首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Management practices from large-scale swine production facilities have resulted in the increased collection and storage of manure for off-season fertilization use. Odor and emissions produced during storage have increased the tension among rural neighbors and among urban and rural residents. Production of these compounds from stored manure is the result of microbial activity of the anaerobic bacteria populations during storage. In the current study, the inhibitory effects of condensed quebracho tannins on in vitro swine manure for reduction of microbial activity and reduced production of gaseous emissions, including the toxic odorant hydrogen sulfide produced by sulfate-reducing bacteria (SRB), was examined. Swine manure was collected from a local swine facility, diluted in anaerobic buffer, and mixed with 1 %?w/v fresh feces. This slurry was combined with quebracho tannins, and total gas and hydrogen sulfide production was monitored over time. Aliquots were removed periodically for isolation of DNA to measure the SRB populations using quantitative PCR. Addition of tannins reduced overall gas, hydrogen sulfide, and methane production by greater than 90 % after 7 days of treatment and continued to at least 28 days. SRB population was also significantly decreased by tannin addition. qRT-PCR of 16S rDNA bacteria genes showed that the total bacterial population was also decreased in these incubations. These results indicate that the tannins elicited a collective effect on the bacterial population and also suggest a reduction in the population of methanogenic microorganisms as demonstrated by reduced methane production in these experiments. Such a generalized effect could be extrapolated to a reduction in other odor-associated emissions during manure storage.  相似文献   

2.
Methanogenic flowthrough aquifer columns were used to investigate the potential of bioaugmentation to enhance anaerobic benzene-toluene-ethylbenzene-xylene (BTEX) degradation in groundwater contaminated with ethanol-blended gasoline. Two different methanogenic consortia (enriched with benzene or toluene and o-xylene) were used as inocula. Toluene was the only hydrocarbon degraded within 3 years in columns that were not bioaugmented, although anaerobic toluene degradation was observed after only 2 years of acclimation. Significant benzene biodegradation (up to 88%) was observed only in a column bioaugmented with the benzene-enriched methanogenic consortium, and this removal efficiency was sustained for 1 year with no significant decrease in permeability due to bioaugmentation. Benzene removal was hindered by the presence of toluene, which is a more labile substrate under anaerobic conditions. Real-time quantitative PCR analysis showed that the highest numbers of bssA gene copies (coding for benzylsuccinate synthase) occurred in aquifer samples exhibiting the highest rate of toluene degradation, which suggests that this gene could be a useful biomarker for environmental forensic analysis of anaerobic toluene bioremediation potential. bssA continued to be detected in the columns 1 year after column feeding ceased, indicating the robustness of the added catabolic potential. Overall, these results suggest that anaerobic bioaugmentation might enhance the natural attenuation of BTEX in groundwater contaminated with ethanol-blended gasoline, although field trials would be needed to demonstrate its feasibility. This approach may be especially attractive for removing benzene, which is the most toxic and commonly the most persistent BTEX compound under anaerobic conditions.  相似文献   

3.
The potential for biodegradation of polycyclic aromatic hydrocarbons (PAHs) at low temperature and under anaerobic conditions is not well understood, but such biodegradation would be very useful for remediation of polluted sites. Biodegradation of a mixture of 11 different PAHs with two to five aromatic rings, each at a concentration of 10 μg/ml, was studied in enrichment cultures inoculated with samples of four northern soils. Under aerobic conditions, low temperature severely limited PAH biodegradation. After 90 days, aerobic cultures at 20°C removed 52 to 88% of the PAHs. The most extensive PAH degradation under aerobic conditions at 7°C, 53% removal, occurred in a culture from creosote-contaminated soil. Low temperature did not substantially limit PAH biodegradation under nitrate-reducing conditions. Under nitrate-reducing conditions, naphthalene, 2-methylnaphthalene, fluorene, and phenanthrene were degraded. The most extensive PAH degradation under nitrate-reducing conditions at 7°C, 39% removal, occurred in a culture from fuel-contaminated Arctic soil. In separate transfer cultures from the above Arctic soil, incubated anaerobically at 7°C, removal of 2-methylnaphthalene and fluorene was stoichiometrically coupled to nitrate removal. Ribosomal intergenic spacer analysis suggested that enrichment resulted in a few predominant bacterial populations, including members of the genera Acidovorax, Bordetella, Pseudomonas, Sphingomonas, and Variovorax. Predominant populations from different soils often included phylotypes with nearly identical partial 16S rRNA gene sequences (i.e., same genus) but never included phylotypes with identical ribosomal intergenic spacers (i.e., different species or subspecies). The composition of the enriched communities appeared to be more affected by presence of oxygen, than by temperature or source of the inoculum.  相似文献   

