首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agricultural wastes have attractive potential as alternate energy sources. However, a major bottleneck is to identify eco-friendly treatment methodologies to utilize them. The large diversity of unexplored, novel, and potential microorganisms hold great promise and require periodic isolation and characterization of microorganisms for bioprospection. In this study, approximately 100 fungal isolates were tested for their lignocellulolytic enzyme activities, based on plate assay, followed by quantification of enzyme activity. From this, M2E (Inonotus tropicalis) and 2a (Cerrena unicolor) showed good growth and proficient ligninolytic activity; isolates GK1 (Chaetomium globosum) and GK2 (Chaetomium brasiliense) exhibited exceptional cellulolytic activity on lignocellulosic substrates such as rice straw and sugarcane bagasse. Consortia of the potential ligninolytic and cellulolytic isolates were set up to determine their ability to biodegrade the lignocellulosic substrates such as rice straw and sugarcane bagasse. The efficiency of the consortia was determined on the basis of the increase in enzyme activity; it was also evident through scanning electron microscopy, x-ray diffraction analysis of the degraded substrates, and the sugar yield. Experiments were also carried out to compare the biological with the physical pretreatment methods. The consortium of ligninolytic and cellulolytic marine-derived fungi developed in this study prove to have the potential for application in the effective utilization of agricultural wastes.  相似文献   

2.
广西甘蔗根际高效联合固氮菌的筛选及鉴定   总被引:6,自引:0,他引:6  
胡春锦  林丽  史国英  汪茜  王钱崧  李杨瑞 《生态学报》2012,32(15):4745-4752
对广西主要甘蔗产区的根际联合固氮细菌进行了收集和评价,拟筛选获得对甘蔗具有潜在促生性能的联合固氮菌,为甘蔗生产节肥减耗提供依据。结合nifH基因扩增和固氮酶活性分析方法筛选获得36个固氮细菌菌株;进一步对所获得固氮菌株的固氮能力、溶磷性、分泌植物生长素IAA的特性等促进植物生长潜能进行评价,获得了5个同时具有较强固氮能力、降解无机磷和分泌植物生长激素IAA的功能菌株;通过Biolog鉴定系统和16S rRNA序列分析对5个具有较好应用潜力的固氮菌进行分类鉴定。结果表明这5个菌株分别属于Klebsiella sp.、Bacillus megaterium、Pseudomonas sp.、Pantoea sp.和Burkholderia sp.。本研究结果表明广西甘蔗根际联合固氮菌具有较大的开发利用潜力。  相似文献   

3.
Seven different strains were selected for their ability to degrade citrus pectin. Alkaline pectinases were produced by five bacterial soil isolates, whereas two fungal strains produced pectinase in an acidic environment. The bacteria were isolated from soil of a plum orchard in Northern Ireland. These isolates produced significant amounts of pectin lyase (PL) and polygalacturonase (PG) with maximum activities of 30.1 and 29.1 U/ml respectively. Fungal strains Aspergillus sp. and PN-1 produced four different pectinolytic activities; endo-PG, exo-PG, pectin esterase (PE) and PL. The Aspergillus sp. produced higher amounts of pectinase than PN-1. The Aspergillus sp. excreted highly stable pectinases, which may be of importance for industrial applications.  相似文献   

4.

Background

Pokkah boeng disease caused by the Fusarium species complex results in significant yield losses in sugarcane. Thus, the rapid and accurate detection and identification of the pathogen is urgently required to manage and prevent the spreading of sugarcane pokkah boeng.

Methods

A total of 101 isolates were recovered from the pokkah boeng samples collected from five major sugarcane production areas in China throughout 2012 and 2013. The causal pathogen was identified by morphological observation, pathogenicity test, and phylogenetic analysis based on the fungus-conserved rDNA-ITS. Species-specific TaqMan real-time PCR and conventional PCR methods were developed for rapid and accurate detection of the causal agent of sugarcane pokkah boeng. The specificity and sensitivity of PCR assay were also evaluated on a total of 84 isolates of Fusarium from China and several isolates from other fungal pathogens of Sporisorium scitamineum and Phoma sp. and sugarcane endophyte of Acremonium sp.

