首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intra- and inter-season complexity of bird migration has received limited attention in climatic change research. Our phenological analysis of 22 species collected in Chicago, USA, (1979–2002) evaluates the relationship between multi-scalar climate variables and differences (1) in arrival timing between sexes, (2) in arrival distributions among species, and (3) between spring and fall migration. The early migratory period for earliest arriving species (i.e., short-distance migrants) and earliest arriving individuals of a species (i.e., males) most frequently correlate with climate variables. Compared to long-distance migrant species, four times as many short-distance migrants correlate with spring temperature, while 8 of 11 (73%) of long-distance migrant species’ arrival is correlated with the North Atlantic Oscillation (NAO). While migratory phenology has been correlated with NAO in Europe, we believe that this is the first documentation of a significant association in North America. Geographically proximate conditions apparently influence migratory timing for short-distance migrants while continental-scale climate (e.g., NAO) seemingly influences the phenology of Neotropical migrants. The preponderance of climate correlations is with the early migratory period, not the median of arrival, suggesting that early spring conditions constrain the onset or rate of migration for some species. The seasonal arrival distribution provides considerable information about migratory passage beyond what is apparent from statistical analyses of phenology. A relationship between climate and fall phenology is not detected at this location. Analysis of the within-season complexity of migration, including multiple metrics of arrival, is essential to detect species’ responses to changing climate as well as evaluate the underlying biological mechanisms.  相似文献   

2.
Conservation networks, such as the European Natura 2000, are sets of designated reserves, the persistence of which requires the contribution of the non-protected territory in terms of connectivity. For that reason, the European Union´s Habitats Directive urges the improvement of its ecological coherence. This work reports a spatial modelling methodology to complete the existing Natura 2000 network in the Basque Country with elements of ecological connectivity. It is based on cost surfaces built for a set of target species associated with the dominant habitats of the region. Least-cost paths were then used to identify zones of probable connection between reserves. The final network is made of core areas, link corridors, link areas and buffer zones, all with an explicit spatial allocation. The regional government of the Basque Country subsequently incorporated this ecological network as a reference for the evaluation of regional development plans in 2005.  相似文献   

3.
This review assesses and predicts the impacts that rapid climate change will have on population connectivity in coral reef ecosystems, using fishes as a model group. Increased ocean temperatures are expected to accelerate larval development, potentially leading to reduced pelagic durations and earlier reef-seeking behaviour. Depending on the spatial arrangement of reefs, the expectation would be a reduction in dispersal distances and the spatial scale of connectivity. Small increase in temperature might enhance the number of larvae surviving the pelagic phase, but larger increases are likely to reduce reproductive output and increase larval mortality. Changes to ocean currents could alter the dynamics of larval supply and changes to planktonic productivity could affect how many larvae survive the pelagic stage and their condition at settlement; however, these patterns are likely to vary greatly from place-to-place and projections of how oceanographic features will change in the future lack sufficient certainty and resolution to make robust predictions. Connectivity could also be compromised by the increased fragmentation of reef habitat due to the effects of coral bleaching and ocean acidification. Changes to the spatial and temporal scales of connectivity have implications for the management of coral reef ecosystems, especially the design and placement of marine-protected areas. The size and spacing of protected areas may need to be strategically adjusted if reserve networks are to retain their efficacy in the future.  相似文献   

4.
5.
Migratory animals present a unique challenge for understanding the consequences of habitat loss on population dynamics because individuals are typically distributed over a series of interconnected breeding and non‐breeding sites (termed migratory network). Using replicated breeding and non‐breeding populations of Drosophila melanogaster and a mathematical model, we investigated three hypotheses to explain how habitat loss influenced the dynamics of populations in networks with different degrees of connectivity between breeding and non‐breeding seasons. We found that habitat loss increased the degree of connectivity in the network and influenced population size at sites that were not directly connected to the site where habitat loss occurred. However, connected networks only buffered global population declines at high levels of habitat loss. Our results demonstrate why knowledge of the patterns of connectivity across a species range is critical for predicting the effects of environmental change and provide empirical evidence for why connected migratory networks are commonly found in nature.  相似文献   

