首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dongting Lake, an important wintering habitat for migratory waterbirds in the East Asian–Australasian Flyway, has suffered serious degradation in recent decades. To restore habitats for biodiversity conservation and flood control, 459 dykes were demolished and 14 were preserved in 2017. However, the direct impact of dyke demolition on wintering waterbirds was not comprehensively assessed. In this study, based on annual waterbird census and habitat data (2013/14–2020/21), we compared the differences in habitat areas and species composition of waterbirds in the dyke‐demolished and preserved areas, and explored whether habitat changes caused by the dyke demolition were responsible for the changes in the number of species and percentages of waterbird individuals. The results indicate that the areas of water (including shallow water) and mudflat habitats significantly decreased, but the vegetation area significantly increased in the dyke‐demolished areas. The species numbers and percentages of waterbird individuals at the community and foraging guilds levels, and the percentages of nine species, were higher in the dyke‐preserved areas than those in the dyke‐demolished areas. Changes in the numbers of species and percentages of individuals of fish eaters, insectivores, and omnivores positively correlated with drastic changes in the percentages of water habitats (including shallow water) after dyke demolition. Effective measures should be carried out to restore hydrological regimes, providing waterbirds sufficient suitable habitats with different water depths. These findings improve our understanding of the influence of dyke demolition on waterbirds and provide insights for wetland management and waterbird conservation.  相似文献   

2.
在保护优先区规划中,有必要考虑气候变化的潜在风险并关注物种在气候驱动下的扩散格局。基于未来生物气候数据、地形多样性数据以及土地利用数据,应用Omniscape算法,对21世纪中叶(2040-2061年)气候变化情景下京津冀地区陆生哺乳动物的扩散进行全域连通性建模并与当前情景对比分析,识别出生物多样性保护优先区。结果表明:区域尺度下,气候变化风险使得高连通性的区域逐渐从平原向山区转移,分布趋于集中;斑块尺度下,林缘连通性较高,而位于林地或草地边缘的耕地连通性低。在此基础上,共识别生物多样性保护优先区共51786 km2,其中涵养区(占56.4%)在当前和未来的连通状况均较为良好;优化区(占38.4%)应提升生境质量以满足未来连通性的更高需求;而修复区(占5.22%)面临的气候变化风险较高,亟需进行生态修复以免在未来出现连通性夹点。本研究通过评估京津冀地区两种情景下的全域连通格局,为生物多样性保护的气候适应性规划提供了科学依据。  相似文献   

3.
黄翀  王淑璇  李贺 《生态学报》2023,43(13):5453-5465
滨海湿地是迁徙水鸟的重要迁飞通道和主要栖息地,评估沿海迁徙水鸟栖息地适宜性及变化态势能为栖息地的合理规划与管理提供科学参考,对迁徙水鸟的保护有重要意义。选择紧邻城市和乡村的深圳湾和雷州湾为研究区,在水鸟栖息地生态系统类型分类的基础上,通过层次分析法确定水鸟栖息地适宜性评价因子,设计栖息地、食物、水分、人类干扰条件及其子类的权重,对栖息地适宜性进行等级划分,分析比较2010-2019年迁徙水鸟栖息地适宜性的时空分布差异,探索适宜性变化差异的原因并给出合理化建议。结果表明:(1)2010-2019年深圳湾有193.4 hm2强干扰区域转变化为中等及弱干扰;雷州湾有16.36 hm2的中等干扰转化为弱、无干扰;(2)深圳湾栖息地适宜性以中等适宜类型为主,2010年和2019年面积占比分别为83.74%和88.71%;雷州湾栖息地适宜性主要以较适宜和中等适宜类型为主,2010年面积占比为86.72%,2010-2019年面积占比基本不变,总体适宜性高于深圳湾。(3)2010-2019年,深圳湾不适宜和较适宜面积分别减少245.54 hm2和26.37 hm2,均转化为中等适宜类型;雷州湾有24.31 hm2的中等和较适宜栖息地转化为适宜类型。  相似文献   