Result

Two Fusarium species (F. verticillioides and F. proliferatum) that caused sugarcane pokahh boeng were identified by morphological observation, pathogenicity test, and phylogenetic analysis. Species-specific TaqMan PCR and conventional PCR were designed and optimized to target their rDNA-ITS regions. The sensitivity of the TaqMan PCR was approximately 10 pg of fungal DNA input, which was 1,000-fold over conventional PCR, and successfully detected pokkah boeng in the field-grown sugarcane.

Conclusions/Significance

This study was the first to identify two species, F. verticillioides and F. proliferatum, that were causal pathogens of sugarcane pokkah boeng in China. It also described the development of a species-specific PCR assay to detect and confirm these pathogens in sugarcane plants from mainland China. This method will be very useful for a broad range of research endeavors as well as the regulatory response and management of sugarcane pokkah boeng.  相似文献   

5.
Summary Two highly alkalophilic bacteria, and potent producers of alkaline pullulanase, were isolated from Korean soils. The two isolates, identified asBacillus sp. S-1 andMicrococcus sp. Y-1, grow on starch under alkaline conditions and effectively secrete extracellular pullulanases. The two isolates were extremely alkalophilic since bacterial growth and enzyme production occurred at pH values ranging from pH 6.0 to 12.0 forMicrococcus sp. Y-1 and pH 6.0 to 10.0 forBacillus sp. S-1. Both strains secrete enzymes that possess amylolytic and pullulanolytic acitivities. Extracellular crude enzymes of both isolates gave maltotriose as the major product formed from soluble starch and pullulan hydrolysis. Compared to other alkalophilic microbes such asMicrococcus sp. (0.57 units ml–1),Bacillus sp. KSM-1876 (0.56 units ml–1) andBacillus No. 202-1 (1.89 units ml–1) these isolates secreted extremely high concentrations (7.0 units ml–1 forBacillus sp. S-1 and 7.6 units ml–1 forMicrococcus sp. Y-1) of pullulanases in batch culture. The pullulanase activities from both strains were mostly found in the culture medium (85–90%). The extracellular enzymes of both bacteria were alkalophilic and moderately thermoactive; optimal activity was detected at pH 8.0–10.0 and between 50 and 60°C. Even at pH 12.0, 65% of original Y-1 pullulanase activity and 10% of S-1 pullulanase activity remained. The two newly isolated strains had broad pH ranges and moderate thermostability for their enzyme activities. These result strongly indicate that these new bacterial isolates have potential as producers of pullulanases for use in the starch industry.  相似文献   

6.
Thaxtomin A is the main phytotoxin produced by Streptomyces scabies, a causal agent of potato scab. Thaxtomin A is a yellow compound composed of 4-nitroindol-3-yl-containing 2,5-dioxopiperazine. A collection of nonpathogenic streptomycetes isolated from potato tubers and microorganisms recovered from a thaxtomin A solution were examined for the ability to grow in the presence of thaxtomin A as a sole carbon or nitrogen source. Three bacterial isolates and two fungal isolates grew in thaxtomin A-containing media. Growth of these organisms resulted in decreases in the optical densities at 400 nm of culture supernatants and in 10% reductions in the thaxtomin A concentration. The fungal isolates were identified as a Penicillium sp. isolate and a Trichoderma sp. isolate. One bacterial isolate was associated with the species Ralstonia pickettii, and the two other bacterial isolates were identified as Streptomyces sp. strains. The sequences of the 16S rRNA genes were determined in order to compare thaxtomin A-utilizing actinomycetes to the pathogenic organism S. scabies and other Streptomyces species. The nucleotide sequences of the γ variable regions of the 16S ribosomal DNA of both thaxtomin A-utilizing actinomycetes were identical to the sequence of Streptomyces mirabilis ATCC 27447. When inoculated onto potato tubers, the three thaxtomin A-utilizing bacteria protected growing plants against common scab, but the fungal isolates did not have any protective effect.  相似文献   

