首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schinus terebinthifolia Raddi (Anacardiaceae) is an introduced ornamental tree from South America that has become one of the most invasive weeds in Hawaii and Florida, USA. Exploratory surveys in the plant’s native range from 1950 to 2014 identified several potential biological control agents. One of these is the leaflet rolling moth Episimus unguiculus Clarke (Lepidoptera: Tortricidae), previously known as Episimus utilis Zimmerman. This biological control agent was released in Hawaii in the 1950s where high densities were occasionally observed, leading to partial control of S. terebinthifolia by the 1960s. Larvae are leaf tiers capable of completely defoliating small plants. In order to investigate the release of E. unguiculus in the continental USA, a series of laboratory no- choice, and multiple-choice tests were conducted in Florida, and a preliminary open field test with a native plant in Hawaii. Under the confined laboratory conditions imposed during the no-choice tests, E. unguiculus accepted the economically important Pistacia spp. and several other non-target plants for oviposition and development. However, in the multiple-choice tests E. unguiculus exhibited a clear preference for S. terebinthifolia relative to non-target plants accepted in the no-choice tests. Overall, the results of field observations during surveys in South America and Hawaii and host range studies completed in Hawaii and Florida showed that E. unguiculus is a narrow specialist on S. terebinthifolia, its natural host plant.  相似文献   

2.
The rust fungusGymnoconia nitensinfects blackberry (Rubus argutus) systemically in regions of the continental United States, producing bright yellow–orange masses of spores on newly developing floricanes during springtime. In tests to determine the suitability of this rust as a biological control agent forR. penetransin Hawaii, a species now thought to be conspecific withR. argutus,rooted cuttings of the Hawaiian plants were grown at North Carolina State University, inoculated, and observed. Other introduced weedyRubusspp. in Hawaii, includingR. ellipticus, R. rosifolius,andR. glaucus,as well as the two endemic speciesR. hawaiensisandR. macraei,also were inoculated. No species ofRubusare of commercial importance in Hawaii, but the protection of the native species, of whichR. macraeiis rare, was of utmost concern. The native Hawaiian species did not survive well in North Carolina in this study, however. Later availability of a plant pathogen containment laboratory in Hawaii enabled similar tests to be conducted at that facility. In addition to the above species,R. spectabilis(salmonberry), a species native to the Pacific Northwest with which the HawaiianRubusspp. are thought to share a common ancestor, was inoculated in Hawaii. Infection withG. nitensunder natural field conditions becomes apparent only when sporulation occurs on floricanes the second year following infection. However, experimental inoculation led to early responses of chlorotic leaf flecking and puckering, leaf and stem contortion, and stem gall formation, indicating the sensitivity ofR. penetrans(=R. argutus),R. hawaiensis,andR. macraeito this rust. Apparent systemic infection also resulted in sporulation on one plant ofR. macraei.Ability to attack the endemic species suggests thatG. nitenswould not be suitable for release in Hawaii as a biological control agent, at least on the islands with populations of the native species.  相似文献   

3.
Predictable risk to native plants in weed biological control   总被引:6,自引:0,他引:6  
Data on field host use of 112 insects, 3 fungi, 1 mite, and 1 nematode established for biological control of weeds in Hawaii, the continental United States, and the Caribbean indicate that the risk to native flora can be judged reliably before introduction. Virtually all risk is borne by native plant species that are closely related to target weeds. Fifteen species of insects introduced for biological control use 41 native plant species; 36 of which are congeneric with target weeds, while 4 others belong to two closely allied genera. Only 1 of 117 established biological organisms uses a native plant unrelated to the target weed. Thus the elements of protection for the native flora are the selection of weed targets that have few or no native congeners and the introduction of biological control organisms with suitably narrow diets.  相似文献   

