首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doig  L. E.  North  R. L.  Hudson  J. J.  Hewlett  C.  Lindenschmidt  K.-E.  Liber  K. 《Hydrobiologia》2017,787(1):323-339

Aside from a companion investigation to this study, there are currently no peer-reviewed phosphorus (P) release rate data for northern North American (i.e., Canadian) reservoirs. Using Lake Diefenbaker, Saskatchewan, Canada as a case study, we tested the effect of variation in overlying water DO conditions on the P release rates from sediment cores. Sediment cores from four down-reservoir locations in Lake Diefenbaker were incubated under high (>8 mg l−1), low (2–3 mg l−1), or anoxic (<1 mg l−1) DO concentrations. Sediment cores were then analyzed for total P (TP) and three geochemical P fractions to assess how the DO regime influenced sediment P inventory. Maximum P release rates were highest under anoxic conditions and similar among sites (15.0–20.3 mg m−2 day−1), with the low-DO rates intermediate to the high-DO and anoxic P fluxes. Predictive internal P loading models considering only hypolimnetic anoxia may therefore oversimplify and thus underestimate P mobilization in situ. Non-apatite inorganic P (54 ± 10% across sites) from the top 1 cm of the sediment profile was the main source of P released during incubations, indicating that sampling on a coarser scale of resolution could obscure the relationship between sediment geochemistry and short-term P flux.

  相似文献   

2.
We investigated the PCB-degrading abilities of four bacterial strains isolated from long-term PCB-contaminated soil (Alcaligenes xylosoxidans and Pseudomonas stutzeri) and sediments (Ochrobactrum anthropi and Pseudomonas veronii) that were co-metabolically grown on glucose plus biphenyl which is an inducer of the PCB catabolic pathway. The aim of study was to determine the respective contribution of biomass increase and expression of degrading enzymes on the PCB degrading abilities of each isolate. Growth on 5 g l−1 glucose alone resulted in the highest stimulation of the growth of bacterial strains, whereas grown on 10 mg l−1, 100 mg l−1, 1 g l−1, or 5 g l−1 biphenyl did not effected the bacterial growth. None of the strains used in this study was able to grow on PCBs as the sole carbon source. Cells grown on glucose exhibited enhanced degradation ability due to an increased biomass. Addition of biphenyl at concentrations of 1 or 5 g l−1 did not increase total PCB degradation, but stimulated the degradation of highly chlorinated congeners for some of the strains. The degradation of di- and tri-chlorobiphenyls was significantly lower for cells grown on 5 g l−1 biphenyl independently on glucose addition. The highest degradation of the PCBs was obtained for A. xylosoxidans grown in the presence of glucose. Thus A. xylosoxidans appears to be the most promising among the four bacterial isolates for the purpose of bioremediation.  相似文献   

3.
The effect of light on BPA degradation by an adapted bacterial consortium was investigated. BPA was completely degraded up to 50 mg l−1, and the degradation followed first-order reaction kinetics both in the light and in the dark. The degradation half-life of BPA when the consortium was grown in presence of light was 21.9, 17.2, and 12.6 h for concentrations of 10, 20, and 50 mg l−1, respectively; the degradation half-life of BPA in the dark was 13.1, 10.8, and 10.2 h for concentrations of 10, 20, and 50 mg l−1, respectively. Therefore, light inhibited BPA biodegradation. However, under both conditions, BPA was completely depleted. The bacterial consortium effectively utilised BPA as a growth substrate to sustain a cell yield of 0.95 g g−1 and 0.97 g g−1 in the light and dark, respectively. A total of ten and nine biodegradation intermediates were detected in the light and dark, respectively. Three bacterial metabolic pathways and one photodegradation pathway were proposed to explain their occurrence. This study demonstrated that bacterial consortia may assemble a wide range of catabolic pathways to allow for efficient degradation of BPA, converting BPA to principally bacterial biomass and metabolites exhibiting low or no oestrogenic activity.  相似文献   

