首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NK cells are important innate immune cells with potent cytotoxicity that can be activated by type I IFN from the host once infected. How NK cell cytotoxicity is activated by type I IFN and then tightly regulated remain to be fully elucidated. MicroRNAs (miRNAs, or miRs) are important regulators of innate immune response, but the full scale of miRNome in human NK cells remains to be determined. In this study, we reported an in-depth analysis of miRNomes in resting and IFN-α-activated human NK cells, found two abundant miRNAs, miR-378 and miR-30e, markedly decreased in activated NK cells by IFN-α, and further proved that miR-378 and miR-30e directly targeted granzyme B and perforin, respectively. Thus, IFN-α activation suppresses miR-378 and miR-30e expression to release cytolytic molecule mRNAs for their protein translation and then augments NK cell cytotoxicity. Importantly, the phenomena are also confirmed in human NK cells activated by other cytokines and even in the sorted CD16(+)CD56(dim)CD69(+) human NK cell subset. Finally, miR-378 and miR-30e were proved to be suppressors of human NK cell cytotoxicity. Taken together, our results reveal that downregulated miR-378 and miR-30e during NK cell activation are negative regulators of human NK cell cytotoxicity, providing a mechanistic explanation for regulation of NK cell function by miRNAs.  相似文献   

2.
NK cells are an important component of the innate immune system that can also interact with B cells in a mutually productive manner. We have previously shown that activated B cells can induce NK cells to up-regulate their secretion of IFN-gamma. In this study, we show that B cells, and, particularly, marginal zone B cells, can, in addition, induce NK cells via direct cell-cell interactions to express mRNA encoding the Th2 cytokine IL-13. The induction of NK cell IL-13 mRNA expression requires the ligation of the CD244 receptor by the CD48 ligand on B cells via signaling pathways that depend upon expression of the X-linked lymphoproliferative disease gene product, SH2D1A/DSHP/SAP (SLAM-associated protein, or SAP) in NK cells. Thus, the positive signals attributed to the B cell activation of CD244 on murine NK cells appears to be more similar to the activity of CD244 on human cells. The induction of IL-13 mRNA by B cells may account for the effect of NK cells on the generation of Th2-type responses in the presence of some adjuvants.  相似文献   

3.
The galactose-alpha-1,3-galactose (alphaGal) carbohydrate epitope is expressed on porcine, but not human cells, and therefore represents a major target for preformed human anti-pig natural Abs (NAb). Based on results from pig-to-primate animal models, NAb binding to porcine endothelial cells will likely induce complement activation, lysis, and hyperacute rejection in pig-to-human xenotransplantation. Human NK cells may also contribute to innate immune responses against xenografts, either by direct recognition of activating molecules on target cells or by FcgammaRIII-mediated xenogeneic Ab-dependent cellular cytotoxicity (ADCC). The present study addressed the question as to whether the lack of alphaGal protects porcine endothelial cells from NAb/complement-induced lysis, direct xenogeneic NK lysis, NAb-dependent ADCC, and adhesion of human NK cells under shear stress. Homologous recombination, panning, and limiting dilution cloning were used to generate an alphaGal-negative porcine endothelial cell line, PED2*3.51. NAb/complement-induced xenogeneic lysis of PED2*3.51 was reduced by an average of 86% compared with the alphaGal-positive phenotype. PED2*3.51 resisted NK cell-mediated ADCC with a reduction of lysis ranging from 30 to 70%. However, direct xenogeneic lysis of PED2*3.51, mediated either by freshly isolated or IL-2-activated human NK cells or the NK cell line NK92, was not reduced. Furthermore, adhesion of IL-2-activated human NK cells did not rely on alphaGal expression. In conclusion, removal of alphaGal leads to a clear reduction in complement-induced lysis and ADCC, but does not resolve adhesion of NK cells and direct anti-porcine NK cytotoxicity, indicating that alphaGal is not a dominant target for direct human NK cytotoxicity against porcine cells.  相似文献   