4.
Rhamnus cathartica (common buckthorn) is a shrub (or small tree) of Eurasian origin, which has become invasive in North America. Internal feeders and sap suckers were prioritized for biological control from over 30 specialized insects identified from the target plant in its native European range. Five leaf‐feeding moths were also considered for further investigations. Field observations and preliminary host range tests with the stem‐boring beetle Oberea pedemontana, the root‐boring moth Synanthedon stomoxiformis, the shoot‐tip‐boring moth Sorhagenia janiszewskae and the leaf‐feeding moths Ancylis apicella, A. unculana, Triphosa dubitata, Philereme transversata and P. vetulata confirmed that all of these species were lacking host specificity in no‐choice conditions. Choice oviposition tests carried out with most of the prioritized species to assess their ecological host range yielded unreliable results. Three psyllids, Trichochermes walkeri, Cacopsylla rhamnicolla and Trioza rhamni are promising in terms of host specificity, but are infected with the plant disease ‘Candidatus Phytoplasma rhamni’. Fruit‐ or seed‐feeding insects may present the best potential for biological control of buckthorn in directly reducing seed set and thus seedling establishment. However, it was not possible to obtain adult fruiting trees of native North American Rhamnus species for testing. It is concluded that there are no promising arthropod agents based on what is known to date. Pathogens could offer new opportunities for biological control of R. cathartica in North America.  相似文献   

5.
The most critical step during a weed biological control program is determination of a candidate agent’s host range. Despite rigorous protocols and extensive testing, there are still concerns over potential non-target effects following field releases. With the objective to improve risk assessment in biological control, no-choice and choice testing followed by a multiple generation study were conducted on the leaf-defoliator, Paectes longiformis Pogue (Lepidoptera: Euteliidae). This moth is being investigated as a biological control agent of Schinus terebinthifolia Raddi (Sapindales: Anacardiaceae), which is one of the worst invasive plant species in Florida, USA. Results from no-choice testing showed higher larval survival on S. terebinthifolia (48 %) and its close relative Schinus molle L. (47 %), whereas lower survival was obtained on six non-target species (<25 %). When given a choice, P. longiformis females preferred to lay eggs on the target weed, but oviposition also occurred on four non-target species. An improved performance on the native Rhus aromatica Aiton was found when insects were reared exclusively on this non-target species for one or two generations. Results from host range testing suggest that this moth is oligophagous, but has a preference for the target weed. Non-target effects found during multiple generation studies indicate that P. longiformis should not be considered as a biological control agent of S. terebinthifolia.  相似文献   

6.
Secusio extensa (Lepidoptera: Arctiidae) was evaluated as a potential biological control agent for Madagascar fireweed, Senecio madagascariensis (Asteraceae), which has invaded over 400 000 acres of rangeland in the Hawaiian Islands and is toxic to cattle and horses. The moth was introduced from southeastern Madagascar into containment facilities in Hawaii, and host specificity tests were conducted on 71 endemic and naturalized species (52 genera) in 12 tribes of Asteraceae and 17 species of non‐Asteraceae including six native shrubs and trees considered key components of Hawaiian ecosystems. No‐choice feeding tests indicated that plant species of the tribe Senecioneae were suitable hosts with first instars completing development to adult stage on S. madagascariensis (78.3%), Delairea odorata (66.1%), Senecio vulgaris (57.1%), Crassocephalum crepidioides (41.2%), and at significantly lower rates on Emilia fosbergii (1.8%) and Erechtites hieracifolia (1.3%). A low rate of complete larval development also was observed on sunflower, Helianthus annuus (11.6%), in the tribe Heliantheae. However, sunflower was rejected as a potential host in larval‐feeding and adult oviposition choice tests involving the primary host S. madagascariensis as control. Although larvae died as first instars on most test species, incomplete development and low levels of feeding were observed on nine species in the tribes Heliantheae, Cardueae and Lactuceae. Larvae did not feed on any non‐Asteraceae tested, including species with similar pyrrolizidene alkaloid chemistry, crops, and six ecologically prominent native species. Because all species of Senecioneae are non‐native and weedy in Hawaii, these results indicate that S. extensa is sufficiently host‐specific for introduction for biological control. High levels of feeding damage observed on potted plants indicate that S. extensa can severely impact the target fireweed as well as D. odorata, a noxious weed in native Hawaiian forests.  相似文献   