4.
To complete their life cycle waterbirds rely on patchily distributed and often ephemeral wetlands along their migration route in a vast unsuitable matrix. However, further loss and degradation of remaining wetland habitats might lead to a configuration and size of stopovers that is no longer sufficient to ensure long-term survival of waterbird populations. By identifying optimal conservation targets to maintain overall habitat availability en route, we can accommodate an as yet absent functional connectivity component in larger management frameworks for migratory waterbirds, such as the Ramsar Convention and the EU Natura 2000 Network. Using a graph-based habitat availability metric (Equivalent Connected Area) we determine the functional connectivity of wetland networks for seven migratory waterbirds with divergent habitat requirements. Analyses are performed at two spatial extents both spanning the Mediterranean Sea and centered around Greece (Balkan-Cyrenaica and Greece-Cyrenaica). We create species-specific suitable habitat maps and account for human disturbance by species-specific disturbance buffers, based on expert estimates of Flight Initiation Distances. At both spatial extents we quantitatively determine the habitat networks’ overall functional connectivity and identify wetland sites that are crucial for maintaining a well-connected network. We show that the wetland networks for both spatial extents are relatively well connected and identify several wetland sites in Greece and Libya as important for maintaining connectivity. The application of disturbance buffers results in wetland site-specific reduction of suitable habitat area (0.90–7.36%) and an overall decrease of the network’s connectivity (0.65–6.82%). In addition, we show that the habitat networks of a limited set of species can be combined into a single network which accounts for their autoecological requirements. We conclude that targeted management in few but specific wetland complexes could benefit migratory waterbird populations. Deterioration of these vital wetland sites in Greece and Libya will have disproportionate consequences to the waterbird populations they support.  相似文献   

5.
Climate change and invasive species pose important conservation issues separately, and should be examined together. We used existing long term climate datasets for the US to project potential climate change into the future at a finer spatial and temporal resolution than the climate change scenarios generally available. These fine scale projections, along with new species distribution modeling techniques to forecast the potential extent of invasive species, can provide useful information to aide conservation and invasive species management efforts. We created habitat suitability maps for Pueraria montana (kudzu) under current climatic conditions and potential average conditions up to 30 years in the future. We examined how the potential distribution of this species will be affected by changing climate, and the management implications associated with these changes. Our models indicated that P. montana may increase its distribution particularly in the Northeast with climate change and may decrease in other areas.  相似文献   

6.
Climate change has had a significant impact on natural ecosystems and endemic species around the world and substantial impacts are expected in the future. As a result, knowing how climate change affects endemic species can help in putting forward the necessary conservation efforts. The use of niche modeling to predict changes in species distributions under different climate change scenarios is becoming a hot topic in biological conservation. This study aimed to use the global circulation model (CMIP5) to model the current distribution of suitable habitat for three critically endangered Aloe species endemic to Kenya and Tanzania in order to determine the impact of climate change on their suitable habitat in the years 2050 and 2070. We used two representative concentration pathways scenarios (RCP4.5 and RCP8.5) to project the contraction of suitable habitats for Aloe ballyi Reynolds, A. classenii Reynolds, and A. penduliflora Baker. Precipitation, temperature and environmental variables (Potential evapotranspiration, land cover, soil sedimentary and solar radiation) have had a significant impact on the current distribution of all the three species. Although suitable habitat expansion and contraction are predicted for all the species, loss of original suitable habitat is expected to be extensive. Climate change is expected to devastate >44% and 34% of the original habitats of A. ballyi and A. classenii respectively. Based on our findings, we propose that areas predicted to contract due to climate change should be designated as key protection zones for Aloe species conservation.  相似文献   

7.
1.  The challenge of climate change forces us to re-examine the assumptions underlying conservation planning.
2.  Increasing 'connectivity' has emerged as the most favoured option for conservation in the face of climate change.
3.  We argue that the importance of connectivity is being overemphasized: quantifying the benefits of connectivity per se is plagued with uncertainty, and connectivity can be co-incidentally improved by targeting more concrete metrics: habitat area and habitat quality.
4.   Synthesis and applications . Before investing in connectivity projects, conservation practitioners should analyse the benefits expected to arise from increasing connectivity and compare them with alternative investments, to ensure as much biodiversity conservation and resilience to climate change as possible within their budget. Strategies that we expect to remain robust in the face of climate change include maintaining and increasing the area of high quality habitats, prioritizing areas that have high environmental heterogeneity and controlling other anthropogenic threatening processes.  相似文献   