4.
A Pseudomonas isolate, designated PAHAs-1, was found capable of reducing arsenate and degrading polycyclic aromatic hydrocarbons (PAHs) independently and simultaneously. This isolate completely reduced 1.5 mM arsenate within 48 h and removed approximately 100% and 50% of 60 mg l−1 phenanthrene and 20 mg l−1 pyrene within 60 h, respectively. Using PAHs as the sole carbon source, however, this isolate showed a slow arsenate reduction rate (4.62 μM h−1). The presence of arsenic affected cell growth and concurrent PAHs removal, depending on PAH species and arsenic concentration. Adding sodium lactate to the medium greatly enhanced the arsenate reduction and pyrene metabolism. The presence of the alpha subunit of the aromatic ring-hydroxylating dioxygenase (ARHD) gene, arsenate reductase (arsC) and arsenite transporter (ACR3(2)) genes supported the dual function of the isolate. The finding of latter two genes indicated that PAHAs-1 possibly reduced arsenate via the known detoxification mechanism. Preliminary data from hydroponic experiment showed that PAHAs-1 degraded the majority of phenanthrene (>60%) and enhanced arsenic uptake by Pteris vittata L. (from 246.7 to 1187.4 mg kg−1 As in the fronds). The versatile isolate PAHAs-1 may have potentials in improving the bioremediation of PAHs and arsenic co-contamination using the plant-microbe integrated strategy.  相似文献   

5.
6.
The vegetative compatibility of the arbuscular mycorrhizal fungus (AMF) Glomus clarum MUCL 46238 was evaluated after continuous exposure to fenhexamid, a sterol biosynthesis inhibitor (SBI). Three lineages of this AMF were cultured in vitro for five generations in association with Ri T-DNA transformed carrot roots in the presence of 0, 5 or 10 mg l−1 of fenhexamid. Whatever the AMF generation, fenhexamid at 5 and 10 mg l−1 had no significant impact on the number of spores produced. However, vegetative compatibility tests (VCT) conducted with spores from the three lineages, in the presence of 10 mg l−1 of fenhexamid, impacted the anastomosis process. At this concentration, the morphology of the germ tubes was modified. In addition, nitrotetrazolium–trypan blue staining revealed that 10 mg l−l of fenhexamid significantly reduced the probability of fusion between the germ tubes regardless of the culture conditions (i.e. absence or presence of fenhexamid) preceding the VCT. Our results demonstrated that spore production was not affected by fenhexamid, while anastomosis between germ tubes was decreased. This suggested that high concentrations, accumulation or repeated application of this SBI fungicide may impact the community structure of AMF in soil.  相似文献   

7.
The purpose of the presented paper was to study the effect of high concentrations of tributyltin (TBT) on the potassium retention and fatty acid (FA) composition of the fungus Cunninghamella elegans recognized as a very efficient TBT degrader. An increase in TBT had a strong influence on the potassium concentration in the fungus. In growth medium without TBT, the potassium content of the fungal cells was 5.8 mg K+ g dry weight−1. The maximum concentration of K+ was 15.06 mg g−1 dry weight at 30 mg l−1 of TBT. The major FAs that characterized the tested strain were C16:0, C18:1, C18:2, C18:3 and C18:0. TBT in the concentration range 5–30 mg l−1 strongly influenced the FA composition. In the presence of the organotin, the degree of saturation increased. It suggests that the observed changes promote an increase in the lipid ordering of the membrane by reducing its permeability and inhibiting potassium ion efflux.  相似文献   