4.
The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies.  相似文献   

5.
Nitrobenzene (NB) is an important industrial raw material in organic synthesis. However, successful biological treatment is challenging since NB wastewater is biologically toxic. During the experiment, the performance was examined during the acclimation process of NB in an anaerobic baffled reactor (ABR). The removal efficiencies of NB and chemical oxygen demand were 98% and 90%, respectively. Furthermore, by applying polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) technology of 16SrDNA, this paper analyzes the structural change of the archaea community in the ABR before and after NB acclimation and identifies the dominant community. The sequence structure analysis of archaea 16S rDNA in DGGE profiles shows that after NB biodegradation, the archaea-dominant community primarily consists of Methanothrix soehngenii from Methanosarcina, Methanosaeta concilii from Methanosaeta, Methanobacterium beijingense 8-2, uncultured Archaeon TA04, and uncultured Methanobacterium sp. isolated from environmental samples, which may be the important functional archaea in an ABR for NB biodegradation. The study of the population structure distribution and the dominant archaea community is helpful for elucidating the mechanisms of the anaerobic biodegradation mechanism of NB.  相似文献   

6.
Biological treatment of industrial waste is a widely practiced technique that generates comparatively less environmentally hazardous waste than other chemical treatment processes. Wet milling of maize generates huge amount of wastewater (5 m3/ton) of low pH with organic matter and nutrients. Anaerobic methanogenic and aerobic bacteria are mostly highly sensitive to low pH. The treatment of wastewater causes huge cost of chemical neutralization or hydraulic recirculation for maintaining neutral pH. In the present study, different microbial consortia isolated from cow dung, active sludge from an anaerobic reactor for treatment of industrial wastewater, and leaf debris from benthic soil were screened for tolerance against low pH and for potential of chemical oxygen demand (COD) removal in order to find out an alternative microbial population for industrial water treatment at low pH. The most effective consortia found from leaf debris were further investigated for optimal operation. The microscopic analysis of leaf debris sludge showed abundance of Gram‐negative methanococci, which was found tolerant to low pH in plate culture method. On further investigation for COD removal from starch industry effluent, they were found to be most effective at pH 5 with highest COD removal rate of 70% and lowest biomass generation of 81%. Hence, it was concluded that the low pH‐tolerant methanogen bacteria, enriched from leaf debris sludge, is highly beneficial for anaerobic treatment of wastewater from several industries including corn starch industry by reducing cost of operation for neutralization to neutral pH and through reducing excess waste sludge production by the treatment system.  相似文献   

7.
Odor control and disposal of swine waste have inhibited expansion of swine production facilities throughout the United States. Swine waste odor is associated primarily with high concentrations of volatile fatty acids (VFAs). Here, we demonstrate that stimulated Fe(III) reduction in hog manure can rapidly remove the malodorous compounds and enhance methane production by 200%. As part of these studies, we enumerated the indigenous Fe(III)-reducing population in swine waste and identified members of the family Geobacteraceae as the dominant species. These organisms were present at concentrations as high as 2 × 105 cells g−1. Several pure cultures of Fe(III) reducers, including Geobacter metallireducens, Geobacter humireducens, Geobacter sulfurreducens, Geobacter grbiciae, Geothrix fermentans, and Geovibrio ferrireducens, readily degraded some or all of the malodorous VFAs found in swine manure. In contrast, Shewanella algae did not degrade any of these compounds. We isolated an Fe(III) reducer, Geobacter strain NU, from materials collected from primary swine waste lagoons. This organism degraded all of the malodorous VFAs tested and readily grew in swine waste amended with Fe(III). When raw waste amended with Fe(III) was inoculated with strain NU, the VFA content rapidly decreased, corresponding with an almost complete removal of the odor. In contrast, the raw waste without Fe(III) or strain NU showed a marked increase in VFA content and a rapid pH drop. This study showed that Fe(III) supplementation combined with appropriate bioaugmentation provides a simple, cost-effective approach to deodorize and treat swine waste, removing a significant impediment to the expansion of pork production facilities.  相似文献   