6.
Provision of suitable habitat for waterbirds is a major challenge for environmental managers in arid and semiarid regions with high spatial and temporal variability in rainfall. It is understood in broad terms that to survive waterbirds must move according to phases of wet–dry cycles, with coastal habitats providing drought refugia and inland wetlands used during the wet phase. However, both inland and coastal wetlands are subject to major anthropogenic pressures, and the various species of waterbird may have particular habitat requirements and respond individualistically to spatiotemporal variations in resource distribution. A better understanding of the relationships between occurrence of waterbirds and habitat condition under changing climatic conditions and anthropogenic pressures will help clarify patterns of habitat use and the targeting of investments in conservation. We provide the first predictive models of habitat availability between wet and dry phases for six widely distributed waterbird species at a large spatial scale. We first test the broad hypothesis that waterbirds are largely confined to coastal regions during a dry phase. We then examine the contrasting results among the six species, which support other hypotheses erected on the basis of their ecological characteristics. There were large increases in area of suitable habitat in inland regions in the wet year compared with the dry year for all species, ranging from 4.14% for Australian White Ibis to 31.73% for Eurasian Coot. With over half of the suitable habitat for three of the six species was located in coastal zones during drought, our study highlights the need to identify and conserve coastal drought refuges. Monitoring of changes in extent and condition of wetlands, combined with distribution modeling of waterbirds, will help support improvements in the conservation and management of waterbirds into the future.  相似文献   

7.
Net export of sulphate from watersheds may delay the response of surfacewaters to changes in acid deposition. Long-term (18-yr) sulphatebudgets were calculated for 8 headwater streams located in the acid-sensitiveregion of Muskoka-Haliburton, south central Ontario. Sulphate deposition inthisregion has decreased by almost 40% over the last 2 decades, and sulphate exportfrom catchments has also generally declined over time, but most catchments arestill a net source of sulphate to drainage streams. Net export of sulphateoccurred in the majority of catchments in most years of record, but wasparticularly large following dry, warmer than average summers, when stream flowceased for up to several weeks at a time. In years with warm dry summers, suchas occurred in 1983/84 and between 1987/88 and 1990/91, inclusive, streamexportfrom most catchments was between 1.5 and 2 times greater than was input viabulkdeposition. Annual average sulphate concentrations in streams were stronglycorrelated with stream dryness, and were greater in years in which streams weredry for longer periods of time. Temporal patterns of annual sulphateconcentrations and export were highly coherent among the 8 streams, and netsulphate export occurred in both wetland-draining and predominantly uplandstreams. Climate variables, specifically temperature and precipitation act on aregional scale and are likely responsible for similar temporal patterns ofsulphate retention among these 8 physiographically different catchments. Netsulphate export from catchments may delay the recovery of acid impacted surfacewaters, despite reductions in industrial SO2 emissions.  相似文献   

8.
Stable isotopes have been used to estimate migratory connectivity in many species. Estimates are often greatly improved when coupled with species distribution models (SDMs), which temper estimates in relation to occurrence. SDMs can be constructed using point locality data from a variety of sources including extensive monitoring data typically collected by citizen scientists. However, one potential issue with SDM is that these data often have sampling bias. To avoid this potential bias, we created SDMs based on marsh bird monitoring program data collected by citizen scientists and other participants following protocols specifically designed to maximize detections of species of interest at locations representative of larger areas of inference. We then used the SDMs to refine isotopic assignments of breeding areas of autumn‐migrating and wintering sora Porzana carolina, Virginia rail Rallus limicola, and yellow rail Coturnicops noveboracensis based on feathers collected from individuals caught at various locations in the United States from Minnesota south to Louisiana and South Carolina. Sora were assigned to an area that included much of the western U.S. and prairie Canada, covering parts of the Pacific, Central, and Mississippi waterfowl Flyways. Yellow rails were assigned to a broad area along Hudson and James Bay in northern Manitoba and Ontario, as well as smaller parts of Québec, Minnesota, Wisconsin, and Michigan, including parts of the Mississippi and Atlantic Flyways. Virginia rails were from several discrete areas, including parts of Colorado, New Mexico, the central valley of California, and southern Saskatchewan and Manitoba in the Pacific and Central Flyways. Our study demonstrates extensive data from organized citizen science monitoring programs are especially useful for improving isotopic assignments of migratory connectivity in birds, which can ultimately lead to better informed management decisions and conservation actions.  相似文献   

