首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we isolated and characterized a novel feather-degrading bacterium that shows keratinolytic, antifungal and plant growth-promoting activities. A bacterium S8 was isolated from forest soil and confirmed to belong to Bacillus subtilis by BIOLOG system and 16S rRNA gene analysis. The improved culture conditions for the production of keratinolytic protease were 0.1% (w/v) sorbitol, 0.3% (w/v) KNO3, 0.1% (w/v) K2HPO4, 0.06% (w/v) KH2PO4 and 0.04% (w/v) MgCl2·6H2O (pH 8.0 and 30°C), respectively. In the improved medium containing 0.1% (w/v) feather, keratinolytic protease production was around 53.3 ± 0.3 U/ml at 4 day; this value was 10-fold higher than the yield in the basal feather medium (5.3 ± 0.1 U/ml). After cultivation for 5 days in the improved medium, intact feather was completely degraded. Feather degradation resulted in free –SH group, soluble protein and amino acids production. The concentration of free –SH group in the culture medium was 15.5 ± 0.2 μM at 4 days. Nineteen amino acids including all essential amino acids were produced in the culture medium; the concentration of total amino acid produced was 3360.4 μM. Proline (2809.9 μM), histidine (371.3 μM) and phenylalanine (172.0 μM) were the major amino acids released in the culture medium. B. subtilis S8 showed the properties related to plant growth promotion: hydrolytic enzymes, ammonification, indoleacetic acid (IAA), phosphate solubilization, and broad-spectrum antimicrobial activity. Interestingly, the strain S8 grown in the improved medium produced IAA and antifungal activity, indicating simultaneous production of keratinolytic and antifungal activities and IAA by B. subtilis S8. These results suggest that B. subtilis S8 could be not only used to improve the nutritional value of feather wastes but also is useful in situ biodegradation of feather wastes. Furthermore, it could also be a potential biofertilizer or biocontrol agent applicable to crop plant soil.  相似文献   

2.
We investigated the PCB-degrading abilities of four bacterial strains isolated from long-term PCB-contaminated soil (Alcaligenes xylosoxidans and Pseudomonas stutzeri) and sediments (Ochrobactrum anthropi and Pseudomonas veronii) that were co-metabolically grown on glucose plus biphenyl which is an inducer of the PCB catabolic pathway. The aim of study was to determine the respective contribution of biomass increase and expression of degrading enzymes on the PCB degrading abilities of each isolate. Growth on 5 g l−1 glucose alone resulted in the highest stimulation of the growth of bacterial strains, whereas grown on 10 mg l−1, 100 mg l−1, 1 g l−1, or 5 g l−1 biphenyl did not effected the bacterial growth. None of the strains used in this study was able to grow on PCBs as the sole carbon source. Cells grown on glucose exhibited enhanced degradation ability due to an increased biomass. Addition of biphenyl at concentrations of 1 or 5 g l−1 did not increase total PCB degradation, but stimulated the degradation of highly chlorinated congeners for some of the strains. The degradation of di- and tri-chlorobiphenyls was significantly lower for cells grown on 5 g l−1 biphenyl independently on glucose addition. The highest degradation of the PCBs was obtained for A. xylosoxidans grown in the presence of glucose. Thus A. xylosoxidans appears to be the most promising among the four bacterial isolates for the purpose of bioremediation.  相似文献   

3.
The effects of initial culture pH ranging from 5.0 to 7.5 on biomass content, precursor 3-hydroxy-2-butanone (HB) accumulation, and 2,3,5,6-tetramethylpyrazine (TTMP) formation by Bacillus subtilis CCTCC M 208157 were investigated in shake flask fermentation. Weak acidic conditions were found to favor cell growth and precursor HB accumulation, while TTMP could be synthesized more efficiently in conditions with initial pH towards neutrality. Batch bioprocess of TTMP fermentation by Bacillus subtilis CCTCC M 208157 at various controlled pH values ranging from 5.5 to 7.0 was then examined in 7.5-l fermentor. The results suggested that optimum pH for cell growth and precursor HB accumulation was 5.5 with maximum cell growth rate (Q x) and precursor HB accumulation rate (Q HB) of 0.833 g l−1 h−1 and 1.118 g l−1 h−1, respectively, while optimum pH for TTMP formation was 7.0 with maximum TTMP formation rate (Q TTMP) of 0.095 g l−1 h−1. A pH-shifted strategy was accordingly developed to improve TTMP production in bioreactor fermentation by shifting the culture pH from 5.5 to 7.0 after 48 h of cultivation. By applying the strategy, final TTMP concentration of 7.43 g l−1 was obtained, being 22.2% greater than that of constant-pH fermentation.  相似文献   