8.
We conducted a series of biodegradation studies using microalgae (Arthrospira maxima and Nannochloropsis sp.) and macroalgae (Gelidium corneum and Cladophora glomerata) to elucidate algal biodegradability in wastewater sludge under anaerobic conditions. Algal biodegradability was evaluated according to ASTM D5210-92. The results indicate that A. maxima biodegraded to a greater extent (70 %) than Nannochloropsis sp. (40 %). The low level of mineralization for Nannochloropsis sp. is due to the presence of high level of lipids (37 %). For macroalgal samples, red algae fiber pulped from G. corneum biodegraded comparably to cellulose controls. However, C. glomerata biodegradation is about 46 %. A sample compositional analysis revealed that it contained about 24.5 % ash, which is directly accountable for an observed low degree of biodegradation. Algal anaerobic biodegradability is important to facilitate sludge digester design and performance evaluation. It is particularly useful when waste residual materials from algal biofuel processing are used for energy production.  相似文献   

9.
The influence of different organic fraction of municipal solid wastes during anaerobic thermophilic (55 degrees C) treatment of organic matter was studied in this work: food waste (FW), organic fraction of municipal solid waste (OFMSW) and shredded OFMSW (SH_OFMSW). All digester operated at dry conditions (20% total solids content) and were inoculated with 30% (in volume) of mesophilic digested sludge. Experimental results showed important different behaviours patterns in these wastes related with the organic matter biodegradation and biogas and methane production. The FW reactor showed the smallest waste biodegradation (32.4% VS removal) with high methane production (0.18 LCH4/gVS); in contrast the SH_OFMSW showed higher waste biodegradation (73.7% VS removal) with small methane production (0.05 LCH4/g VS). Finally, OFMSW showed the highest VS removal (79.5%) and the methane yield reached 0.08 LCH4/g VS. Therefore, the nature of organic substrate has an important influence on the biodegradation process and methane yield. Pre-treatment of waste is not necessary for OFMSW.  相似文献   

10.
Most Trichloroethylene (TCE) biodegradation reports refer to methanogenic conditions, however, in this work, enhanced sulfidogenesis and TCE biodegradation were achieved in an upflow anaerobic sludge blanket (UASB) reactor in which a completely sulfidogenic sludge, from hydrothermal vents sediments, was developed. The work was divided in three stages, (i) sludge development and sulfate reducing activity (SRA) evaluation, (ii) TCE biodegradation and (iii) SRA evaluation after TCE biodegradation. For (i) SR was 98 ± 0.1%, 84% as sulfide (H2S, 1200 ± 28 mg/L), sulfate reducing activity (SRA) was 188 ± 50 mg COD H2S/g VSS*d. For (ii) The reactor reached 74% of TCE removal, concentrations of vinyl chloride of 16 ± 0.3 μM (5% of the TCE added) and ethene 202 ± 81 μM (67% of the TCE added), SRA of 161 ± 7 mg COD H2S/g VSS*d, 68% of sulfide (H2S) production and 93% of COD removal. For (iii) SRA was of 248 ± 22 mg COD H2S/g VSS*d demonstrating no adverse effects due to TCE.Among the genera of the microorganisms identified in the sludge during TCE biodegradation were: Dehalobacter, Desulfotomaculum, Sulfospirillum, Desulfitobacterium, Desulfovibrio and Clostridium. To the best of our knowledge, this is the first report using a sulfidogenic UASB reactor to biodegrade TCE. The overall conclusions of this work are that the reactor is efficient on both, sulfate and TCE biodegradation and it could be used to decontaminate wastewater containing organic solvents and relatively high concentrations of sulfate.  相似文献   