8.
Understanding the drivers of habitat distribution patterns and assessing habitat connectivity are crucial for conservation in the face of climate change. In this study, we examined a sparsely distributed tree species, Kalopanax septemlobus (Araliaceae), which has been heavily disturbed by human use in temperate forests of South Korea. We used maximum entropy distribution modeling (MaxEnt) to identify the climatic and topographic factors driving the distribution of the species. Then, we constructed habitat models under current and projected climate conditions for the year 2050 and evaluated changes in the extent and connectivity of the K. septemlobus habitat. Annual mean temperature and terrain slope were the two most important predictors of species distribution. Our models predicted the range shift of K. septemlobus toward higher elevations under medium-low and high emissions scenarios for 2050, with dramatic reductions in suitable habitat (51% and 85%, respectively). In addition, connectivity analysis indicated that climate change is expected to reduce future levels of habitat connectivity. Even under the Representative Construction Pathway (RCP) 4.5 medium-low warming scenario, the projected climate conditions will decrease habitat connectivity by 78%. Overall, suitable habitats for K. septemlobus populations will likely become more isolated depending on the severity of global warming. The approach presented here can be used to efficiently assess species and habitat vulnerability to climate change.  相似文献   

9.
Climate change is considered as an important environmental issue globally, affecting geographic distributions of endangered species, and reducing the extent of their natural habitats. We characterized the potential geographic distribution of a Near Threatened tree species, Pterocarpus marsupium, in South Asia. We evaluated the potential geographic distribution of the species under present and future conditions using ecological niche modeling approaches. The future potential distribution of the species was examined under two representative concentration pathway scenarios (RCP 4.5 and 8.5), using outputs from 8 general circulation models for 2050. The present-day distribution of the species covers much of India and Sri Lanka, and parts of Nepal and Bhutan. Model transfers for future-climate conditions indicated a potentially dramatic geographic shift of high-suitability areas for parts of the species' distribution, particularly in central India. In distributional areas that are adjacent to high-mountain areas, under climate change, suitable areas for the species are anticipated to shift towards higher elevations. The results of this study may be useful in identifying currently undocumented populations of P. marsupium, as well as in identifying sites likely to be suitable both at present and in the future for conservation management planning.  相似文献   

10.
Future expected changes in climate and human activity threaten many riparian habitats, particularly in the southwestern U.S. Using Maximum Entropy (MaxEnt3.3.3) modeling, we characterized habitat relationships and generated spatial predictions of habitat suitability for the Lucy’s warbler (Oreothlypis luciae), the Southwestern willow flycatcher (Empidonax traillii extimus) and the Western yellow-billed cuckoo (Coccyzus americanus). Our goal was to provide site- and species-specific information that can be used by managers to identify areas for habitat conservation and/or restoration along the Rio Grande in New Mexico. We created models of suitable habitat for each species based on collection and survey samples and climate, biophysical, and vegetation data. We projected habitat suitability under future climates by applying these models to conditions generated from three climate models for 2030, 2060 and 2090. By comparing current and future distributions, we identified how habitats are likely to change as a result of changing climate and the consequences of those changes for these bird species. We also examined whether land ownership of high value sites shifts under changing climate conditions. Habitat suitability models performed well. Biophysical characteristics were more important that climate conditions for predicting habitat suitability with distance to water being the single most important predictor. Climate, though less important, was still influential and led to declines of suitable habitat of more than 60% by 2090. For all species, suitable habitat tended to shrink over time within the study area leaving a few core areas of high importance. Overall, climate changes will increase habitat fragmentation and reduce breeding habitat patch size. The best strategy for conserving bird species within the Rio Grande will include measures to maintain and restore critical habitat refugia. This study provides an example of a presence-only habitat model that can be used to inform the management of species at intermediate scales.  相似文献   