4.
Succinic acid, a four-carbon diacid, has been the focus of many research projects aimed at developing more economically viable methods of fermenting sugar-containing natural materials. Succinic acid fermentation processes also consume CO2, thereby potentially contributing to reductions in CO2 emissions. Succinic acid could also become a commodity used as an intermediate in the chemical synthesis and manufacture of synthetic resins and biodegradable polymers. Much attention has been given recently to the use of microorganisms to produce succinic acid as an alternative to chemical synthesis. We have attempted to maximize succinic acid production by Actinobacillus succinogenes using an experimental design methodology for optimizing the concentrations of the medium components. The first experiment consisted of a 24−1 fractional factorial design, and the second entailed a Central Composite Rotational Design so as to achieve optimal conditions. The optimal concentrations of nutrients predicted by the model were: NaHCO3, 10.0 g l−1; MgSO4, 3.0 g l−1; yeast extract, 2.0 g l−1; KH2PO4. 5.0 g l−1; these were experimentally validated. Under the best conversion conditions, as determined by statistical analysis, the production of succinic acid was carried out in an instrumented bioreactor using sugarcane bagasse hemicellulose hydrolysate, yielding a concentration of 22.5 g l−1.  相似文献   

5.
Glycine oxidase (GO) has great potential for use in biosensors, industrial catalysis and agricultural biotechnology. In this study, a novel GO (BliGO) from a marine bacteria Bacillus licheniformis was cloned and characterized. BliGO showed 62% similarity to the well-studied GO from Bacillus subtilis. The optimal activity of BliGO was observed at pH 8.5 and 40 °C. Interestingly, BliGO retained 60% of the maximum activity at 0 °C, suggesting it is a cold-adapted enzyme. The kinetic parameters on glyphosate (Km, kcat and kcat/Km) of BliGO were 11.22 mM, 0.08 s−1, and 0.01 mM−1 s−1, respectively. To improve the catalytic activity to glyphosate, the BliGO was engineered by directed evolution. With error-prone PCR and two rounds of DNA shuffling, the most evolved mutant SCF-4 was obtained from 45,000 colonies, which showed 7.1- and 8-fold increase of affinity (1.58 mM) and catalytic efficiency (0.08 mM−1 s−1) to glyphosate, respectively. In contrast, its activity to glycine (the natural substrate of GO) decreased by 113-fold. Structure modeling and site-directed mutation study indicated that Ser51 in SCF-4 involved in the binding of enzyme with glyphosate and played a crucial role in the improvement of catalytic efficiency.  相似文献   

6.
Phytophthora ramorum has been found in waterways outside infested nurseries, but little is known about its behavior in water. This study examined the effect of salinity on survival, growth, sporulation, and infection. P. ramorum survival and growth was negatively correlated with salt concentration (range of 0–45 g l−1), but showed a level of tolerance even at 45 g l−1. No sporangia were observed in cultures with higher than 20 g l−1 of salt and zoospores were not released from sporangia above 14 g l−1. Water sources with different salinity were used to understand the environment where P. ramorum can survive and infect host material. Water from natural bodies and water amended with different salt concentrations were added to P. ramorum-infested sand and baited with rhododendron leaf disks. Infection decreased with increasing salt concentration and increased with higher initial concentration of P. ramorum. This research helps to better understand the effects of water quality on survival and infectivity of P. ramorum, expanding the potential survey range.  相似文献   