7.
The development of alternative energy technology is critically important because of the rising prices of crude oil, security issues regarding the oil supply, and environmental issues such as global warming and air pollution. Bioconversion of biomass has significant advantages over other alternative energy strategies because biomass is the most abundant and also the most renewable biomaterial on our planet. Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi and bacteria which are capable of degrading lignocellulolytic materials. Fungi such as Trichoderma reesei and Aspergillus niger produce large amounts of extracellular cellulolytic enzymes, whereas bacterial and a few anaerobic fungal strains mostly produce cellulolytic enzymes in a complex called cellulosome, which is associated with the cell wall. In filamentous fungi, cellulolytic enzymes including endoglucanases, cellobiohydrolases (exoglucanases) and β-glucosidases work efficiently on cellulolytic residues in a synergistic manner. In addition to cellulolytic/hemicellulolytic activities, higher fungi such as basidiomycetes (e.g. Phanerochaete chrysosporium) have unique oxidative systems which together with ligninolytic enzymes are responsible for lignocellulose degradation. This review gives an overview of different fungal lignocellulolytic enzymatic systems including extracellular and cellulosome-associated in aerobic and anaerobic fungi, respectively. In addition, oxidative lignocellulose-degradation mechanisms of higher fungi are discussed. Moreover, this paper reviews the current status of the technology for bioconversion of biomass by fungi, with focus on mutagenesis, co-culturing and heterologous gene expression attempts to improve fungal lignocellulolytic activities to create robust fungal strains.  相似文献   

8.
Production of extracellular enzymes participating in the degradation of biopolymers was studied in 29 strains of nonbasidiomycetous microfungi isolated from Quercus petraea forest soil based on the frequency of occurrence. Most of the isolates were ascomycetes and belonged to the genera Acremonium, Alternaria, Cladosporium, Geomyces, Hypocrea, Myrothecium, Ochrocladosporium, and Penicillium (18 isolates), and two isolates were zygomycetes. Only six isolates showed phenol oxidation activity which was low and none of the strains were able to degrade humic acids. Approximately half of the strains were able to degrade cellulose and all but six degraded chitin. Most strains produced significant amounts of the cellulolytic enzymes cellobiohydrolase and ??-glucosidase and the chitinolytic enzymes chitinase, chitobiosidase, and N-acetylglucosaminidase. The highest cellulase activities were found in Penicillium strains, and the highest activity of chitinolytic enzymes was found in Acremonium sp. The production of the hemicellulose-degrading enzymes ??-galactosidase, ??-galactosidase, and ??-mannosidase was mostly low. The microfungal strains were able to produce significant growth on a range of 41?C87, out of 95 simple C-containing substrates tested in a Biolog? assay, monosaccharides being for all strains the most rapidly metabolized C-sources. Comparison with saprotrophic basidiomycetes from the same environment showed that microfungi have similar cellulolytic capabilities and higher chitinase activities which testifies for their active role in the decomposition of both lignocellulose and dead fungal biomass, important pools of soil carbon.  相似文献   