7.
The safety of weed biological control depends upon the selection and utilization of the target weed by the agent while causing minimal harm to non-target species. Selection of weed species by biological control agents is determined by the presence of behavioral cues, generally host secondary plant compounds that elicit oviposition and feeding responses. Non-target species that possess the same behavioral cues as found in the target weed may be at risk of damage by classical biological control agents. Here we conducted host range tests and examined secondary plant compounds of several test plant species. We studied the specialist herbivore Nystalea ebalea (Lepidoptera: Notodontidae) a Neotropical species, present in Florida as a surrogate biological control agent of the weed, Brazilian peppertree Schinus terebinthifolia, invasive in Florida and Hawaii. We found that the larvae had the greatest survival when fed the target weed, the Neotropical species Spondias purpurea, the Florida native species Rhus copallinum, and the ornamental Pistacia chinensis. Reduced survival and general larval performance were found on the native species Metopium toxiferum and Toxicodendron radicans. Both the volatiles and the allergen urushiols were chemically characterized for all species but urushiol diversity and concentration best predicted host range of this herbivore species. These results provide insight into host selection and utilization by one oligophagous Schinus herbivore. Other potential biological control agents may also be sensitive to plants that contain urushiols and if so, they may pose minimal risk to these native species.  相似文献   

8.
Structured host-choice and no-choice tests were conducted to help clarify the host plant interactions of an insect herbivore that is simultaneously seen as broadly polyphagous and pestiferous (in Africa) and host restricted/beneficial (in Australia). The research reported here involves specification of the host range of the invasive population of Scirtothrips aurantii found on Bryophyllum in Australia and included tests involving three separate lists of plant species considered to have the potential for thrips attack (plants of horticultural concern, native species at risk of attack and species listed for screening in the search for specialist B. delagoense biocontrol agents). This procedure was developed specifically to deal with the S. aurantii situation in Australia. Because the test species is already present in the field, the conclusions from the tests could be evaluated independently against field sampling results. Host testing revealed that the fundamental host range of the Bryophyllum population of S. aurantii includes Macadamia integrifolia, Mangifera indica and Kalanchoe blossfeldianna. However, the choice tests (involving B. delagoense) and a field survey of Man. indica demonstrated conclusively that the realised host range of S. aurantii in the field is restricted to Crassulaceae. We recommend that host testing of generalist insects not be discounted out of hand (for biological control) because of their perceived polyphagy. Any evidence of populations being strongly associated with the weed species of interest (through quantified host association studies in the native range) suggests further scrutiny of that population is warranted, by means of the host testing methods developed here and in conjunction with appropriate tests of the population’s species status.  相似文献   

9.
Heteroperreyia hubrichiMalaise (Hymenoptera: Pergidae), a foliagefeeding sawfly of Schinusterebinthifolius Raddi (Sapindales:Anacardiaceae), was studied to assess itssuitability as a classical biological controlagent of this invasive weed in Hawaii. No-choice host-specificity tests were conductedin Hawaiian quarantine on 20 plant species in10 families. Besides the target weed, adultfemales oviposited on four test species. Females accepted the Hawaiian native Rhussandwicensis A. Gray (Sapindales:Anacardiaceae) as an oviposition host equallyas well as the target species. The other threespecies received significantly fewer eggs. Neonate larvae transferred onto test plantssuccessfully developed to pupae on S.terebinthifolius (70% survival) and R.sandwicensis (1% survival). All other 18test plant species failed to support larvaldevelopment. A risk analysis was conducted toquantify the acceptability of non-targetspecies as host plants for H. hubrichi onthe basis of the insect's performance atvarious stages in its life cycle. Risk ofdamage to all plant species tested wasinsignificant except for R. sandwicensis. Risk to this native plant relative to S.terebinthifolius was estimated at 1%. Currently this level of risk is too high torequest introduction of this insect into theHawaiian environment. Detailed impact studiesin the native range of S. terebinthifoliusare needed to identify thepotential benefit that this insect offers. Also, field studies in South America withpotted R. sandwicensis would give a morereliable analysis of the risk this nativeHawaiian plant would face from naturalpopulations of H. hubrichi.  相似文献   