4.
IL-21 induces the functional maturation of murine NK cells   总被引:24,自引:0,他引:24  
IL-21 is a recently identified cytokine that stimulates mouse NK cell effector functions in vitro. In this study we demonstrate that IL-21 achieves its stimulatory effect by inducing the development of mature NK cells into a large granular lymphocyte phenotype with heightened effector function. IL-21 treatment results in increased cell size and granularity and a corresponding decrease in cell viability and proliferative potential. These cells up-regulate the expression of the inhibitory CD94-NKG2A receptor complex and the activation markers CD154 and killer cell, lectin-like-receptor G1. Surprisingly, IL-21 treatment also results in down-regulation of the pan-NK marker, NK1.1. Coinciding with these cellular changes IL-21 enhances cytolytic capacity across a spectrum of target sensitivities and induces IL-10 and IFN-gamma production. In vivo treatment with IL-21 results in a very similar activation and phenotypic maturation of NK cells as well as a potent increase in NK cell-mediated anti-tumor immunity that is perforin dependent. These developmental changes suggested that IL-21 functions to induce the terminal differentiation of mouse NK cells, resulting in heightened NK cell-mediated cytotoxicity and immune surveillance.  相似文献   

5.
Adiponectin is a negative regulator of NK cell cytotoxicity   总被引:2,自引:0,他引:2  
NK cells are a key component of innate immune systems, and their activity is regulated by cytokines and hormones. Adiponectin, which is secreted from white adipose tissues, plays important roles in various diseases, including hypertension, cardiovascular diseases, inflammatory disorders, and cancer. In this study the effect of adiponectin on NK cell activity was investigated. Adiponectin was found to suppress the IL-2-enhanced cytotoxic activity of NK cells without affecting basal NK cell cytotoxicity and to inhibit IL-2-induced NF-kappaB activation via activation of the AMP-activated protein kinase, indicating that it suppresses IL-2-enhanced NK cell cytotoxicity through the AMP-activated protein kinase-mediated inhibition of NF-kappaB activation. IFN-gamma enhances NK cell cytotoxicity by causing an increase in the levels of expression of TRAIL and Fas ligand. The production of IFN-gamma, one of the NF-kappaB target genes in NK cells, was also found to be suppressed by adiponectin, accompanied by the subsequent down-regulation of IFN-gamma-inducible TRAIL and Fas ligand expression. These results clearly demonstrate that adiponectin is a potent negative regulator of IL-2-induced NK cell activation and thus may act as an in vivo regulator of anti-inflammatory functions.  相似文献   

6.
7.
The UL16-binding proteins (ULBPs) are a novel family of MHC class I-related molecules that were identified as targets of the human CMV glycoprotein, UL16. We have previously shown that ULBP expression renders a relatively resistant target cell sensitive to NK cytotoxicity, presumably by engaging NKG2D, an activating receptor expressed by NK and other immune effector cells. In this study we show that NKG2D is the ULBP counterstructure on primary NK cells and that its expression is up-regulated by IL-15 stimulation. Soluble forms of ULBPs induce marked protein tyrosine phosphorylation, and activation of the Janus kinase 2, STAT5, extracellular signal-regulated kinase, mitogen-activated protein kinase, and phosphatidylinositol 3-kinase (PI 3-kinase)/Akt signal transduction pathways. ULBP-induced activation of Akt and extracellular signal-regulated kinase and ULBP-induced IFN-gamma production are blocked by inhibitors of PI 3-kinase, consistent with the known binding of PI 3-kinase to DAP10, the membrane-bound signal-transducing subunit of the NKG2D receptor. While all three ULBPs activate the same signaling pathways, ULBP3 was found to bind weakly and to induce the weakest signal. In summary, we have shown that NKG2D is the ULBP counterstructure on primary NK cells and for the first time have identified signaling pathways that are activated by NKG2D ligands. These results increase our understanding of the mechanisms by which NKG2D activates immune effector cells and may have implications for immune surveillance against pathogens and tumors.  相似文献   