8.
The tannery industry process involves chromium (Cr) salts as a main constituent of the process. The Cr recovery is a part of the process where other salts are used to achieve separation and recovery for using Cr back in the process. The process steps may contain both forms of Cr [Cr(VI): hexavalent and Cr(III): trivalent]. The recovery of Cr from tannery industry effluent through biological systems is much needed. The diverse physicochemical characteristics of these effluents may limit the growth of microorganisms and hence the limitation towards possible practical application of microorganisms in real industrial effluent conditions. The present study attempted the ability of the Cr-resistant fungus Paecilomyces lilacinus [isolated through an enrichment culture technique at 25 000 mg l−1 of Cr(III)] to grow and remove Cr [Cr(VI) and Cr(III)] from two physicochemically different undiluted tannery industry effluents (tannery effluent and spent chrome effluent) in the presence of cane sugar as a carbon source. Such attempts are made keeping in view the potential integration of biological processes in the overall Cr removal and recovery processes to improve its efficiency and environmental sustainability. The fungus has broad pH tolerance range and can reduce Cr(VI) both in acidic (pH 5.5) and alkaline (pH 8.0) conditions. The fungus showed the ability to remove Cr(VI) (1.24 mg l−1) and total Cr (7.91 mg l−1) from tannery effluent below the detection level within 18 h and 36 h of incubation, respectively, and ability to accumulate 189.13 mg Cr g−1 of dry biomass within 600 h of incubation from spent chrome effluent [containing 3731.4 mg l−1 of initial Cr(III) concentration].At 200 mg l−1 of Cr(VI) in growth media, with 100% detoxification and with only 10.54% of total Cr accumulation in the biomass, P. lilacinus showed Cr(VI) reduction as a major mechanism of Cr(VI) detoxification. The time-course study revealed the log phase of the growth for the maximum specific reduction of Cr(VI) and stationary phase of the growth for its maximum specific accumulation of both the forms of Cr [Cr(III) and Cr(VI)] in its biomass. In growth media at 50 mg l−1 and 200 mg l−1 of Cr(VI), P. lilacinus showed 100% reduction within 36 h and 120 h of incubation, respectively. The high degree of positive correlation and statistically high degree of relationship (r2 = 0.941) between the fungal growth and % Cr(VI) reduction by the fungus support the role of metabolically active cellular growth in Cr(VI) reduction by the fungus. Results indicate that expanded solid (sludge) retention times (SRTs) (stationary phase) can be recommended for the removal of Cr(III) through accumulation. In case of Cr(VI), reduction needs a priority; therefore, a non-expanded SRT is recommended for designing a continuous-flow completely stirred bioreactor so that a log phase of cellular growth can be maintained during the reduction process. This study reveals the strong potential of P. lilacinus fungi for the removal of Cr from tannery effluent and spent chrome effluent.  相似文献   

9.
A protocol was developed for the micropropagation of Pinus massoniana and mycorrhiza formation on rooted microshoots. Seedling explants were first cultured on Gresshoff and Doy (GD) medium supplemented with 6-benzyladenine (BA) alone or in combination with α-napthaleneacetic acid (NAA) to stimulate the formation of intercotyledonary axillary buds. The frequency of axillary bud induction was up to 97% on medium supplemented with 4.0 mg l−1 BA and 0. 2 mg l−1 NAA, and the average number of buds per explant reached up to 5.5 on medium with 4.0 mg l−1 BA and 0.1 mg l−1 NAA. Axillary buds elongated rapidly after being transferred to half-strength GD medium containing activated charcoal (0.1% w/v). Shoot proliferation was achieved by cutting elongated shoots into stem segments and subculturing on GD medium containing 2 mg l−1 BA and 0.2 mg l−1 NAA. Root primordia were induced in 82% of shoots when transferred to half-strength GD medium containing 0.2 mg l−1 NAA. Root elongation was achieved in a hormone-free GD agar medium or a perlite substrate. Rooted plantlets were inoculated with the mycelium of ectomycorrhizal fungus Pisolithus tinctorius and the formation of ectomycorrhiza-like structures was achieved in vitro.  相似文献   

10.
The application of betaine, a quaternary ammonium compound influenced the micropropagation in two commercially important UPASI (U-9 and U-10) cultivars of tea. Growth and multiplication of shoots of both the cultivars was enhanced significantly in the presence of 125–1,000 mg l−1 betaine with best response at 1,000 mg l−1 betaine. The shoots turned brown and died within 15 days when 1,500 mg l−1 betaine was applied. The study showed faster water/nutrient uptake in the presence of betaine. Higher assimilation of carbon and nitrogen in the presence of betaine was also indicated in biochemical analyses. Thus, a decrease in carbohydrates coupled with an increase in nitrate reductase activity was recorded. Moreover, faster differentiation of vascular elements and shoot thickness was observed in the shoots of U-9 and U-10 growing on medium containing 1,000 mg l−1 betaine. Nutrient uptake, assimilation and growth were significantly higher in U-10 as compared to U-9 shoots.  相似文献   