10.
A central aspect in biology and ecology is to determine the combination of factors that influence the distribution of species. In the case of herbivorous insects, the distribution of herbivorous species is necessarily associated with their host plants, a pattern often referred to as “host use”. Novel interactions that arise during a biological invasion can have important effects on the dynamics of that invasion, especially if it is driven by only a subset of the genetic diversity of the invading species. This is the case of the wellknown South American cactus moth, Cactoblastis cactorum, a successfully used biological control agent of non-native Opuntia cacti in Australia and South Africa, but now threatening unique cactus diversity and agriculture in North America. We studied the patterns of host plant usage by and host plant availability for C. cactorum under field conditions in Argentina, covering the geographical range of the four C. cactorum phylogroups and the recently documented southern distribution. We also assessed female preference and larval performance under laboratory conditions. Cactoblastis cactorum showed a geographical pattern of host use in its native range that was related to host availability. Laboratory assays of female preference showed some degree of preference to oviposit on O. ficus-indica, O. leucotricha and O. quimilo, but it was not positively correlated with the performance of larvae. These findings contribute to the further comprehension of the host use dynamics of C. cactorum in the insects’ native range, and could provide useful information for assessing the risk and future spread of this insect in North America.  相似文献   

11.
《Biological Control》2006,36(1):80-90
Water chestnut, Trapa natans, has become a major invasive plant in shallow water bodies in the northeastern United States. The failure of chemical and mechanical means to provide long-term and economically sustainable suppression of the species resulted in interest in the development of biological control. Field surveys in Asia and Europe identified a number of potential biological control agents in the native range of T. natans. The most promising species appeared to be the leaf beetle Galerucella birmanica, which is considered a pest of farmed T. natans in China. However, initial attempts to develop biological control faltered when field observations in China suggested that G. birmanica may not be host specific. Of particular concern was attack on water shield, Brasenia schreberi, a species native to China and North America. We conducted a number of laboratory and field investigations in China to assess preference and performance of G. birmanica on T. natans and B. schreberi. Initial no-choice experiments using 19 different plant species in 13 different families demonstrated that G. birmanica oviposited and was able to complete development only on Trapa spp. and B. schreberi. In larval no-choice tests G. birmanica was able to complete development on B. schreberi, however, larvae showed a 20% increase in mortality and longer development time compared to larvae developing on T. natans. In laboratory and field choice tests adults strongly preferred T. natans and in the field only occasionally laid eggs on B. schreberi. In addition, adults emerging from larvae reared on B. schreberi were less fit with reduced feeding and a declining oviposition rate. Their strong preference for T. natans was maintained in the field, even when T. natans was completely defoliated and adults were forced to migrate. We found only occasional “spill-over” of beetles onto B. schreberi and our data indicate that G. birmanica is a more promising biological control agent of T. natans than previously thought, although additional host specificity tests with many more North American plant species need to be completed.  相似文献   