9.
In recent years there have been several spells of high temperatures providing analogues for the conditions that might become more common as a result of the enhanced greenhouse effect. Statistical models were developed of the relationship between the monthly incidence of food poisoning and temperatures and these were then used to provide estimates of the possible effects of future warmer summers. Routinely collected data on the number of reported cases of food poisoning were analysed for the years 1982–1991. Regression analysis was used to establish the relationship between the monthly incidence of food poisoning and temperatures of the same and the previous month. Published scenarios for future temperatures were applied to these statistical models to provide estimates of the possible impacts of warmer conditions. The monthly incidence of food poisoning was found to be significantly associated with the temperature of the same and of the previous month with the latter having the stronger effect. Using published data on the relationship between reported and actual numbers of cases of food poisoning, it is estimated that annually there might be an additional 179 000 cases of food poisoning by the year 2050 as a result of climate change. The observed relationship with the same month's temperature underlines the need for improvements in storage, preparation and hygiene close to the point of consumption. However, there was a much stronger relationship with the temperature of the previous month, indicating the importance of conditions earlier in the food production process. Improvements in areas such as animal husbandry and slaughtering may also be necessary to avoid the adverse effects of a warmer climate.  相似文献   

10.
Aim Species ranges have adapted during the Holocene to altering climate conditions, but it remains unclear if species will be able to keep pace with recent and future climate change. The goal of our study is to assess the influence of changing macroclimate, competition and habitat connectivity on the migration rates of 14 tree species. We also compare the projections of range shifts from species distribution models (SDMs) that incorporate realistic migration rates with classical models that assume no or unlimited migration. Location Europe. Methods We calibrated SDMs with species abundance data from 5768 forest plots from ICP Forest Level 1 in relation to climate, topography, soil and land‐use data to predict current and future tree distributions. To predict future species ranges from these models, we applied three migration scenarios: no migration, unlimited migration and realistic migration. The migration rates for the SDMs incorporating realistic migration were estimated according to macroclimate, inter‐specific competition and habitat connectivity from simulation experiments with a spatially explicit process model (TreeMig). From these relationships, we then developed a migration cost surface to constrain the predicted distributions of the SDMs. Results The distributions of early‐successional species during the 21st century predicted by SDMs that incorporate realistic migration matched quite well with the unlimited migration assumption (mean migration rate over Europe for A1fi/GRAS climate and land‐use change scenario 156.7 ± 79.1 m year?1 and for B1/SEDG 164.3 ± 84.2 m year?1). The predicted distributions of mid‐ to late‐successional species matched better with the no migration assumption (A1fi/GRAS, 15.2 ± 24.5 m year?1 and B1/SEDG, 16.0 ± 25.6 m year?1). Inter‐specific competition, which is higher under favourable growing conditions, reduced range shift velocity more than did adverse macroclimatic conditions (i.e. very cold or dry climate). Habitat fragmentation also led to considerable time lags in range shifts. Main conclusions Migration rates depend on species traits, competition, spatial habitat configuration and climatic conditions. As a result, re‐adjustments of species ranges to climate and land‐use change are complex and very individualistic, yet still quite predictable. Early‐successional species track climate change almost instantaneously while mid‐ to late‐ successional species were predicted to migrate very slowly.  相似文献   

11.
12.
气候变暖对我国鸟类分布的影响   总被引:33,自引:5,他引:33  
研究了10年来国内有关鸟类分布及越冬地变化的资料,结合我国近年来气候变暖的事实,初步探讨了气候变暖对我国鸟类可能产生的影响,并针对这些影响提出了一些保护对策。  相似文献   