11.
《植物生态学报》2014,38(3):249
桃儿七(Sinopodophyllum hexandrum)为小檗科多年生草本植物, 是我国濒危传统藏药, 预测气候变化对该物种分布范围的影响对于其保护和资源可持续利用具有重要意义。该文利用获得的桃儿七136个地理分布记录和21个气候环境图层, 通过MaxEnt模型分析桃儿七在我国西部七省的潜在地理分布, 并基于该模型预测政府间气候变化专门委员会(IPCC)发布的SRES-A1B、SRES-A2和SRES-B1气候情景下21世纪20、50和80年代桃儿七分布范围。结果表明: 最热季平均温度、年降水量、温度季节性变动系数和等温性是影响桃儿七分布的主要气候因子; 在当前气候条件下, 桃儿七适宜的生境面积占研究区总面积的11.71%, 主要集中在青藏高原东缘的四川、甘肃、青海境内次生植被丰富、地形复杂的高海拔地区, 低适宜生境与不适宜生境分别占研究区总面积的15.86%与72.43%。由模型预测可知, 在SRES-A1B、SRES-A2和SRES-B1三种情景下, 桃儿七在研究区低适宜生境的数量相对变化较小, 在适宜生境先大幅减少后又缓慢增加。研究结果同时表明, 在未来气候变化条件下, 桃儿七的适宜生境平均海拔将逐渐升高, 范围以及几何重心极有可能先向北移, 然后再向西延伸至青藏高原内部较高海拔的山区。  相似文献   

12.
Climate change will affect the breeding, staging and wintering areas of waterbirds. This may create a problem for the legal protection of important waterbird sites under the present international conventions. We analyse present obligations within a number of international conventions and conservation strategies, and formulate ways to mitigate for the effects of climate change by establishing site conservation within a framework of ecological networks and the overall flyway of species of waterbirds.  相似文献   

13.
Climate change can affect the habitat resources available to species by changing habitat quantity, suitability and spatial configuration, which largely determine population persistence in the landscape. In this context, dispersal is a central process for species to track their niche. Assessments of the amount of reachable habitat (ARH) using static snap-shots do not account, however, for the temporal overlap of habitat patches that may enhance stepping-stone effects. Here, we quantified the impacts of climate change on the ARH using a spatio–temporal connectivity model. We first explored the importance of spatio–temporal connectivity relative to purely spatial connectivity in a changing climate by generating virtual species distributions and analyzed the relative effects of changes in habitat quantity, suitability and configuration. Then, we studied the importance of spatio–temporal connectivity in three vertebrate species with divergent responses to climate change in North America (grey wolf, Canadian lynx and white-tailed deer). We found that the spatio–temporal connectivity could enhance the stepping-stone effect for species predicted to experience range contractions, and the relative importance of the spatio–temporal connectivity increased with the reduction in habitat quantity and suitability. Conversely, for species that are likely to expand their ranges, spatio–temporal connectivity had no additional contribution to improve the ARH. We also found that changes in habitat amount (quantity and suitability) were more influential than changes in habitat configuration in determining the relative importance of spatio–temporal connectivity. We conclude that spatio–temporal connectivity may provide less biased and more realistic estimates of habitat connectivity than purely spatial connectivity.  相似文献   

14.
气候变化下桃儿七潜在地理分布的预测   总被引:8,自引:0,他引:8       下载免费PDF全文
桃儿七(Sinopodophyllum hexandrum)为小檗科多年生草本植物, 是我国濒危传统藏药, 预测气候变化对该物种分布范围的影响对于其保护和资源可持续利用具有重要意义。该文利用获得的桃儿七136个地理分布记录和21个气候环境图层, 通过MaxEnt模型分析桃儿七在我国西部七省的潜在地理分布, 并基于该模型预测政府间气候变化专门委员会(IPCC)发布的SRES-A1B、SRES-A2和SRES-B1气候情景下21世纪20、50和80年代桃儿七分布范围。结果表明: 最热季平均温度、年降水量、温度季节性变动系数和等温性是影响桃儿七分布的主要气候因子; 在当前气候条件下, 桃儿七适宜的生境面积占研究区总面积的11.71%, 主要集中在青藏高原东缘的四川、甘肃、青海境内次生植被丰富、地形复杂的高海拔地区, 低适宜生境与不适宜生境分别占研究区总面积的15.86%与72.43%。由模型预测可知, 在SRES-A1B、SRES-A2和SRES-B1三种情景下, 桃儿七在研究区低适宜生境的数量相对变化较小, 在适宜生境先大幅减少后又缓慢增加。研究结果同时表明, 在未来气候变化条件下, 桃儿七的适宜生境平均海拔将逐渐升高, 范围以及几何重心极有可能先向北移, 然后再向西延伸至青藏高原内部较高海拔的山区。  相似文献   