9.
Nine fungal strains isolated from an aged and heavily contaminated soil were identified and screened to assess their degradative potential. Among them, Allescheriella sp. strain DABAC 1, Stachybotrys sp. strain DABAC 3, and Phlebia sp. strain DABAC 9 were selected for remediation trials on the basis of Poly R-478 decolorization associated with lignin-modifying enzyme (LME) production. These autochthonous fungi were tested for the abilities to grow under nonsterile conditions and to degrade various aromatic hydrocarbons in the same contaminated soil. After 30 days, fungal colonization was clearly visible and was confirmed by ergosterol determination. In spite of subalkaline pH conditions and the presence of heavy metals, the autochthonous fungi produced laccase and Mn and lignin peroxidases. No LME activities were detected in control microcosms. All of the isolates led to a marked removal of naphthalene, dichloroaniline isomers, o-hydroxybiphenyl, and 1,1′-binaphthalene. Stachybotrys sp. strain DABAC 3 was the most effective isolate due to its ability to partially deplete the predominant contaminants 9,10-anthracenedione and 7H-benz[DE]anthracen-7-one. A release of chloride ions was observed in soil treated with either Allescheriella sp. strain DABAC 1 or Stachybotrys sp. strain DABAC 3, suggesting the occurrence of oxidative dehalogenation. The autochthonous fungi led to a significant decrease in soil toxicity, as assessed by both the Lepidium sativum L. germination test and the Collembola mortality test.  相似文献   

10.
Rhizospheric and root-associated/endophytic (RAE) bacteria were isolated from tomato plants grown in three suppressive compost-based plant growth media derived from the olive mill, winery and Agaricus bisporus production agro-industries. Forty-four (35 rhizospheric and 9 RAE) out of 329 bacterial strains showed in vitro antagonistic activity against at least one of the soil-borne fungal pathogens, Fusarium oxysporum f.sp. radicis-lycopersici (FORL), F. oxysporum f.sp. raphani, Phytophthora cinnamomi, P. nicotianae and Rhizoctonia solani. The high percentage of total isolates showing antagonistic properties (13%) and their common chitinase and β-glucanase activities indicate that the cell wall constituents of yeasts and macrofungi that proliferate in these compost media may have become a substrate that favours the establishment of antagonistic bacteria to soil-borne fungal pathogens. The selected bacterial strains were further evaluated for their suppressiveness to tomato crown and root rot disease caused by FORL. A total of six rhizospheric isolates, related to known members of the genera Bacillus, Lysinibacillus, Enterobacter and Serratia and one RAE associated with Alcaligenes faecalis subsp. were selected, showing statistically significant decrease of plant disease incidence. Inhibitory effects of extracellular products of the most effective rhizospheric biocontrol agent, Enterobacter sp. AR1.22, but not of the RAE Alcaligenes sp. AE1.16 were observed on the growth pattern of FORL. Furthermore, application of cell-free culture extracts, produced by Enterobacter sp. AR1.22, to tomato roots led to plant protection against FORL, indicating a mode of biological control action through antibiosis.  相似文献   

11.
Strains of Pseudomonas putida, Pseudomonas sp., and Pseudomonas aeruginosa were examined for their ability to grow in the presence of the iron chelator, ethylenediamine-di-(o-hydroxyphenylacetic acid). In vitro fungal inhibition assays showed that the isolates varied in their ability to inhibit the growth of representative fungal plant pathogens. Fungal inhibition in vitro was superior to that of previously reported Pseudomonas sp. Studies with Fusarium oxysporum forma sp. lycopersici and a susceptible tomato cultivar demonstrated that Pseudomonas putida PPU3.1 was able to significantly reduce wilt disease.  相似文献   