7.
A feather-degrading culture was enriched with isolates from a poultry waste digestor and adapted to grow with feathers as its primary source of carbon, sulfur, and energy. Subsequently, a feather-hydrolytic, endospore-forming, motile, rod-shaped bacterium was isolated from the feather-degrading culture. The organism was Gram stain variable and catalase positive and demonstrated facultative growth at thermophilic temperatures. The optimum rate of growth in nutrient broth occurred at 45 to 50°C and at pH 7.5. Electron microscopy of the isolate showed internal crystals. The microorganism was identified as Bacillus licheniformis PWD-1. Growth on hammer-milled-feather medium of various substrate concentrations was determined by plate colony count. Maximum growth (approximately 109 cells per ml) at 50°C occurred 5 days postinoculation on 1% feather substrate. Feather hydrolysis was evidenced as free amino acids produced in the medium. The most efficient conditions for feather fermentation occurred during the incubation of 1 part feathers to 2 parts B. licheniformis PWD-1 culture (107 cells per ml) for 6 days at 50°C. These data indicate a potential biotechnique for degradation and utilization of feather keratin.  相似文献   

8.
The aim of this study is to investigate the culture conditions of chicken feather degradation and keratinolytic enzyme production by the recently isolated Bacillus subtilis SLC and to evaluate the potential of the SLC strain to recycle feather waste discarded by the poultry industry. The SLC strain was isolated from the agroindustrial waste of a poultry farm in Brazil and was confirmed to belong to Bacillus subtilis by rDNA gene analysis. There was high keratinase production when the medium was at pH 8 (280 U ml−1). Activity was higher using the inoculum propagated for 72 h on 1% whole feathers supplemented with 0.1% yeast extract. In the enzymatic extract, the keratinases were active in the pH range from 2.0 to 12.0 with a maximum activity at pH 10.0 and temperature 60°C. For gelatinase the best pH was 5.0 and the best temperature was 37°C. All keratinases are serine peptidases. The crude enzymatic extract degraded keratin, gelatin, casein, and hemoglobin. Scanning electron microscopy showed Bacillus cells adhered onto feather surfaces after 98 h of culture and degraded feather filaments were observed. MALDI-TOF mass spectrometric analysis showed multiple peaks from 522 to 892 m/z indicating feather degradation. The presence of sulfide was detected on extracellular medium probably participating in the breakdown of sulfide bridges of the feather keratin. External addition of sulfide increased feather degradation.  相似文献   

9.
The kerA gene which encodes the enzyme keratinase was isolated from the feather-degrading bacterium Bacillus licheniformis PWD-1. The entire gene, including pre-, pro- and mature protein regions, was cloned with Pker, its own promoter, P43, the vegetative growth promoter, or the combination of P43-Pker into plasmid pUB18. Transformation of the protease-deficient strain B. subtilis DB104 with these plasmids generated transformant strains FDB-3, FDB-108 and FDB-29 respectively. All transformants expressed active keratinase in both feather and LB media, in contrast to PWD-1, in which kerA was repressed when grown in LB medium. With P43-Pker upstream of kerA, FDB-29 displayed the highest activity in feather medium. Production of keratinase in PWD-1 and transformants was further characterized when glucose or casamino acids were supplemented into the feather medium. These studies help understand the regulation of kerA expression and, in the long run, can help strain development and medium conditioning for the production of this industrially important keratinase. Received 31 December 1996/ Accepted in revised form 23 June 1997  相似文献   

10.

Phenylethanoid glycosides (PeG) are a class of polyphenols found in some plants that have pharmaceutical effects as anti-inflammatories and anti-oxidants. The presence of PeG (acteoside) in the aerial parts of Scrophularia striata Boiss. has been demonstrated. Considerable progress has been made using plant cell cultures to stimulate formation and accumulation of secondary metabolites. The present study optimized phenylethanoid production from shake flasks to bioreactor using a cell culture of S. striata. The optimal conditions for production of cell biomass by scale-up to a bioreactor were determined to be a pH of 4.8, air flow rate of 0.5–1.5 l min−1, and mixing speed of 110–170 rpm at 25 ± 1 °C in darkness. Growth parameters and PeG production were measured and compared with the results from the shake flasks. The results showed that cell biomass was high in the bioreactor (15.64 g l−1 DW) and in the shake flasks (14.16 g l−1 DW). The acteoside content in the bioreactor was 1404.20 μg g−1 DW, which is threefold higher than in the shake flasks (459.71 μg g−1 DW). The echinacoside concentration in the bioreactor was 1449.39 μg g−1, 1.36-fold lower than in the shake flasks (1973.03 μg g−1 DW). This study established an efficient way for production of acteoside, the major PeG, in a bioreactor.