15.
Aim Climate change has the potential to have significant impacts on the distribution of species and on the composition of habitats. This paper identifies the potential changes in the future distribution of species under the UKCIP98 climate change scenarios, in order that such changes can be taken into account in conservation management. Location The model was applied to Britain and Ireland. Methods A model based on an artificial neural network was used to predict the changing bioclimate envelopes of species in Britain and Ireland. Fifty‐four species representing 15 habitats were modelled. Results The modelled species could be placed into three categories: those losing suitable climate space, those gaining it, and those showing little or no change. When the species were associated with habitats it was found that Arctic–Alpine/montane heath communities were the most sensitive to climate change, followed by pine woodland and beech woodland in southern England. In lowland heath, wet heath, cereal field margins, coastal grazing marsh, drought‐prone acid grassland and calcareous grassland, the species either showed little change or an increase in suitable climate space. The other eight habitats showed a mixed response. Conclusions The species show a variety of responses to climate change and thus their current habitat associations may alter. The uncertain future of some species and habitats is highlighted. Conservation policy and practice will need to be revised in the face of climate change.  相似文献   

16.
Provision of suitable habitat for waterbirds is a major challenge for environmental managers in arid and semiarid regions with high spatial and temporal variability in rainfall. It is understood in broad terms that to survive waterbirds must move according to phases of wet–dry cycles, with coastal habitats providing drought refugia and inland wetlands used during the wet phase. However, both inland and coastal wetlands are subject to major anthropogenic pressures, and the various species of waterbird may have particular habitat requirements and respond individualistically to spatiotemporal variations in resource distribution. A better understanding of the relationships between occurrence of waterbirds and habitat condition under changing climatic conditions and anthropogenic pressures will help clarify patterns of habitat use and the targeting of investments in conservation. We provide the first predictive models of habitat availability between wet and dry phases for six widely distributed waterbird species at a large spatial scale. We first test the broad hypothesis that waterbirds are largely confined to coastal regions during a dry phase. We then examine the contrasting results among the six species, which support other hypotheses erected on the basis of their ecological characteristics. There were large increases in area of suitable habitat in inland regions in the wet year compared with the dry year for all species, ranging from 4.14% for Australian White Ibis to 31.73% for Eurasian Coot. With over half of the suitable habitat for three of the six species was located in coastal zones during drought, our study highlights the need to identify and conserve coastal drought refuges. Monitoring of changes in extent and condition of wetlands, combined with distribution modeling of waterbirds, will help support improvements in the conservation and management of waterbirds into the future.  相似文献   

17.
Habitat management under the auspices of conservation biological control is a widely used approach to foster conditions that ensure a diversity of predator species can persist spatially and temporally within agricultural landscapes in order to control their prey (pest) species. However, an emerging new factor, global climate change, has the potential to disrupt existing conservation biological control programs. Climate change may alter abiotic conditions such as temperature, precipitation, humidity and wind that in turn could alter the life-cycle timing of predator and prey species and the behavioral nature and strength of their interactions. Anticipating how climate change will affect predator and prey communities represents an important research challenge. We present a conceptual framework—the habitat domain concept—that is useful for understanding contingencies in the nature of predator diversity effects on prey based on predator and prey spatial movement in their habitat. We illustrate how this framework can be used to forecast whether biological control by predators will become more effective or become disrupted due to changing climate. We discuss how changes in predator–prey interactions are contingent on the tolerances of predators and prey species to changing abiotic conditions as determined by the degree of local adaptation and phenotypic plasticity exhibited by species populations. We conclude by discussing research approaches that are needed to help adjust conservation biological control management to deal with a climate future.  相似文献   