12.
The Streptomyces spp. are notorious plant biomass decomposers in soil environments, but only few strains were biochemically and genetically characterized. Here, we employed functional screening along with genomic sequencing for identification of novel lignocellulolytic Streptomyces strains. Streptomyces strains isolated from soil were functional screened based on their cellulolytic and hemicellulolytic capacities by enzymatic plate assays containing carboxymethylcellulose (CMC) and beechwood xylan as sole carbon source. Subsequently, genomes of Streptomyces strains were sequenced, annotated, and interpreted to correlate their genetic contents with biochemical properties. Among the 80 bacterial isolates that were screened for enzymatic activity, two Streptomyces strains (named as F1 and F7) exhiting higher endoglucanase and endoxylanase activities were selected for biochemical and genomic characterization. After cultivation on steam-pretreated sugarcane bagasse-based medium, the supernatant of the strains F1 and F7 exhibited enzymatic activity against different substrates, such as arabinan, rye arabinoxylan, β-glucan, starch, CMC, xylan, and chitin. Furthermore, strain F7 was able to degrade pectin, mannan, and lichenan. The genomic analysis of both strains revealed a diversity of carbohydrate-active enzymes. The F1 and F7 genomes encode 33 and 44 different types of glycosyl hydrolases families, respectively. Moreover, the genomic analysis also identified genes related to degradation of lignin-derived aromatic compounds. Collectively, the study revealed two novel Streptomyces strains and further insights on the degradation capability of lignocellulolytic bacteria, from which a number of technologies can arise, such as saccharification processes.  相似文献   

13.
《Process Biochemistry》2004,39(8):1001-1006
Thirty filamentous fungal strains were isolated from effluents of a stainless steel industry (Minas Gerais, Brazil) and tested for phenol tolerance. Fifteen strains of the genera Fusarium sp., Aspergillus sp., Penicillium sp. and Graphium sp. tolerants up to 10 mM of phenol were selected and tested for their ability to degrade phenol. Phenol degradation was a function of strain, time of incubation and initial phenol concentration. FIB4, LEA5 and AE2 strains of Graphium sp. and FE11 of Fusarium sp. presented the highest percentage phenol degradation, with 75% degradation of 10 mM phenol in 168 h for FIB4. A higher starting cell density of Graphium sp. FIB4 lead to a decrease in the time needed for full phenol degradation and increased the phenol degradation rate. All strains exhibited activity of catechol 1,2-dioxygenase and phenol hydroxylase in free cell extracts obtained from cells grown on phenol, suggesting that catechol was oxidized by the ortho type of ring fission. These data reported demonstrate the prospect after the application of filamentous fungal strains in protecting the environment from phenol pollution.  相似文献   

14.
We surveyed the distribution and diversity of fungi associated with eight macroalgae from Antarctica and their capability to produce bioactive compounds. The collections yielded 148 fungal isolates, which were identified using molecular methods as belonging to 21 genera and 50 taxa. The most frequent taxa were Geomyces species (sp.), Penicillium sp. and Metschnikowia australis. Seven fungal isolates associated with the endemic Antarctic macroalgae Monostroma hariotii (Chlorophyte) displayed high internal transcribed spacer sequences similarities with the psychrophilic pathogenic fungus Geomyces destructans. Thirty-three fungal singletons (66%) were identified, representing rare components of the fungal communities. The fungal communities displayed high diversity, richness and dominance indices; however, rarefaction curves indicated that not all of the fungal diversity present was recovered. Penicillium sp. UFMGCB 6034 and Penicillium sp. UFMGCB 6120, recovered from the endemic species Palmaria decipiens (Rhodophyte) and M. hariotii, respectively, yielded extracts with high and selective antifungal and/or trypanocidal activities, in which a preliminary spectral analysis using proton nuclear magnetic resonance spectroscopy indicated the presence of highly functionalised aromatic compounds. These results suggest that the endemic and cold-adapted macroalgae of Antarctica shelter a rich, diversity and complex fungal communities consisting of a few dominant indigenous or mesophilic cold-adapted species, and a large number of rare and/or endemic taxa, which may provide an interesting model of algal–fungal interactions under extreme conditions as well as a potential source of bioactive compounds.  相似文献   