11.
The anaerobic biodegradation of benzene, a common constituent of petroleum and one of the least reactive aromatic hydrocarbons, is insufficiently understood with respect to the involved microorganisms and their metabolism. To study these aspects, sulfate-reducing bacteria were enriched with benzene as sole organic substrate using marine sediment as inoculum. Repeated subcultivation yielded a sediment-free enrichment culture constituted of mostly oval-shaped cells and showing benzene-dependent sulfate reduction and growth under strictly anoxic conditions. Amplification and sequencing of 16S rRNA genes from progressively diluted culture samples revealed an abundant phylotype; this was closely related to a clade of Deltaproteobacteria that includes sulfate-reducing bacteria able to degrade naphthalene or other aromatic hydrocarbons. Cell hybridization with two specifically designed 16S rRNA-targeted fluorescent oligonucleotide probes showed that the retrieved phylotype accounted for more than 85% of the cells detectable via DAPI staining (general cell staining) in the enrichment culture. The result suggests that the detected dominant phylotype is the 'candidate species' responsible for the anaerobic degradation of benzene. Quantitative growth experiments revealed complete oxidation of benzene with stoichiometric coupling to the reduction of sulfate to sulfide. Suspensions of benzene-grown cells did not show metabolic activity towards phenol or toluene. This observation suggests that benzene degradation by the enriched sulfate-reducing bacteria does not proceed via anaerobic hydroxylation (mediated through dehydrogenation) to free phenol or methylation to toluene, respectively, which are formerly proposed alternative mechanisms for benzene activation.  相似文献   

12.
Integration of algae production with livestock waste management has the potential to recover energy and nutrients from animal manure, while reducing discharges of organic matter, pathogens, and nutrients to the environment. In this study, microalgae Chlorella sp. were grown on centrate from anaerobically digested swine manure. The algae were harvested for mesophilic anaerobic digestion (AD) with swine manure for bioenergy production. Low biogas yields were observed in batch AD studies with algae alone, or when algae were co-digested with swine manure at ≥43 % algae (based on volatile solids [VS]). However, co-digestion of 6–16 % algae with swine manure produced similar biogas yields as digestion of swine manure alone. An average methane yield of 190 mL/g VSfed was achieved in long-term semi-continuous co-digestion studies with 10?±?3 % algae with swine manure. Data from the experimental studies were used in an energy analysis assuming the process was scaled up to a concentrated animal feeding operation (CAFO) with 7000 pigs with integrated algae-based treatment of centrate and co-digestion of manure and the harvested algae. The average net energy production for the system was estimated at 1027 kWh per day. A mass balance indicated that 58 % of nitrogen (N) and 98 % of phosphorus (P) in the system were removed in the biosolids. A major advantage of the proposed process is the reduction in nutrient discharges compared with AD of swine waste without algae production.  相似文献   

13.
Chen S  Gong W  Mei G  Han W 《Bioresource technology》2011,102(22):10772-10775
Biodegradation behavior and kinetics of ethylthionocarbamate under nitrate, sulfate and ferric reducing conditions by mixed cultures enriched from the anaerobic digester sludge was investigated. The results showed that ethylthionocarbamate could be degraded independently by the mixed cultures coupled to nitrate, sulfate, and ferric reduction, and meanwhile, nitrite, sulfide, and ferrous were accumulated as a result of nitrate, sulfate and ferric reduction, respectively. Ferric was a more favorable terminal electron acceptor compared to nitrate and sulfate. The order of the electron acceptors with decreasing biodegradation rates of the ethylthionocarbamate was: ferric>nitrate>sulfate, and the corresponding maximum biodegradation rate was 7.240, 6.267, and 4.602 mg/(L·d), respectively. The anaerobic biodegradation of ethylthionocarbamate under various electron acceptor conditions can be accurately described by first order exponential decay kinetics.  相似文献   

14.
Food waste (FW) minimization at the source by using food waste biodigester (FWBs) has a vast potential to lower down the impact of increasing organic fraction in municipal solid waste generation. To this end, this research sought to check the performance of locally isolated hydrolase-producing bacteria (HPB) to improve food waste biodegradation rate. Two under-explored HPB identified as Bacillus paralicheniformis GRA2 and Bacillus velezensis TAP5 were able to produce maximum amylase, cellulase, protease and lipase activities, and demonstrated a significant hydrolase synergy in co-culture fermentation. In vitro biodegradation analysis of both autoclaved and non-autoclaved FW revealed that the HPB inoculation was effective to degrade total solids (>62%), protein (>19%), total fat (>51), total sugar (>86%), reducing sugar (>38%) and starch (>50%) after 8-day incubation. All co-culture treatments were recorded superior to the respective monocultures and the uninoculated control. The results of FW biodegradation using batch-biodigester trial indicated that the 1500 mL and 1000 mL inoculum size of HPB inoculant reached a plateau on the 4th day, with gross biodegradation percentage (GBP) of >85% as compared to control (66.4%). The 1000 mL inoculum was sufficient to achieve the maximum GBP (>90%) of FW after an 8-day biodigestion in a FWB.  相似文献   