11.
Biotreatment of bagasse effluent using Phanerochaete chrysosporium (white rot fungus) is investigated. This study confirmed that lignin is the major pollutant component in this effluent followed by different carbohydrates. The treatment conditions must be very proper, especially in terms of biomass culture to achieve a successful treatment. The best conditions of temperature, biomass concentration, pH and duration for biotreatment of this effluent were 35°C, 552 mg l−1, 6 and 5 to 9 days, respectively. Under these conditions, a 9 days long treatment reduced by 98.7% the original biochemical oxygen demand (of 2,780 mg l−1) and by 98.5% the dissolved chemical oxygen demand (initial 4,200 mg l−1). Moreover, fungal treatment reduced total dissolved solids from 3,950 to 575 mg l−1 and color from 560 mg l−1 PtCo to 111 mg l−1 PtCo.  相似文献   

12.
Patchouli is an aromatic shrub of commercial interest because its essential oil is rich in patchoulol. This study aimed to evaluate the effect of growth regulators on callus production, analyze the essential oil production in calli and evaluate metabolic differences between callus, in vitro grown-plantlets and greenhouse-grown plants in three different accessions of patchouli. Calli were induced from leaf explants on media supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) in combination with 6-benzyladenine (BA). The largest size calli from different accessions were obtained in the presence of the two plant growth regulators (PGRs). For accession POG014, presence of 0.022 mg l−1 2,4-D plus 0.022 mg l−1 BA were optimum. For accession POG021, presence of 0.110 mg l−1 2,4-D plus 0.022 mg l−1 of BA induced the largest callus, whereas for accession POG002, 0.022 mg l−1 2,4-D and 0.225 mg l−1 BA, as well as 0.11 mg l−1 2,4-D and 0.022 mg l−1 BA promoted the development of largest callus. Among all accessions, peroxidase activity was highest in organogenic calli of accession POG014, whereas, polyphenol oxidase activity was highest in in vitro-grown plantlets of accession POG021. Biochemical variables differed significantly among the treatments, with the exception of total sugar levels. The highest concentrations of total sugars were observed in the calli and in vitro-grown plantlets of POG014 and POG021. Essential oils were not detected in callus tissues.  相似文献   

13.
The cell cultures of Pueraria tuberosa, a perennial leguminous lianas, were maintained in modified MS medium (KNO3 475 mg l−1, thiamine 1 mg l−1, biotin 1 mg l−1, calcium pantothenate 1 mg l−1) containing 0.1 mg l−1 2,4,5-trichloroacetic acid and 0.1 mg l−1 kinetin. Isoflavonoids (puerarin, genistin, daidzein, genistein) accumulation in cell suspension cultures was increased by 14-fold to ~12 mg l−1 after 48 h of adding 100 μM ethrel. Ethrel inhibitors (silver nitrate and silver thiosulfate) completely inhibited this effect in the presence of ethrel and isoflavonoids were not detected in the spent medium. The increase was dose dependent and can be explored to trigger high yield of isoflavonoids production.  相似文献   

14.
The influence of increasing concentrations (0.1, 1.0 and 5.0 mg l−1) of fluoranthene (FLT) on growth, endogenous abscisic acid (ABA) level and primary photosynthetic processes in 21-day-old pea plants (Pisum sativum L.) in vitro was investigated. Murashige and Skoog’s (MS) medium, with or without FLT, was enriched with indole-3-acetic acid (IAA; 0.1 mg l−1) or a combination of IAA (0.1 mg l−1) plus N6-benzyladenine (BA; 0.1 mg l−1). The level of endogenous ABA significantly increased with increasing FLT concentrations in the presence of both IAA and IAA plus BA. An increased level of endogenous ABA was observed in plants treated with IAA alone. The growth of shoot, callus and the content of photosynthetic pigments (chlorophyll a and b, carotenoids), in both IAA- and IAA plus BA-treated plants, were significantly stimulated by FLT at its lowest concentration (0.1 mg l−1) assayed in this study. However, FLT at higher concentrations (1.0 and 5.0 mg l−1) significantly inhibited all these parameters. Chlorophyll fluorescence imaging showed that FLT only at the highest concentration (5.0 mg l−1) in the presence of IAA (0.1 mg l−1) significantly increased F0, but decreased FV/FM and ΦII.  相似文献   