8.
Interleukin 10 (IL-10) is a multifunctional cytokine that regulates diverse functions of immune cells. Natural killer (NK) cells express the IL-10 and IL-10 receptor, but little is known about the function of IL-10 on NK cell activation. In this study, we show the expression and role of IL-10 in human NK cells. Among the cytokines tested, IL-15 was the most potent inducer of IL-10, with a maximal peak expression at 5 h after treatment. Furthermore, IL-10 receptor was shown to be expressed in NK cells. IL-10 alone had a significant effect on NK cytotoxicity which additively increased NK cell cytotoxicity in the presence of IL-15. Neutralizing IL-10 with anti-IL-10 antibody suppressed the inductive effect of IL-10 on NK cell cytotoxicity; however, IL-10 had no effect on IFN-γ or TNF-α production or NK cell activatory receptor expression. STAT signals are implicated as a key mediator of IL-10/IL-15 cytotoxicity response. Thus, the effect of IL-10 on NK cells is particularly interesting with regard to the STAT3 signal that was enhanced by IL-10 or IL-15.  相似文献   

9.
Timosaponin AIII (TSAIII) is a steroidal saponin that exerts anticancer activity on various cancer cells. In this study, we explore the effects of TSAIII on renal cell carcinoma (RCC) cells. Our findings show that TSAIII treatment (<8 μM) insignificantly influenced cell viability and cell cycle distribution of human RCC cell lines 786-O, A-498, and ACHN. Further observations revealed that TSAIII inhibited migration and invasion of 786-O and A-498 cells, as well as significantly decreased the production and expression of cathepsin C (CTSC) in both the cell types. Kinase cascade analysis exhibited that PI3K/AKT activation was inhibited, but PTEN expression was increased, in response to TSAIII treatments. Combining TSAIII and PI3K inhibitors, LY294002 synergically reduced the migration and invasion of 786-O and A-498 cells, as well as decreased the CTSC expression in both the cell types. We also observed that miR-129-5p bound to CTSC gene and suppressed the expression of CTSC and demonstrated that the miR-129-5p expression was synergically enhanced by TSAIII and LY294002. In addition, pretreatment with antago-miR-129-5p significantly restored the CTSC expression and the migration and invasion of TSAIII-treated 786-O cells. In conclusion, our findings reveal that TSAIII inhibits the metastatic properties of RCC cells, contributing to the inhibition of PI3K/AKT and the increase of miR-129-5p and the subsequent downregulation of CTSC. This suggests that TSAIII has significant antimetastatic activity against RCC cells and may be beneficial to RCC treatments.  相似文献   

10.
Natural killer (NK) cells are innate immune effector cells that protect against cancer and some viral infections. Until recently, most studies have investigated the molecular signatures of human or mouse NK cells to identify genes that are specifically expressed during NK cell development. However, the mechanism regulating NK cell development remains unclear. Here, we report a regulatory network of potential interactions during in vitro differentiation of human NK cells, identified using genome-wide mRNA and miRNA databases through hierarchical clustering analysis, gene ontology analysis and a miRNA target prediction program. The microRNA (miR)-583, which demonstrated the largest ratio change in mature NK cells, was highly correlated with IL2 receptor gamma (IL2Rγ) expression. The overexpression of miR-583 had an inhibitory effect on NK cell differentiation. In a reporter assay, the suppressive effect of miR-583 was ablated by mutating the putative miR-583 binding site of the IL2Rγ 3′ UTR. Therefore, we show that miR-583 acts as a negative regulator of NK cell differentiation by silencing IL2Rγ. Additionally, we provide a comprehensive database of genome-wide mRNA and miRNA expression during human NK cell differentiation, offering a better understanding of basic human NK cell biology for the application of human NK cells in immunotherapy.  相似文献   

11.
NK cells play important roles in innate immunity against tumors and infections of the host. Studies show that CD107a (LAMP-1) may be a marker for degranulation of NK and activated CD8+ T cells. In our study, the relationship between the expression of CD107a, cytokine secretion and cytotoxic activity in CD56+ NK, CD8+ T cells and lymphocytes has been determined after various stimuli. Effector cells from PBMCs of healthy subjects were isolated and K562 cell line was used as target of cytotoxicity. IL-2 stimulation resulted in a significant increase of CD107a expression in CD56+ NK, CD8+ T cells and lymphocytes. Increased expression of CD107a after IL-2 stimulation of NK cells was parallel to the increase of cytotoxicity. Our results suggest that CD107a expression may be a sensitive marker for the cytotoxic activity determination.  相似文献   