  相似文献   

11.
In this study, the mixture of mono- and di-rhamnolipids produced by Pseudomonas aeruginosa DS10-129 was characterized for its toxicity and modulatory effects on Cd availability to different bacteria. Gram-negative naturally bioluminescent Vibrio fischeri and recombinant bioluminescent Pseudomonas fluorescens, P. aeruginosa, Escherichia coli, and Gram-positive Bacillus subtilis were used as model organisms. Rhamnolipids reduced the bioluminescence of these bacteria in less than a second of exposure even in relatively low concentrations (30-min EC50 45–167 mg l−1). Toxicity of Cd to Gram-negative bacteria (30-min EC50 values 0.16 mg l−1 for E. coli, 0.96 mg l−1 for P. fluorescens, and 4.4 mg l−1 for V. fischeri) was remarkably (up to 10-fold) reduced in the presence of 50 mg l−1 rhamnolipids. Interestingly, the toxicity of Cd to Gram-positive B. subtilis (30-min EC50 value 0.49 mg l−1) was not affected by rhamnolipids. Rhamnolipids had an effect on desorption of Cd from soil: 40 mg l−1 rhamnolipids increased the water-extracted fraction of Cd twice compared with untreated control. However, this additionally desorbed fraction of Cd remained bound with rhamnolipids and was not available to bacteria. Hence, in carefully chosen concentrations (still effectively complexing heavy metals but not yet toxic to soil bacteria), rhamnolipids could be applied in remediation of polluted areas.  相似文献   

12.
Extracellular keratinase production by the feather-degrading Amazonian isolate Bacillus sp. P45 was evaluated with various growth substrates. Higher enzyme production occurred with feather meal (FM) in comparison to casein, gelatin, and cheese whey, suggesting the specificity of this strain for the utilization of keratinous substrates. Supplementation of FM medium with carbohydrates reduced enzyme production, probably due to catabolite repression. Increased keratinase yield was achieved when NH4Cl was added to FM medium. The effects of FM and NH4Cl concentrations on enzyme production were investigated using a 22 central composite design. Feather meal was the most significant parameter, while NH4Cl concentrations resulted in slight differences in enzyme yield. In the range studied, optimal concentrations of FM and NH4Cl were 43-50 g l−1 and 1.8-8.6 g l−1, respectively, resulting in an effective low-cost medium for the production of keratinolytic protease. Crude keratinase showed maximum activity at 50 °C and pH 7.0, and was strongly inhibited by EDTA, indicating the importance of metal ions for activity/stability. The crude keratinase from mesophilic Bacillus sp. P45 could potentially be used in the bioconversion of recalcitrant keratinous wastes through an environmentally friendly and energy-saving process, producing protein hydrolysates with commercial value for utilization as animal feed and fertilizers.  相似文献   

13.
A new trans-4-hydroxy-l -proline (trans-Hyp) producing Bacillus cereus HBL-AI, was isolated from the air, which was screened just using l -proline as carbon and energy sources. This strain exhibited 73·4% bioconversion rate from initial l -proline (3 g l−1) to trans-Hyp. By sequencing the genome of this bacterium, 6244 coding sequences were obtained. Genome annotation analysis and functional expression were used to identify the proline-4-hydroxylase (BP4H) in HBL-AI. This enzyme belonged to a family of 2-oxoglutarate-related dioxygenases, which required 2-oxoglutarate and O2 as co-substrates for the reaction. Homologous modelling indicated that the enzyme had two monomers and contained conserved motifs, which included a distorted ‘jelly roll’ β strand core and the residues (HXDXnH and RXS). The engineering Escherichia coli 3 Δ W3110/pTrc99a-proba-bp4h was constructed using BP4H, which transformed glucose to trans-Hyp in one step with high concentration of 46·2 g l−1. This strategy provides a green and efficient method for synthesis of trans-Hyp and thus has a great potential in industrial application.  相似文献   