12.
The tropical fruit tree, Ziziphus mauritiana (Rhamnaceae), a native of the Indian subcontinent, is a pasture and environmental weed in northern Australia and Fiji. In their native range, Ziziphus spp., including commercially cultivated Z. mauritiana and Z. jujuba, are subjected to a wide range of pests and diseases. The feasibility of classical biological control of this weed has not been explored to date. Effective biological control could reduce plant vigour and seed output, thereby limiting the spread of Z. mauritiana in Australia. Two Ziziphus species are native to Australia, hence, any prospective biological control agent should be specific to Z. mauritiana. Opportunistic field surveys and literature searches identified 133 species of phytophagous insects, 9 species of phytophagous mites and 12 plant pathogens on Ziziphus spp. Host records suggest the following are possibly specific to Z. mauritiana and hence are prospective biological control agents in Australia: the seed‐feeding weevil Aubeus himalayanus; the leaf‐feeding gracillariid moth Phyllonorycter iochrysis; the leaf‐mining chrysomelid beetle Platypria erinaceus; the leaf‐folding crambid moth Synclera univocalis; the leaf‐galling midge Phyllodiplosis jujubae; and the gall‐mites Aceria cernuus and Larvacarus transitans. Host range of the rust Phakopsora zizyphi‐vulgaris includes many Ziziphus species, including the native Z. oenoplia and hence would not be a suitable biological control agent in Australia. The powdery mildew Pseudoidium ziziphi, with a host range restricted to Ziziphus species, has not been reported on Z. oenoplia. All available information on the pests and diseases of Z. mauritiana are from cultivated varieties. Hence, future surveys should focus on wild Z. mauritiana in the Indian subcontinent in areas that are climatically similar to the regions of northern Australia, where it is currently most abundant.  相似文献   

13.
Host shifts and subsequent adaption to novel host plants are important drivers of speciation among phytophagous insects. However, there is considerably less evidence for host plant-mediated speciation in the absence of a host shift. Here, we investigated divergence of two sympatric sister elm leaf beetles, Pyrrhalta maculicollis and P. aenescens, which feed on different age classes of the elm Ulmus pumila L. (seedling versus adult trees). Using a field survey coupled with preference and performance trials, we show that these beetle species are highly divergent in both feeding and oviposition preference and specialize on either seedling or adult stages of their host plant. An experiment using artificial leaf discs painted with leaf surface wax extracts showed that host plant chemistry is a critical element that shapes preference. Specialization appears to be driven by adaptive divergence as there was also evidence of divergent selection; beetles had significantly higher survival and fecundity when reared on their natal host plant age class. Together, the results identify the first probable example of divergence induced by host plant age, thus extending how phytophagous insects might diversify in the absence of host shifts.  相似文献   

14.
Fallopia japonica (Houttuyn) Ronse Decraene (Polygonaceae) is a serious invasive weed in North American and Europe. In its native China, a leaf-rolling weevil, Euops chinesis (Coleoptera: Attelabidae) was found attacking F. japonica in the field. No-choice tests, multiple-choice tests, open field tests and field surveys were conducted as a measure of its host specificity. Forty-six plant species were selected from 17 families for host range testing, among which, six species, F. multiflora, F. japonica, Persicaria perfoliata, Rumex acetosa, R. japonicus and R. aquaticus, were exposed to adults in no-choice tests. However, larvae could only develop successfully on F. japonica, and this plant appeared to be the only host in the field, suggesting the weevil is host-specific. As larval development appears to depend on a fungus in the leaf rolls, the insect–fungus mutualism and risks including host specificity of the fungus should be evaluated before the insect’s introduction.  相似文献   