15.
An aerobic microbial consortium constructed by the combination of Rhodotorula mucilaginosa Z1, Streptomyces albidoflavus Z2 and Micrococcus luteus Z3 was immobilized in polyurethane foam and its ability to degrade nitrobenzene was investigated. Batch experimental results showed that polyurethane-foam-immobilized cells (PFIC) more efficiently degrade 200–400 mg l−1 nitrobenzene than freely suspended cells (FSC). Kinetics of nitrobenzene degradation by PFIC was well described by the Andrews equation. Compared with FSC, PFIC exhibited better reusability (over 100 times) and tolerated higher shock-loadings of nitrobenzene (1,000 mg l−1). Moreover, In the presence of salinity (≤5% NaCl, w/v), phenol (≤150 mg l−1) and aniline (≤50 mg l−1), respectively, degradation efficiency of nitrobenzene by PFIC reached over 95%. Even in the presence of both 100 mg l−1 phenol and 50 mg l−1 aniline, over 75% nitrobenzene was removed by PFIC in 36 h. Therefore, the immobilization of the defined consortium in polyurethane foam has application potential for removing nitrobenzene in industrial wastewater treatment system.  相似文献   

16.
The effects of seed maturity, media type, carbon source, and organic nutrient additives on seed germination, protocorm development, and plant growth of Paphiopedilum villosum var. densissimum Z. J. Liu et S. C. Chen were investigated. Micropropagation frequency was enhanced through the use of 200-day-old seed, Knudson C (KC) medium, and the presence of both glucose and coconut milk in the medium. The effects of various plant growth regulators on the frequency of shoot organogenesis in four Paphiopedilum species were also investigated. Explants of P. villosum var. densissimum and P. insigne (Lindl.) Stein incubated in the presence of 5 mg l−1 6-benzyladenine (BA) with 0.5 mg l−1 α-naphthalene acetic acid (NAA) and 0.2 mg l−1 BA with 0.1 mg l−1 NAA, respectively, showed a twofold increase in the frequency of shoot organogenesis. For explants of P. bellatulum (Rchb. f.) Stein and P. armeniacum S. C. Chen et F. Y. Liu, the combination of 5.5 mg l−1 BA with 0.5 mg l−1 NAA and 4 mg l−1 BA with 0.1 mg l−1 NAA, respectively, resulted in the highest frequencies of shoot organogenesis.  相似文献   

17.
The lowest 50% lethal (effective) concentration, L(E)C50, of phenol in a battery of seven microbiotests with species representing different trophic levels was 1–10 mg l−1, classifying it as “toxic”. A phenol-degrading microorganism was isolated from soil samples of the salt mine of Clona in Portugal, after enrichment in the presence of phenol and high salt concentration. Based on cultural and morphological characteristics, the strain CLONA2 was identified as belonging to Penicillium chrysogenum. It was found to be a halotolerant fungus able to grow in a nutrient-rich medium with 5.8% NaCl. It degraded at least 300 mg l−1 phenol as sole source of carbon and energy, without accumulation of intermediates. The samples were also tested for toxicity using the Microtox® assay. Data showed that P. chrysogenum CLONA2 could be effectively utilized to reduce phenol toxicity. The results suggest also that phenol under saline conditions can be successfully mineralized by P. chrysogenum CLONA2.  相似文献   

18.
Endophytic fungi are the endogenous micro-organisms to interacting with the plant cells, which do not exhibit any symptoms on the host plant and may produce some of the main secondary metabolites of the host plant cells. Ferula assa-foetida is a perennial and endemic medicinal plant of Iran, which is a rich source of sesquiterpene, coumarins, polysulfides and phenolic acids. In this study, 28 endophytic fungi isolates including Fusarium (60·7%), Aspergillus (7·1%), Alternaria (17·9%) and Plectosphaerella (7·1%) were isolated from F. assa-foetida root (57·1%), stem (32·1%) and leaf (10·8%) collected from Parvand protected area. Subsequently, their ability to produce phenolic acids was evaluated. The high amounts of total phenol (326·09 mg g−1 of dry weight, DW), total flavonoid (901·11 mg g−1 DW) and antioxidant activity (247·96 mg l−1) were found in the supernatant fluid of SBUp1 isolate. The high-performance liquid chromatography analysis of 14 phenolic acids showed that rosmarinic acid (RA) is the main phenolic acid in the supernatant fluid of SBUp1 by 64·11 mg g−1 DW confirmed by the liquid chromatography coupled with mass spectrometric analysis. According to morphological identification followed by phylogenetic study based on internal transcribed spacer (ITS) sequencing (ITS1-5.8S-ITS2) analysis, the SBUp1 isolate was identified as Alternaria tenuissima. Eventually, to our knowledge, it is the first document confirming A. tenuissima as an endophytic fungus of F. assa-foetida, which is a rich source of RA.  相似文献   