14.
Microbial conversion of lignocellulose to hydrogen is a fascinating way to provide a renewable energy source. A mesophilic bacterium strain G1 that had high cellulose degradation and hydrogen production activity (2.38 mmol H2 g−1 cellulose) was isolated from rumen fluid and identified as the Enterococcus gallinarum. Hydrogen production from cellulose by using sequential co-cultures of a cellulosic-hydrolysis bacterium G1 and Ethanoigenens harbinense B49 was investigated. With an initial Avicel concentration of 5 g l−l, the sequential co-culture with G1 and strain Ethanoigenens harbinense B49 produced H2 yield approximately 2.97 mmol H2 g−1 cellulose for the co-culture system.  相似文献   

15.
In this study, the effects of citrate addition on d-ribose production were investigated in batch culture of a transketolase-deficient strain, Bacillus subtilis EC2, in shake flasks and bioreactors. Batch cultures in shake flasks and a 5-l reactor indicated that supplementation with 0.2–0.5 g l−1 of citrate enhanced d-ribose production. When B. subtilis EC2 was cultivated in a 15-l reactor in a complex medium, the d-ribose concentration was 70.9 g l−1 with a ribose yield of 0.497 mol mol−1. When this strain was grown in the same medium supplemented with 0.3 g l−1 of citrate, 83.4 g l−1 of d-ribose were obtained, and the ribose yield was increased to 0.587 mol mol−1. Addition of citrate reduced the activities of pyruvate kinase and phosphofructokinase, while it increased those of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Metabolic flux distribution in the stationary phase indicated that citrate addition resulted in increased fluxes in the pentose phosphate pathway and TCA cycle, and decreased fluxes in the glycolysis and acetate pathways.  相似文献   

16.

Plant-derived smoke is a positive regulator of seed germination and growth with regard to many plant species. Of the several compounds present in plant-derived smoke, karrikinolide or KAR1 (3-methyl-2H-furo[2,3-c]pyran-2-one) is considered to be the major active growth-promoting compound. To test the efficacy of smoke-saturated water (SSW) and KAR1 on carrot (Daucus carota L.), two separate pot experiments were simultaneously conducted in the same environmental conditions. SSW and KAR1 treatments were applied to the plants in the form of aqueous solutions of variable concentrations. Prior to sowing, seeds were soaked in the solutions of SSW (25.8 µg L−1, 51.6 µg L−1,103.2 µg L−1 and 258.0 µg L−1) and KAR1 (0.015 µg L−1, 0.150 µg L−1, 1.501 µg L−1 and 15.013 µg L−1). Percent seed germination, vegetative growth, photosynthesis and nutritional values were the major parameters through which the plant response to the applied treatments was investigated. The results obtained indicated a significant improvement in all the plant attributes studied. In general, SSW (51.6 µg L−1) and KAR1 (1.501 µg L−1) proved optimum treatments for most the parameters. As compared to the control, 51.6 µg L−1 of SSW and 1.501 µg L−1 of KAR1 increased the percent seed germination by 58.0% and 54.4%, respectively. Over the control, the values of plant height and net photosynthetic rate were enhanced by 33.9% and 40.9%, respectively, due to 51.6 µg L−1 of SSW, while the values of these parameters were increased by 25.2% and 34.0%, respectively, due to 1.501 µg L−1 of KAR1. In comparison with the control, treatment 51.6 µg L−1 of SSW increased the contents of β-carotene and ascorbic acid by 32.7% and 37.9%, respectively, while the treatment 1.501 µg L−1 M of KAR1 enhanced these contents by 42.0% and 48.4%, respectively. This study provides an insight into an affordable and feasible method of crop improvement.

  相似文献   

17.
A novel feather-degrading bacterium named CA-1 was isolated from the gut of the spider Chilobrachys guangxiensis, which degrades native whole chicken feathers within 20 h. The CA-1 was confirmed to belong to Stenotrophomonas maltophilia based on morphologic and molecular analysis. Maximum feather degradation activity of the bacterium was observed at 37 °C in basal feather medium (NaCl 0.5 g/L, KH2PO4 0.3 g/L, K2HPO4 0.4 g/L, feather powder 10.0 g/L, pH 8.0), which was inhibited when glucose and ammonium nitrate were added in the medium. Furthermore, the purified enzymes under the optimal and suppressive conditions were analyzed respectively by SDS-PAGE and LC–MS/MS. Three enzymes, namely alkaline serine protease (29.1 kDa), ABC transporter permease (27.5 kDa), and alkaline phosphatase (40.8 kDa), were isolated and identified from the supernatant of the optimal culture and were considered to play principal roles. On the other hand, the potential synergic effects of the three proteins in S. maltophilia CA-1 feather degradation system were analyzed theoretically. CA-1 may product outer-membrane vesicles comprised of membranes and periplasmic proteins in the feather medium. The newly identified CA-1 and its synergic enzymes provide a new insight into further understanding the molecular mechanism of feather degradation by microbes. They also have potential application in cost-effectively degrading feathers into feeds and fertilizers through careful optimization and engineering of the three newly identified enzymes.  相似文献   