13.
Thorup K  Tøttrup AP  Rahbek C 《Oecologia》2007,151(4):697-703
The phenology of avian migration appears to be changing in response to climate change. Seemingly contradictory differences in the timing of these annual cycles have been reported in published studies. We show that differences between studies in the choice of songbird species, as well as in the measurements of migration phenology, can explain most of the reported differences. Furthermore, while earlier spring arrival is evident across these studies, trends in timing of departure show large variation between species and according to individual timing of migration (early-arriving vs. late-departing individuals). Much of the variation in departure between species could be explained by each species’ migratory status. We present a detailed analysis of migrants recorded at a Danish migration site, and reveal that although shifts in migration timing can be demonstrated for almost all species, these shifts are either most pronounced in the early arriving/late departing individuals or the changes are similar. Thus most individuals do not seem to change their breeding-area residence time (BART). As BART is likely to reflect ecologically important factors, e.g. number of clutches, we expect that only small effects have been exerted on the breeding ecology of the studied species in the time period investigated. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

14.
15.
Ecologists and biogeographers are currently expending great effort forecasting shifts in species geographical ranges that may result from climate change. However, these efforts are problematic because they have mostly relied on presence‐only data that ignore within‐species genetic diversity. Technological advances in high‐throughput sequencing have now made it cost‐effective to survey the genetic structure of populations sampled throughout the range of a species. These data can be used to delineate two or more genetic clusters within the species range, and to identify admixtures of individuals within genetic clusters that reflect different patterns of ancestry. Species distribution models (SDMs) applied to the presence and absence of genetic clusters should provide more realistic forecasts of geographical range shifts that take account of genetic variability. High‐throughput sequencing and spatially explicit models may be used to further refine these projections.  相似文献   

16.
Increasing infestation by insect herbivores and pathogenic fungi in response to climate change will inevitably impact the amount and quality of leaf litter inputs into the soil. However, little is known on the interactive effect of infestation severity and climate change on litter decomposition, and no such study has been published for deciduous forests in Central Europe. We assessed changes in initial chemical quality of beech (Fagus sylvatica L.) and maple litter (Acer platanoides L.) in response to infestation by the gall midge Mikiola fagi Hart. and the pathogenic fungus Sawadaea tulasnei Fuckel, respectively, and investigated interactive effects of infestation severity, changes in temperature and soil moisture on carbon mineralization in a short-term laboratory study. We found that infestation by the gall midge M. fagi and the pathogenic fungus S. tulasnei significantly changed the chemical quality of beech and maple litter. Changes in element concentrations were generally positive and more pronounced, and if negative less pronounced for maple than beech litter most likely due to high quality fungal tissue remaining on litter after abscission. More importantly, alterations in litter chemical quality did not translate to distinct patterns of carbon mineralization at ambient conditions, but even low amounts of infested litter accelerated carbon mineralization at moderately increased soil moisture and in particular at higher temperature. Our results indicate that insect herbivores and fungal pathogens can markedly alter initial litter chemical quality, but that afterlife effects on carbon mineralization depend on soil moisture and temperature, suggesting that increased infestation severity under projected climate change potentially increases soil carbon release in deciduous forests in Central Europe.  相似文献   

17.
全球气候变化不仅给人类社会可持续发展带来严峻挑战,而且严重威胁到生物多样性及生态安全。我国是生物多样性最为丰富的国家之一,气候变化已经在对动物分布、行为和迁移,植物物候、植被和群落结构等方面造成了影响,并增加了珍稀濒危物种的灭绝风险,同时对生态系统的功能方面也造成了明显影响。未来气候变化将成为生物多样性丧失的主要驱动力之一。世界很多国家都在制定生物多样性适应气候变化的策略和采取适应行动,加强生物多样性的保护。本文在分析国外适应策略的基础上,结合中国生物多样性的现状,提出了适应气候变化的策略建议,包括制定生物多样性适应气候变化的国家战略,开展气候变化对生物多样性的影响监测和评估,针对敏感物种的就地保护和迁地保护,针对气候变化将导致退化生态系统开展恢复与重建,重点关注生物多样性适应气候变化优先区的保护,通过科学研究和国际合作,促进生物多样性适应气候变化技术的提高,期望为我国生物多样性保护和应对气候变化提供支持。  相似文献   