15.
Application of environmentally friendly agents to reduce the use of chemicals and to enhance growth of plants is an ultimate goal of sustainable agriculture. The use of plant growth-promoting endophytes has become of great interest as a way to enhance plant growth and additionally protect plants from phytopathogens. In this study, 135 isolates of endophytic bacteria including actinomycetes were isolated from roots of commercial sugarcane plants cultivated in Thailand and were characterized for plant growth-promoting (PGP) traits. Based on morphological and 16S rRNA sequence analysis, the endophytes were distributed into 14 genera of which the most dominant species belong to Bacillus, Enterobacter, Microbispora, and Streptomyces. Two strains of endophytic diazotrophs, Bacillus sp. EN-24 and Enterobacter sp. EN-21; and two strains of actinomycetes, Microbispora sp. GKU 823 and Streptomyces sp. GKU 895, were selected based on their PGP traits including 1-aminocyclopropane-1-decarboxylate deaminase, indole-3-acetic acid, nitrogen fixation, phosphate solubilization, and siderophore production for evaluation of sugarcane growth enhancement by individual and co-inoculation. Sixty days after co-inoculation by endophytic diazotrophs and actinomycetes, the growth parameters of sugarcane plants were significantly greater than that of individual and un-inoculated plants. The results indicated that these endophytes have high potential as PGP agents that could be applied to promote sugarcane growth and could be developed as active added value biofertilizers in the future.  相似文献   

16.
Bacterial strains with ability to suppress Colletotrichum falcatum were isolated from the rhizosphere of sugarcane. Thirty nine candidates, chosen on the basis of in vitro antagonism, inhibited C. falcatum growth by 15–65% on test plates. Twenty two isolates causing 50% or more in vitro inhibition were screened for their root colonization ability and biocontrol activity on micropropagated sugarcane plants under greenhouse conditions. Twelve strains suppressed red rot infection in plantlets, but no significant correlation was observed between in vitro pathogen inhibition and in vivo disease suppression. However, isolates showing root colonization over 5.2 log10 CFU g−1 of soil showed highest suppression of C. falcatum and reduction of red rot disease. Six strains with the capability to maintain a significant population in the sugarcane rhizosphere and with a high potential to control red rot were identified by 16S rDNA as Ochrobacterum intermedium NH-5, Pseudomonas putida NH-50, Bacillus subtilis NH-100, Bacillus subtilis NH-160, Bacillus sp NH-217 and Stenotrophomonas maltophilia NH-300.  相似文献   

17.
An in vitro antagonism test is a typical procedure for the selection of potential biocontrol strains. However, the traditional method of screening antagonistic bacteria in vitro is a time consuming method when conducting large-scale screening trials. In this study, an improved method for the selection of antagonistic bacteria in vitro from compost was established based on the traditional method. 21 Antagonistic bacteria out of 33 target strains isolated from vinegar waste compost using the improved method. The 16S rDNA gene showed the 21 strains all belonged to the Bacillus genus and 18 different types of fingerprints were obtained by enterobacterial repetitive inter-genic consensus (ERIC)-PCR. 18 Selected strains which had the unique fingerprints all exhibited broad-spectrum antagonism towards the tested fungi and at least two enzyme activities in vitro. Among them, majority of the isolates were siderophore producer, some of them showed nitrogen-fixing ability and small of them were IAA producer. Four out of five selected strains were found both to be effective in controlling wilt and damping-off disease and four strains showed strong growth-promoting activities for cucumber seedlings under greenhouse conditions. Thus, these results demonstrated that the improved method was an effective and rapid means to screen potential antagonistic microorganisms in vitro. The results also showed that Bacillus sp. strains in vinegar waste compost exhibited antibiosis against fungal pathogens and promoted the growth of cucumber seedlings.  相似文献   