18.
Microbial production of trans-4-hydroxy-l -proline (Hyp) offers significant advantages over conventional chemical extraction. However, it is still challenging for industrial production of Hyp due to its low production efficiency. Here, chassis engineering was used for tailoring Escherichia coli cellular metabolism to enhance enzymatic production of Hyp. Specifically, four proline 4-hydroxylases (P4H) were selected to convert l -proline to Hyp, and the recombinant strain overexpressing DsP4H produced 32.5 g l−1 Hyp with α-ketoglutarate addition. To produce Hyp without α-ketoglutarate addition, α-ketoglutarate supply was enhanced by rewiring the TCA cycle and l -proline degradation pathway, and oxygen transfer was improved by fine-tuning heterologous haemoglobin expression. In a 5-l fermenter, the engineered strain E. coliΔsucCDΔputA-VHb(L)-DsP4H showed a significant increase in Hyp titre, conversion rate and productivity up to 49.8 g l−1, 87.4% and 1.38 g l−1 h−1 respectively. This strategy described here provides an efficient method for production of Hyp, and it has a great potential in industrial application.  相似文献   

19.
Spore-forming Bacillus sp. has been extensively studied for their probiotic properties. In this study, an acid-treated rice straw hydrolysate was used as carbon source to produce the spores of Bacillus coagulans. The results showed that this hydrolysate significantly improved the spore yield compared with other carbon sources such as glucose. Three significant medium components including rice straw hydrolysate, MnSO4 and yeast extract were screened by Plackett–Burman design. These significant variables were further optimized by response surface methodology (RSM). The optimal values of the medium components were rice straw hydolysate of 27% (v/v), MnSO4 of 0·78 g l−1 and yeast extract of 1·2 g l−1. The optimized medium and RSM model for spore production were validated in a 5 l bioreactor. Overall, this sporulation medium containing acid-treated rice straw hydrolysate has a potential to be used in the production of B. coagulans spores.  相似文献   

20.
Poly-γ-glutamic acid (γ-PGA) is a biocompatible and biodegradable polypeptide with wide-ranging applications in foods, cosmetics, medicine, agriculture and wastewater treatment. Bacillus amyloliquefaciens LL3 can produce γ-PGA from sucrose that can be obtained easily from sugarcane and sugar beet. In our previous work, it was found that low intracellular glutamate concentration was the limiting factor for γ-PGA production by LL3. In this study, the γ-PGA synthesis by strain LL3 was enhanced by chromosomally engineering its glutamate metabolism-relevant networks. First, the downstream metabolic pathways were partly blocked by deleting fadR, lysC, aspB, pckA, proAB, rocG and gudB. The resulting strain NK-A6 synthesized 4.84 g l−1 γ-PGA, with a 31.5% increase compared with strain LL3. Second, a strong promoter PC2up was inserted into the upstream of icd gene, to generate strain NK-A7, which further led to a 33.5% improvement in the γ-PGA titre, achieving 6.46 g l−1. The NADPH level was improved by regulating the expression of pgi and gndA. Third, metabolic evolution was carried out to generate strain NK-A9E, which showed a comparable γ-PGA titre with strain NK-A7. Finally, the srf and itu operons were deleted respectively, from the original strains NK-A7 and NK-A9E. The resulting strain NK-A11 exhibited the highest γ-PGA titre (7.53 g l−1), with a 2.05-fold improvement compared with LL3. The results demonstrated that the approaches described here efficiently enhanced γ-PGA production in B. amyloliquefaciens fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号