19.
Jatropha curcas L. (Physic nut) is a commercially important non-edible oil seed crop known for its use as an alternate source of biodiesel. In order to investigate the morphogenic potential of immature embryo, explants from four developmental stages were cultured on medium supplemented with combinations of auxins and cytokinins. It was found that the size of embryo is critical for the establishment of callus. Immature embryos (1.1–1.5 cm) obtained from the fruits 6 weeks after pollination showed a good response of morphogenic callus induction (85.7%) and subsequent plant regeneration (70%) with the maximum number of plantlets (4.7/explant) on Murashige and Skoog’s (MS) medium supplemented with IBA (0.5 mg l−1) and BA (1.0 mg l−1). The above medium when supplemented with growth adjuvants such as 100 mg l−1 casein hydrolysate + 200 mg l−1 l-glutamine + 8.0 mg l−1 CuSO4 resulted in an even higher frequency of callus induction (100%). Plant regeneration (90%) with the maximum number of plantlets (10/explant) was achieved on MS medium supplemented with 500 mg l−1 polyvinyl pyrrolidone + 30 mg l−1 citric acid + 1 mg l−1 BA + 0.5 mg l−1 Kn + 0.25 mg l−1 IBA. It was observed that plantlet regeneration could occur either through organogenesis of morphogenic callus or via multiplication of pre-existing meristem in immature embryos. The age of immature embryos and addition of a combination of growth adjuvants to the culture medium appear to be critical for obtaining high regeneration rates. Well-developed shoots rooted on half-strength MS medium supplemented with 0.5 mg l−1 IBA and 342 mg l−1 trehalose. The rooted plants after acclimatization were successfully transferred to the field in different agro-climatic zones in India. This protocol has been successfully evaluated on five elite lines of J. curcas.  相似文献   

20.
An efficient protocol for secondary somatic embryogenesis in camphor tree is reported. Secondary somatic embryos (SSEs), initially obtained from the primary embryos of a nascent embryogenic culture in 2002, were proliferated and maintained for more than 4 yr via cyclic secondary somatic embryogenesis. Throughout this period, the embryo populations retained a high level of competence for plant regeneration. SSEs were produced on the surfaces of the cotyledons and radicular ends of maternal somatic embryos (MSEs). Histological observations of the various stages of secondary embryo development revealed four typical stages, namely, globular, heart-shaped, torpedo, and cotyledonary. The process of secondary embryogenesis continued in a cyclic way, with each newly formed embryo producing a subsequent generation of secondary embryos. In order to progress developmentally beyond proliferation cycles, cotyledonary embryos from one of embryogenic lines (L14) were cultured on Murashige and Skoog (MS) medium with 0.1–3.0 mg l−1 abscisic acid (ABA) or 0.05–1.0 mg l−1 thidiazuron (TDZ) in darkness for 2 mo to achieve maturation. Matured embryos were then transferred to MS-based germination medium containing either 0.1 mg l−1 TDZ, 0.2 mg l−1 indole-3-butyric acid (IBA), and 0.5 mg l−1 6-benzylaminopurine (BA) or 0.1 mg l−1 TDZ and 0.2 mg l−1 IBA and were cultured in light for germination. Over 50% of embryos matured in the presence of 0.5 mg l−1 ABA were able to germinate with shoots and poor root system. Frequencies of embryos germinating normal shoots among different genotypes did not change significantly. A total of 93% of the shoots from the germinated embryos converted to plantlets on half strength MS medium with 0.5 mg l−1 IBA by 3 wk. Plantlets acclimatized successfully to ex vitro conditions and developed as field-grown plants with normal appearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号