15.
The light brown apple moth, Epiphyas postvittana is a key pest of wine grapes in Australia. Two parasitoids, Dolichogenidea tasmanica and Therophilus unimaculatus, attack the larval stage of this pest. D. tasmanica is dominant in vineyards, whereas T. unimaculatus is mainly active in native vegetation. We sought to understand why they differ in their use of habitats. Plants are a major component of habitats of parasitoids, and herbivore-infested plants influence parasitoid foraging efficiency by their architecture and emission of volatile chemicals. We investigated how different plant species infested by E. postvittana could affect the foraging success of the two parasitoid species in both laboratory and field experiments. Four common host-plant species were selected for this study. In paired-choice experiments to determine the innate foraging preferences for plants, both parasitoid species showed differences in innate search preferences among plant species. The plant preference of D. tasmanica was altered by oviposition experience with hosts that were feeding on other plant species. In a behavioral assay, the two parasitoid species allocated their times engaged in various types of behavior differently when foraging on different plant species. For both parasitoids, parasitism on Hardenbergia violacea was the highest of the four plant species. Significantly more larvae dropped from Myoporum insulare when attacked than from the other three host-plant species, which indicates that parasitism is also affected by interactions between plants and host insects. In vineyards, parasitism by D. tasmanica was significantly lower on M. insulare than on the other three host-plant species, but the parasitism rates were similar among the other three plant species. Our results indicate that plants play a role in the habitat preferences of these two parasitoid species by influencing their foraging behavior, and are likely to contribute to their distributions among habitats.  相似文献   

16.
Studying the drivers of host specificity can contribute to our understanding of the origin and evolution of obligate pollination mutualisms. The preference–performance hypothesis predicts that host plant choice of female insects is related mainly to the performance of their offspring. Soil moisture is thought to be particularly important for the survival of larvae and pupae that inhabit soil. In the high Himalayas, Rheum nobile and R. alexandrae differ in their distribution in terms of soil moisture; that is, R. nobile typically occurs in scree with well‐drained soils, R. alexandrae in wetlands. The two plant species are pollinated by their respective mutualistic seed‐consuming flies, Bradysia sp1. and Bradysia sp2. We investigated whether soil moisture is important for regulating host specificity by comparing pupation and adult emergence of the two fly species using field and laboratory experiments. Laboratory experiments revealed soil moisture did have significant effects on larval and pupal performances in both fly species, but the two fly species had similar optimal soil moisture requirements for pupation and adult emergence. Moreover, a field reciprocal transfer experiment showed that there was no significant difference in adult emergence for both fly species between their native and non‐native habitats. Nevertheless, Bradysia sp1., associated with R. nobile, was more tolerant to drought stress, while Bradysia sp2., associated with R. alexandrae, was more tolerant to flooding stress. These results indicate that soil moisture is unlikely to play a determining role in regulating host specificity of the two fly species. However, their pupation and adult emergence in response to extremely wet or dry soils are habitat‐specific.  相似文献   

17.
In weed biological control programs, pre-release host-specificity testing relies traditionally on no-choice and choice feeding, oviposition, and development tests. Rarely have they included detailed examination of behavioral responses to olfactory and visual cues of biological control candidates, although a better understanding of the mechanisms underlying host recognition may explain potential discrepancies between choice and no-choice tests, and/or between tests conducted in the lab versus field conditions. We investigated how the seed-feeding weevil, Mogulones borraginis, distinguishes its host plant, Cynoglossum officinale, from three native confamilial non-target species in North America. In behavioral bioassays, M. borraginis responded to olfactory and visual cues individually and, to an even greater extent, to both plant cue modalities when offered simultaneously. In tests with the combined cues, M. borraginis was attracted to C. officinale but responded with indifference or was repelled by non-target plants. In electrophysiological experiments, we identified that M. borraginis responded to ten volatile compounds and four wavelengths of lights from inflorescences of C. officinale. We propose that studies of responses to multimodal plant cues can advance our understanding of how biocontrol candidate species discriminate among host plants and closely related non-target species, thereby increasing the accuracy of environmental safety assessments pre-release.  相似文献   

18.
Host-range and host-specificity tests were performed with Cybocephalus flavocapitis T. R. Smith (Coleoptera: Cybocephalidae) and Cybocephalus nipponicus Endrödy-Younga (Coleoptera: Cybocephalidae), two biological control candidates against the invasive cycad aulacaspis scale, Aulacaspis yasumatsui Takagi (Hemiptera: Diaspididae). Seventeen native scale species plus the invasive A. yasumatsui scale were tested in growth chambers using no-choice tests and hosts suitable for each of the two predatory beetles. The results revealed that the two Cybocephalus beetles, one imported species from Thailand and one native species, both fed on relatively similar scale prey species. Additionally, the adult beetles of these two species oviposited only on Diaspididae scales. The results showed that both Cybocephalus beetles may share a similar host niche in Taiwan.  相似文献   