18.
As one of the most important crops in China, rice accounts for 18% of the country’s total cultivated area. Increasing atmospheric CO2 concentration and associated climate change may greatly affect the rice productivity. Therefore, understanding the impacts of climate change on rice production is of great significance. This paper aims to examine the potential impacts of future climate change on the rice yield in the middle and lower reaches of the Yangtze River, which is one of the most important food production regions in China. Climate data generated by the regional climate Model PRECIS for the baseline (1961–1990) and future (2021–2050) period under IPCC SRES B2 scenario were employed as the input of the rice crop model ORYZA2000. Four experimental schemes were carried out to evaluate the effects of future climate warming, CO2 fertilization and water managements (i.e., irrigation and rain-fed) on rice production. The results indicated that the average rice growth duration would be shortened by 4 days and the average rice yield would be declined by more than 14% as mean temperature raised by 1.5 °C during the rice growing season in 2021–2050 period under B2 scenario. This negative effect of climate warming was more obvious on the middle and late rice than early rice, since both of them experience higher mean temperature and more extreme high temperature events in the growth period from July to September. The significance effect of the enhanced CO2 fertilization to rice yield was found under elevated CO2 concentrations in 2021–2050 period under B2 scenario, which would increase rice yield by more than 10%, but it was still not enough to offset the negative effect of increasing temperature. As an important limiting factor to rice yield, precipitation contributed less to the variation of rice yield than either increased temperature or CO2 fertilization, while the spatial distribution of rice yield depended on the temporal and spatial patterns of precipitation and temperature. Compared to the rain-fed rice, the irrigated rice generally had higher rice yield over the study area, since the irrigated rice was less affected by climate change. Irrigation could increase the rice yield by more than 50% over the region north of the Yangtze River, with less contribution to the south, since irrigation can relieve the water stress for rice growing in the north region of the study area. The results above indicated that future climate change would significantly affect the rice production in the middle and lower reaches of the Yangtze River. Therefore, the adverse effect of future climate change on rice production will be reduced by taking adaptation measures to avoid disadvantages. However, there is uncertainty in the rice production response prediction due to the rice acclimation to climate change and bias in the simulation of rice yield with uncertainty of parameters accompanied with the uncertainty of future climate change scenario.  相似文献   

19.
As one of the most important crops in China, rice accounts for 18% of the country’s total cultivated area. Increasing atmospheric CO2 concentration and associated climate change may greatly affect the rice productivity. Therefore, understanding the impacts of climate change on rice production is of great significance. This paper aims to examine the potential impacts of future climate change on the rice yield in the middle and lower reaches of the Yangtze River, which is one of the most important food production regions in China. Climate data generated by the regional climate Model PRECIS for the baseline (1961–1990) and future (2021–2050) period under IPCC SRES B2 scenario were employed as the input of the rice crop model ORYZA2000. Four experimental schemes were carried out to evaluate the effects of future climate warming, CO2 fertilization and water managements (i.e., irrigation and rain-fed) on rice production. The results indicated that the average rice growth duration would be shortened by 4 days and the average rice yield would be declined by more than 14% as mean temperature raised by 1.5 °C during the rice growing season in 2021–2050 period under B2 scenario. This negative effect of climate warming was more obvious on the middle and late rice than early rice, since both of them experience higher mean temperature and more extreme high temperature events in the growth period from July to September. The significance effect of the enhanced CO2 fertilization to rice yield was found under elevated CO2 concentrations in 2021–2050 period under B2 scenario, which would increase rice yield by more than 10%, but it was still not enough to offset the negative effect of increasing temperature. As an important limiting factor to rice yield, precipitation contributed less to the variation of rice yield than either increased temperature or CO2 fertilization, while the spatial distribution of rice yield depended on the temporal and spatial patterns of precipitation and temperature. Compared to the rain-fed rice, the irrigated rice generally had higher rice yield over the study area, since the irrigated rice was less affected by climate change. Irrigation could increase the rice yield by more than 50% over the region north of the Yangtze River, with less contribution to the south, since irrigation can relieve the water stress for rice growing in the north region of the study area. The results above indicated that future climate change would significantly affect the rice production in the middle and lower reaches of the Yangtze River. Therefore, the adverse effect of future climate change on rice production will be reduced by taking adaptation measures to avoid disadvantages. However, there is uncertainty in the rice production response prediction due to the rice acclimation to climate change and bias in the simulation of rice yield with uncertainty of parameters accompanied with the uncertainty of future climate change scenario.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号