12.
13.
Apo-2L is a new member of the tumour necrosis factor (TNF) family shown to induce apoptosis in a number of tumour cell lines. Apo-2L mRNA is expressed by numerous human tissues. Here we report that Apo-2L is expressed and utilized by human Natural Killer (NK) cells. NK cells were shown to express surface Apo-2L in response to interleukin 2 (IL-2) activation, and this response was restricted to the CD3(-)population of the NK cells. Apo-2L mRNA and intracellular Apo-2L were present in both CD3(-)and CD3(+)NK cells; however, increased expression in response to IL-2 was only observed in CD3(-)CD56(+)cells. Also, IL-2-activated NK cells were shown to utilize membrane-bound Apo-2L in mediating lysis of Jurkat cells. Furthermore, Apo-2L-induced apoptosis of Jurkat cells was more rapid than FasL-induced apoptosis, indicating an important and distinct role for Apo-2L in apoptotic cell destruction. In conclusion, we report that NK cells express Apo-2L and that IL-2 activated CD3(-)NK cells utilize the Apo-2L pathway in mediating target cell lysis.  相似文献   

14.
Our previous studies have demonstrated that high dose IL-2 (1000 U/ml) alone can induce human peripheral blood T cell pore-forming protein (PFP) mRNA expression and cytotoxic potential. We now report that the levels of IL-2 needed to induce these effects in T cells can be significantly reduced in the presence of IL-6. IL-6 and suboptimal doses of IL-2 (10 U/ml) were found to costimulate PFP mRNA expression and cytotoxic potential in resting human peripheral blood T cells, whereas IL-6 or low dose IL-2 alone had no effect. The induction of T cell PFP mRNA by IL-2/IL-6 was extremely rapid and increases in both PFP mRNA expression and cytotoxic potential were IL-6 dose dependent. The costimulatory effect of IL-6 did not appear to involve the IL-2/IL-2R pathway in as much as IL-6 did not induce IL-2 production or detectably increase IL-2R surface expression in T cells. These findings, in addition to the rapid induction of PFP mRNA by IL-2/IL-6, suggested that IL-6 can directly and independently provide an additional signal to augment the differentiation of CTL. In contrast to the results observed in T cells, IL-6 and IL-2 could enhance CD3- large granular lymphocyte (LGL) NK activity, but IL-6 either alone or in combination with IL-2 had no effect on constitutive PFP mRNA expression in resting LGL. These data further confirm that different mechanisms may be responsible for lymphokine activation of CTL and LGL in human peripheral blood. In particular it appears that IL-6 acts as a costimulatory signal with IL-2 in generating CTL and that IL-6 functions in part by acting in synergy with IL-2 to induce PFP, a major lytic protein involved in lymphocyte cytotoxicity.  相似文献   

15.
16.
Natural cytotoxicity receptors (NCRs) are major activating receptors involved in NK cytotoxicity. NCR expression varies with the activation state of NK cells, and the expression level correlates with NK cells’ natural cytotoxicity. In this study, we found that Gö6983, a PKC inhibitor, induced a remarkable increase of NCR expression on primary NK cells, but other PKC inhibitors and NK cell stimulators such as IL-2 and PMA, did not. Gö6983 increased the expression of NCR in a time- and concentration-dependent manner. Furthermore, Gö6983 strongly upregulated the surface expression of death ligands FasL and TRAIL, but not cytotoxic molecules perforin and granzyme B. Unlike two other NK stimulating molecules, IL-2, and PMA, Gö6983 did not induce NK cell proliferation. Up-regulation of NCRs and death ligands on NK cells by Gö6983 resulted in a significant enhancement of NK cytotoxicity against various cancer cell lines. Most importantly, administration of Gö6983 effectively inhibited pulmonary tumor metastasis in mice in a dose-dependent manner. These results suggest that Gö6983 functions as an NK cell activating molecule (NKAM); this NKAM is a novel anti-cancer and anti-metastasis drug candidate because it enhances NK cytotoxicity against cancer cells in vivo as well as in vitro.  相似文献   