18.
Oxalic acid plays major role in the pathogenesis by Sclerotinia sclerotiorum; it lowers the pH of nearby environment and creates the favorable condition for the infection. In this study we examined the degradation of oxalic acid through oxalate oxidase and biocontrol of Sclerotinia sclerotiorum. A survey was conducted to collect the rhizospheric soil samples from Indo-Gangetic Plains of India to isolate the efficient fungal strains able to tolerate oxalic acid. A total of 120 fungal strains were isolated from root adhering soils of different vegetable crops. Out of 120 strains a total of 80 isolates were able to grow at 10?mM of oxalic acid whereas only 15 isolates were grow at 50?mM of oxalic acid concentration. Then we examined the antagonistic activity of the 15 isolates against Sclerotinia sclerotiorum. These strains potentially inhibit the growth of the test pathogen. A total of three potential strains and two standard cultures of fungi were tested for the oxalate oxidase activity. Strains S7 showed the maximum degradation of oxalic acid (23?%) after 60?min of incubation with fungal extract having oxalate oxidase activity. Microscopic observation and ITS (internally transcribed spacers) sequencing categorized the potential fungal strains into the Aspergillus, Fusarium and Trichoderma. Trichoderma sp. are well studied biocontrol agent and interestingly we also found the oxalate oxidase type activity in these strains which further strengthens the potentiality of these biocontrol agents.  相似文献   

19.
The present investigation reports the isolation, molecular identification and screening of manganese (Mn) solubilizing fungal strains from low-grade Mn mine tailings. Six morphologically distinct Mn solubilizing fungal strains were isolated on MnO2-supplemented agar plates with Mn concentration of 0.1% (w/v). The biochemical characterization of the isolated fungal strains was carried out. The molecular identification by internal transcribed spacer (ITS) sequencing identified the strains as Aspergillus terreus, Aspergillus oryzae, Penicillium sp., Penicillium sp., Penicillium daleae and Penicillium sp. with GenBank accession numbers KP309809, KP309810, KP309811, KP309812, KP309813 and KP309814, respectively. The ability of the isolated fungal strains to tolerate and solubilize Mn was investigated by subculturing them on Mn-supplemented plates with concentration ranging from 0.1 to 0.5% (w/v). Mn solubilizing ability of the fungal isolates is possibly due to the mycelia production of biogenerated organic acids such as oxalic acid, citric acid, maleic acid and gluconic acid as revealed by ion chromatography. Our investigation signifies the role of fungi in biotransformation of insoluble Mn oxide.  相似文献   

20.
Bamboos, regarded as therapeutic agents in ethnomedicine, have been used to inhibit inflammation and enhance natural immunity for a long time in Asia, and there are many bamboo associated fungi with medical and edible value. In the present study, a total of 350 fungal strains were isolated from the uncommon moso bamboo (Phyllostachys edulis) seeds for the first time. The molecular diversity of these endophytic fungi was investigated and bioactive compound producers were screened for the first time. All the fungal endophytes were categorized into 69 morphotypes according to culturable characteristics and their internal transcriber spacer (ITS) regions were analyzed by BLAST search with the NCBI database. The fungal isolates showed high diversity and were divided in Ascomycota (98.0%) and Basidiomycota (2.0%), including at least 19 genera in nine orders. Four particular genera were considered to be newly recorded bambusicolous fungi, including Leptosphaerulina, Simplicillium, Sebacina and an unknown genus in Basidiomycetes. Furthermore, inhibitory effects against clinical pathogens and phytopathogens were screened preliminarily and strains B09 (Cladosporium sp.), B34 (Curvularia sp.), B35 (undefined genus 1), B38 (Penicillium sp.) and zzz816 (Shiraia sp.) displayed broad-spectrum activity against clinical bacteria and yeasts by the agar diffusion method. The crude extracts of isolates B09, B34, B35, B38 and zzz816 under submerged fermentation, also demonstrated various levels of bioactivities against bambusicolous pathogenic fungi. This study is the first report on the antimicrobial activity of endophytic fungi associated with moso bamboo seeds, and the results show that they could be exploited as a potential source of bioactive compounds and plant defense activators. In addition, it is the first time that strains of Shiraia sp. have been isolated and cultured from moso bamboo seeds, and one of them (zzz816) could produce hypocrellin A at high yield, which is significantly different from the other strains published.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号