develop a comprehensive plant demographic model to evaluate and compare management tools, such as optimal cutting regimes and biological control for different regions and habitat types, and (ii) to assess benefits and risks of biological control. It further (iii) showed ways to reconcile different stakeholder interests and management objectives (health versus crop yield), and (iv) led to an economic model to assess invader impact across actors and domains, and effectiveness of control measures. (v) It also led to design and implement management strategies in collaboration with the various stakeholder groups affected by noxious weeds, created training opportunities for early stage researchers in the sustainable management of noxious plants, and actively promoted improved decision making regarding the use of exotic biocontrol agents at the national and European level. We critically discuss our achievements and limitations, and list and discuss other potential Old World (Afro-Eurasian) target species that could benefit from applying such an integrative approach, as typical invasive alien plants are increasingly reported from crop fields and native crop weeds are invading adjacent non-crop land, thereby forming new source populations for further spread.  相似文献   

18.
The insecticidal activities of the exotoxin produced by three varieties of Bacillus thuringiensis grown in six fermentation media were determined by testing the supernatants against larvae of the house fly, Musca domestica, and the black cutworm, Agrotis ipsilon. The activities of the exotoxins from the isolates varied when they were grown in the same medium and also when they were grown in different media. When an isolate of B. thuringiensis var. thuringiensis, and of var. tolworthi were grown in proflo broth, the supernatants produced were more toxic to house fly than to black cutworm larvae, indicating the presence of more than one exotoxin. Autoclaving the supernatants for 15 and 30 min further demonstrated the presence of several exotoxins.  相似文献   

19.
    
The potential consequences of deploying weed and non-weed floral resources in a three trophic-level system were evaluated in the laboratory. Four flowering plants were used: the two common weeds shepherd’s purse Capsella bursa-pastoris (globally widespread) and white rocket Diplotaxis erucoides (a common weed in Europe) and two common flowering plants: buckwheat Fagopyrum esculentum and alyssum Lobularia maritima. Adults of the aphid parasitoid Diaeretiella rapae were exposed to flowering buckwheat and survived 4–5 times longer than those in the control (water only) and 2–3 times longer than when provided with flowering alyssum, or the other two species. All plant species significantly increased parasitoid longevity, egg load and achieved fecundity compared with the control, with buckwheat having the greatest effect. This work illustrates that the functional diversity of ‘weeds’, if appropriately managed, has potential to enhance biological control efficacy without the need for agronomic and other challenges which are involved in adding specific non-crop flowering plants such as buckwheat to agroecosystems. In the field, factors such as the plants’ phenology, agronomy and competitiveness with the crop will need to be evaluated before they can be truly ranked.  相似文献   

20.
Practitioners of classical biological control of invasive weeds are confronted with a dual expectation: to achieve successful control of plant invaders and to avoid damage to nontarget plants and adverse indirect effects. In this paper we discuss key issues that we consider to be crucial for a safe, efficient, and successful classical biological control project, and that have also caused some recent controversy. These include selection of effective control agents, host specificity of the biological control agents, implications of the genetic population structure of the target populations, and potential impact on native food webs. With regard to improving the success rate of biological control of plant invaders, we first emphasize the importance of a clear a priori definition of success and a more ecosystem-based approach to better document both negative effects of the invasive plant as well as potential positive and negative effects of introducing biological control agents. Secondly, pre-release impact assessment could be improved by better focusing on how to reach high densities of the control agents and by including tolerance to and compensation of herbivory. Thirdly, we advocate a reinforced effort to integrate and combine biological control in combination with existing or potential management options. Finally, we propose various ecological and evolutionary hypotheses in the framework of our topic to document that biological control programmes against plant invaders also offer a great opportunity to gain new insights into basic processes in ecology and evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号