18.
Climate change can induce species range shifts. However, the intensity of climate change, the intrinsic dispersal ability of species and the anthropization of landscapes are impeding species movements in most cases. In this context, preserving and promoting climate corridors for species to migrate from their current habitats to their future climatically similar habitats is an important strategy for preventing species extinction. Climate connectivity modelling is a tool that can identify these potential movement pathways. Here, we aimed to model connectivity between climate analogues across Europe under various ecological assumptions and climate change scenarios, in order to identify areas of high potential connectivity and to quantify variation in connectivity across a range of hypotheses. We also overlapped connectivity maps with protected areas to determine whether climate connectivity was sufficiently protected. We showed that climatic connectivity did not differ much between different scenarios of climate change, but was strongly dependent on species’ dispersal assumptions. It was also relatively similar to a scenario of non-climatic connectivity. Therefore, it may be feasible to anticipate the effect of climate change on species movements regardless of the future trajectory of climate, but the implementation of protection strategies for multiple species will certainly prove complex. Overall, protected areas were located in the regions of high and stable connectivity, but some countries lack the appropriate protection schemes, especially regarding strong protections. Our results have the potential to serve in the construction of land cover change scenarios to identify the best strategies to improve climate connectivity.  相似文献   

19.
Habitat loss and fragmentation, exacerbated by projected climate change, present the greatest threats to preservation of global biodiversity. As increasing habitat fragmentation and isolation of residual fragments exceeds the dispersal capacity of species, there is the growing need to address connectivity to maintain diversity. Traditionally, habitat corridors have been proposed as a solution. But, the concept of corridors (barriers) is poorly understood; typically they are defined as linear habitats linking up habitat patchwork, and are advocated without a detailed understanding of the elements making up species’ habitats and the cost-effectiveness of alternative solutions. Yet, landscapes comprise an enormous range of ‘linear’ structures that can function in different ways to promote species’ persistence and diversity. In this review, a functional definition of corridor (barrier) is developed to give prominence to connectivity as opposed to ad hoc structures purported to advance connectivity. In developing the concept, urgency to accommodate environmental changes compels a growing emphasis on organism diversity rather than a preoccupation with single species conservation. The review, in focusing on butterflies to address the issue of corridors for patchwork connectivity, draws attention to fundamental divisions among organisms in any taxon: generalists and specialists. Both groups benefit from large patches as these necessarily house species with specialist resources as well as generalists with very different resource types. But, generalists and specialists require very different solutions for connectivity, from short-range habitat corridors and gateways for specialists to habitat and resource stepping stones (nodes, surfaces) for generalists. Connectivity over extensive areas is most critical for moderate generalists and their conservation requires emphasis being placed on space–time resource heterogeneity; landscape features, of whatever dimensionality and structure, provide a vital framework for developing the variety of suitable conditions and resources for enhancing their diversity.  相似文献   

20.
Future changes in climate are imminent and they threat endangered and rare species due to habitat destruction. The Asiatic black bear (Ursus thibetanus gedrosianus) is a rare and vulnerable species whose habitat fragmentation and habitat loss decreased the size of its population significantly. Climate change is another threat to this species that is investigated in this research work. Aiming at this goal, ten species distribution models (SDMs) were applied as helpful tools for evaluating the potential effectiveness of climate change in habitat suitability of Asiatic black bear in Iran. Potential dispersal of Asiatic black bear was modeled as a function of 32 environmental variables for the current time and 2070 for 44 climate change scenarios (CC scenario) of future climate. Our results showed that modeling result depended on type of model. Our results confirmed that one of the greatest threats in the near future for Asiatic black bear was the change of suitable habitat due to climate change. All the CC scenarios showed that migration of this species would be to the north and west areas with higher elevation and that an increase in area would be more than a decrease in area in all scenarios. Recognizing and protecting potential future habitats are of the important activities to conserve this species and identify areas with conservation priority.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号