17.
To approach the mechanisms whereby IL-2 activates human NK cells, we have compared the effects of IL-4 and of Bt2cAMP on this activation. Both agents block completely the proliferation induced by IL-2 on highly purified CD3-negative human NK cells. We also report that the net LAK response of PBL is inhibited by IL-4 and cAMP. However, kinetics analysis showed that IL-4 appears to inhibit an early stage of IL-2-induced activation of NK cells. IL-4 does not affect the cytotoxicity of freshly isolated NK cells against the K562 target and is ineffective on IL-2-preactivated cells. In contrast, cAMP primarily blocks the lytic effector phase, whether cells have been cultured in IL-2 or not, and its effect appears independent of time of addition. These differences between the activity of IL-4 and cAMP suggested that cAMP was not directly involved in IL-4 signal transduction in human NK cells. Consistent with this interpretation, we did not observe any variation in the level of intracellular cAMP concentrations when NK cells were stimulated with IL-4, or when they are stimulated with IL-2 or IL-2 plus IL-4. In addition, we also demonstrate that NK cell cytotoxic activation induced by IL-2 is still demonstrable in the presence of Bt2cAMP under conditions in which NK cell proliferation is blocked. These results clearly indicate that the differentiative effect of IL-2 on NK cells is independent of cell proliferation. Furthermore, the p70-75 IL-2R-initiated signal transduction pathway that leads to increased cytotoxicity appears not to be susceptible to inhibition by cAMP in human NK cells.  相似文献   

18.
Toll-like receptor (TLR) ligands are potent inducers of the innate immune system, of which NK and NKT cells play an important role. We examined the direct activation of highly purified human NK and/or NKT cells with known TLR ligands. NK/NKT cells were positive for all known TLR mRNA (TLR1-10). Ligands for TLR2-5 induced production of significant amounts of IFN-gamma by purified NK cells. However, a TLR9 ligand failed to induce significant levels of the cytokine. NK cells were depleted from PBMCs to confirm that they were the main source of IFN-gamma following treatment with TLR ligands, which resulted in a significant decrease in cytokines. The direct effects of TLR ligands on NK cytotoxicity were determined using 51Cr-labeled K562 target cells. Ligands for TLR2-5 were potent inducers of NK cell cytotoxicity, a TLR9 ligand was not. Our results suggest that TLR ligands can directly stimulate and enhance NK cell cytokine production and induce cytotoxic activities.  相似文献   

19.
20.
Members of NADPH oxidase (Nox) enzyme family are important sources of reactive oxygen species (ROS) and are known to be involved in several physiological functions in response to various stimuli including UV irradiation. UVB-induced ROS have been associated with inflammation, cytotoxicity, cell death, or DNA damage in human keratinocytes. However, the source and the role of UVB-induced ROS remain undefined.Here, we show that Nox1 is involved in UVB-induced p38/MAPK activation and cytotoxicity via ROS generation in keratinocytes. Nox1 knockdown or inhibitor decreased UVB-induced ROS production in human keratinocytes. Nox1 knockdown impaired UVB-induced p38 activation, accompanied by reduced IL-6 levels and attenuated cell toxicity. Treatment of cells with N-acetyl-L-cysteine (NAC), a potent ROS scavenger, suppressed p38 activation as well as consequent IL-6 production and cytotoxicity in response to UVB exposure. p38 inhibitor also suppressed UVB-induced IL-6 production and cytotoxicity. Furthermore, the blockade of IL-6 production by IL-6 neutralizing antibody reduced UVB-induced cell toxicity.In vivo assay using wild-type mice, the intradermal injection of lysates from UVB-irradiated control cells, but not from UVB-irradiated Nox1 knockdown cells, induced inflammatory swelling and IL-6 production in the skin of ears. Moreover, administration of Nox1 inhibitor suppressed UVB-induced increase in IL-6 mRNA expression in mice skin.Collectively, these data suggest that Nox1-mediated ROS production is required for UVB-induced cytotoxicity and inflammation through p38 activation and inflammatory cytokine production, such as IL-6. Thus, our findings suggest Nox1 as a therapeutic target for cytotoxicity and inflammation in response to UVB exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号