19.
Prickly acacia, Acacia nilotica subsp. indica (Benth.) Brenan (Mimosaceae), a multi-purpose tree native to the Indian subcontinent, is a weed of national significance, widespread throughout the grazing areas of western Queensland and has the potential to spread throughout northern Australia. Biological control of prickly acacia has been in progress since the early 1980s, but with limited success to date. Based on genetic and climate matching studies, native surveys for potential biological control agents were conducted in 64 sites in Tamil Nadu state and eight sites in Karnataka state from November 2008 to December 2011. Surveys yielded 33 species of phytophagous insects (16 species of leaf-feeders, eight species of stem feeders, four species with leaf-feeding adults and root-feeding larvae, two stem-borers and bark-feeders and three flower-feeders) and two rust fungi. The number of species recorded at survey sites increased with the number of times the sites were surveyed. Using a scoring system based on field host range, geographic range, seasonal incidence and damage levels, we prioritised a scale insect (Anomalococcus indicus Ramakrishna Ayyar), two leaf-webbing caterpillars (Phycita sp. A and Phycita sp. B), a leaf weevil (Dereodus denticollis Boheman), a leaf beetle (Pachnephorus sp.), a gall-inducing rust (Ravenelia acacia-arabica Mundk. & Thirumalachari) and a leaf rust (Ravenelia evansii Syd. & P.) for detailed host specificity tests. The two rusts were sent to CABI-UK for preliminary host-specificity testing. Three insects (A. indicus, D. denticollis and Phycita sp. A) were imported into a quarantine facility in Brisbane, Australia where host-specificity tests are in progress.  相似文献   

20.
Host range expansion in insect herbivores is often thought to be mediated by several factors, principal among them are secondary plant metabolites. In weed biological control, the host range of a prospective agent is one of the most important considerations in its implementation. Extensive host testing tests seek to determine the behavioral acceptance and nutritional value of different test plant species to the potential agent. A list of test plants is compiled that comprises species that are close taxonomic relatives of the target weed plus other species of economic or ecologic importance. The host testing of the Melaleuca quinquenervia biological control agent Oxyops vitiosa indicated that larvae would accept and complete development on the Australian target weed M. quinquenervia, two Australian ornamental species, Callistemon citrina, Callistemon viminalis (all Myrtaceae). However, the larvae did not complete development when fed a North American species Myrica cerifera (Myricaceae). The study reported here confirms these results and examines the nutritional and performance differences in O. vitiosa larvae fed leaves of these species. The leaf quality factors, percent moisture, percent nitrogen, toughness, and terpenoid content were related to larval survival, performance and digestive indices. The results indicate that plant quality among the Myrtaceae species was generally similar and correspondingly larval survival, performance and digestive indices differed little when larvae were fed leaves of these species. However, significant differences occurred in the plant quality of the North American M. cerifera compared with the Australian species which had leaves with the lowest percent moisture, lowest leaf toughness, highest percent nitrogen. This species, however, is not a physiological host as none of the neonates survived to pupate. When third instars were switched to M. cerifera from their normal host M. quinquenervia reductions were found in survival, biomass gain, digestive efficiency, and conversion of digested food to insect biomass. The marginal acceptance of this North American native plant in laboratory bioassays appears related to the terpenoid chemistry that has similarities to the taxonomically unrelated host M. quinquenervia. However, the high larval mortality corresponds to several novel terpenoids that are not present in the host. For weed biological control host testing these results indicate that M. cerifera is a poor host for O. vitiosa. Additionally, future test plant lists should include plants with secondary metabolites similar to the target weed as these compounds may constitute behavioral cues that are relevant to these specialized herbivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号