15.
The introduction of antibiotics to animal feed has contributed to the selection of antibiotic-resistant bacteria in concentrated animal feeding operations. The aim of this work was to characterize the impact of an aerobic thermophilic biotreatment on anaerobic antibiotic-resistant bacteria in swine waste. Despite 162- to 6,166-fold reduction in antibiotic-resistant populations enumerated in the swine waste at 25°C and 37°C, resistant populations remained significant (104 to 105 most probable number per milliliter) in the treated swine waste. Five resistance genes were detected before [tet(LMOS) erm(B)], and six resistance genes were detected after [tet(LMOSY) erm(B)] biotreatment. However, the biotreatment decreased the frequency of detection of resistance genes by 57%. Analysis by denaturing gradient gel electrophoresis of polymerase chain reaction-amplified 16 S ribosomal DNA (rDNA) fragments showed that the biotreatment reduced the bacterial diversity of resistant populations enumerated at 37°C. Cloning and sequencing of the 16 S rDNA of these populations revealed that most clones in the treated swine waste were closely similar to some of the clones retrieved from the untreated swine waste. This study revealed that the aerobic thermophilic biotreatment developed in our laboratory does not prevent the introduction of facultatively anaerobic antibiotic-resistant bacteria and their resistance genes into agricultural ecosystems. Horizontal transfer of ecologically advantageous genes within microbial communities are likely to prevent thermophilic biotreatments from completely eliminating antibiotic-resistant bacteria and their resistance genes in animal wastes.  相似文献   

16.
The aim of this study was to evaluate anthracene removal using activated soil reactors, previously inoculated, under both aerobic and anaerobic conditions. In the reactors, the soil was maintained at 60% moisture (weight basis), room temperature, in the dark, and under constant agitation at 100 rpm. Two experiments were run during and after acclimatization to evaluate anthracene removal under both aerobic and anaerobic conditions. The first one took place during inoculum acclimatization using three different concentrations of anthracene (50, 100, and 500 mg anthracene/L per day) during 90 days. The second experiment took place after acclimatization (during 132 days). The results of anthracene removal were compared with controls in which no additional inoculum was added. During the two experiments, the behavior of pH, chemical oxygen demand (COD), and biogas production was evaluated. Results indicate that the bacterial community adapted for removal of anthracene became enriched through the acclimatization process. Anthracene biodegradation occurred in the soil model with both types of reactors (aerobic and anaerobic), but the rates and extent of biodegradation in the aerobic reactor were higher (95%) than those in anaerobic conditions (74%). Microbial activity also contributed to enhancing bioremediation in the soil by reducing anthracene sorption.  相似文献   

17.
A novel bioreactor, employing a silicone membrane for microaeration, was studied for partial sulfide oxidation to elemental sulfur. The objective of this study was to assess the feasibility of using an internal silicone membrane reactor (ISMR) to treat dissolved sulfide and to characterize its microbial community. The ISMR is an effective system to eliminate sulfide produced in anaerobic reactors. Sulfide removal efficiencies reached 96 % in a combined anaerobic/microaerobic reactor and significant sulfate production did not occur. The oxygen transfer was strongly influenced by air pressure and flow. Pyrosequencing analysis indicated various sulfide-oxidizing bacteria (SOB) affiliated to the species Acidithiobacillus thiooxidans, Sulfuricurvum kujiense and Pseudomonas stutzeri attached to the membrane and also indicated similarity between the biomass deposited on the membrane wall and the biomass drawn from the material support, supported the establishment of SOB in an anaerobic sludge under microaerobic conditions. Furthermore, these results showed that the reactor configuration can develop SOB under microaerobic conditions and can improve and reestablish the sulfide conversion to elemental sulfur.  相似文献   

18.
Cook KL  Whitehead TR  Spence C  Cotta MA 《Anaerobe》2008,14(3):172-180
Hydrogen sulfide, produced by sulfate-reducing bacteria (SRB), is one of the most potent malodors emitted from anaerobic swine waste storage systems. However, little is known about the prevalence and diversity of SRB in those systems. The goals of this study were to evaluate the SRB population in swine manure storage systems and to develop quantitative, real-time PCR (QRT-PCR) assays to target four of the SRB groups. Dissimilatory sulfite reductase (DSR) gene sequences were obtained from swine slurry stored in underground pits (43 clones) or in lagoons (34 clones). QRT-PCR assays were designed to target the dsrA gene of four novel groups of SRB. Sequences of dsrA clones from slurry samples grouped with those from three different cultured SRB: Desulfobulbus sp. (46 clones), Desulfovibrio sp. (24 clones and 5 isolates), and Desulfobacterium sp. (7 clones). However, DsrA sequences from swine slurry clones were generally less than 85% similar to those of cultured organisms. SRB from all four targeted SRB groups were detected in underground waste storage pits (6.6 x 10(3)-8.5 x 10(7) dsrA copies mL(-1) slurry), while only two groups of SRB were detected in lagoons (3.2 x 10(5)-2.5 x 10(6) dsrA copies mL(-1) slurry). To date, this is the only study to evaluate the phylogeny and concentration of SRB in any livestock waste storage system. The new QRT-PCR assays should facilitate sensitive, specific detection of the four novel groups of SRB in livestock waste storage systems.  相似文献   

19.
Simultaneous production of sulfide and methane by anaerobic sewer biofilms has recently been observed, suggesting that sulfate-reducing bacteria (SRB) and methanogenic archaea (MA), microorganisms known to compete for the same substrates, can coexist in this environment. This study investigated the community structures and activities of SRB and MA in anaerobic sewer biofilms (average thickness of 800 μm) using a combination of microelectrode measurements, molecular techniques, and mathematical modeling. It was seen that sulfide was mainly produced in the outer layer of the biofilm, between the depths of 0 and 300 μm, which is in good agreement with the distribution of SRB population as revealed by cryosection-fluorescence in situ hybridization (FISH). SRB had a higher relative abundance of 20% on the surface layer, which decreased gradually to below 3% at a depth of 400 μm. In contrast, MA mainly inhabited the inner layer of the biofilm. Their relative abundances increased from 10% to 75% at depths of 200 μm and 700 μm, respectively, from the biofilm surface layer. High-throughput pyrosequencing of 16S rRNA amplicons showed that SRB in the biofilm were mainly affiliated with five genera, Desulfobulbus, Desulfomicrobium, Desulfovibrio, Desulfatiferula, and Desulforegula, while about 90% of the MA population belonged to the genus Methanosaeta. The spatial organizations of SRB and MA revealed by pyrosequencing were consistent with the FISH results. A biofilm model was constructed to simulate the SRB and MA distributions in the anaerobic sewer biofilm. The good fit between model predictions and the experimental data indicate that the coexistence and spatial structure of SRB and MA in the biofilm resulted from the microbial types and their metabolic transformations and interactions with substrates.  相似文献   

20.
《Process Biochemistry》2014,49(2):301-308
Food waste leachate (FWL) from the food waste recycling facilities in Korea is a serious environmental problem. Much research was done on anaerobic digestion of FWL in a lab-scale; however, there is little information on a large scale anaerobic digestion system (ADS). In this study, a two-phase ADS in a pilot scale was operated using FWL and the ADS performance and microbial structure dynamics using pyrosequencing were investigated. The ADS was operated for 136 days using FWL containing a high concentration of volatile fatty acid (12,435 ± 2203 mg/L), exhibiting volatile acid (VS) removal efficiency of 74–89% and CH4 yield of 0.39–0.85 Nm3/kg of reduced VS. The microbial structure at 76, 101, and 132 days indicated the methanogen population shift from acetoclastic methanogens (Methanosarcina and Methanosaeta) to hydrogenotrophic methanogens (Methanobacterium and Methanoculleus). The bacterial community also shifted to the taxa syntrophically related with hydrogenotrophic methanogens (Clostridia). The statistical analysis revealed the positive correlation of VS removal efficiency with Methanosarcina, but the negative correlation with Methanobacterium. The results presented here suggest that acetoclastic methanogens and their associated bacteria were more efficient for VS removal in the pilot scale ADS system, providing useful information for FWL treatment in a large scale ADS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号