首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This research work was carried out to compare the color stripping efficiency of optimized biological method with the chemical stripping, commonly employed in the textile industries. Knitted fabric dyed with Reactive black B dye in 2, 4 and 6% shades strengths was subjected to chemical and biological stripping processes individually. Biological stripping process was found many fold superior to chemical one. It was noted that shade strength does not showed any pronounced effect on the bursting strength of fabric but biological and chemical treatment affect the quality of fabrics in terms of bursting strength/durability of fabric. White rot fungus Ganoderma lucidum IBL-05 showed good potential for decolorization/color stripping of cotton fabric dyed with Reactive black B under optimized set of conditions. The chemical stripping technology is inferior to biological stripping process regarding the quality of fabric and percent color removal from cotton fabric dyed with Reactive black B dye.  相似文献   

2.
The dyeing properties of three natural dyes – curcumin, gardenia yellow and lac dye – on wool fabric after treatment with microbial transglutaminase (MTGase) have been investigated. After 120 min of MTGase treatment, compared with the fabric only pretreated with chemical and protease, the colour strength of curcumin, gardenia yellow and lac dye increased from 8±0.13, 7.5±0.10 and 22±0.12 to about 12.8±0.20, 11.7±0.20 and 27.0±0.41, respectively. The values of wash fastness for dyed wool fabrics increased from 2 to 4 after MTGase treatment, but the light fastness was not obviously improved. By comparing with mordant dyeing, although the colour strength was poorer, MTGase after-treatment did not cause colour shade changes during dyeing and the wash fastness of dyed wool fabric was similar to that of the pre-mordanted samples.  相似文献   

3.
Six mitosporic fungi belonging to five species (Aspergillus flavus var. flavus, Aspergillus ochraceus, Cladosporium cladosporioides, Penicillium glabrum and Penicillium verrucosum) were selected from a screening on 258 fungal strains as the most promising for their ability to remove 2 model dyes in solid conditions. Hence they were tested in liquid conditions for their ability to decolourise 3 model dyes and 9 industrial dyes widely used in the textile industry. The influence of the culture medium, particularly its carbon:nitrogen ratio, on biomass development and decolourisation capacity was considered. All the strains were able to grow in the dyed media and displayed various degrees of decolourisation according to the dye and culture medium. The decolourisation was due to biosorption phenomena. Aspergillus ochraceus performed the highest decolourisation yield being able to remove all dyes over 90%. This strain was also found very effective, both in the living and inactivated form, against simulated effluents that mimicked the recalcitrance of real wastewaters being composed of ten different dyes at high concentration (1,000 ppm), in saline solution.  相似文献   

4.
One of the most common dyeing problems of textile industries is uneven and faulty dyeing over the finished quality of fabrics due to different reasons. These problems are usually tackled through chemical degradation in which uneven and faulty dye is removed from the surface of fiber but fabric quality is compromised. Chemical process also reduces the strength of the fabric and durability of textile material by reduction in reactive dye ability. The fabric cannot be reused due to the reduced strength. To overcome above mentioned problem, biological method of stripping in which enzymes produced by different micro-organisms are used. This process has no harmful effect on the fabric and is safe for environment. In this research work reactive blue 21 dye with 0.5, 2 and 4% shade strengths was used to dye cotton fabric. The Ganoderma lucidum fungal strains were mutated by UV mutagen, and five were selected for further processing. These mutant strains were grown at temperature ranges (20 °C to 40 °C); pH(3–5); inoculum size(1–5 mL) and fermentation time (3–15 days) . The required nutrients media to produce the ligninolytic enzymes was added to the flask. The strain which gave the fast decolourization results was selected for further optimization. Optimization was done by observing the variables: incubation time 12 days, pH 4, temperature 30 °C, and inoculum size 3 mL by applying Response Surface Methodology (RSM) in Central Composite Design (CCD). During the process of fabric color stripping, the enzyme assay revealed that the respective mutant UV-60 strain produced active enzymes with their Vmax, Mnp (427U/mL), LiP (785U/mL), and Lac (75 U/mL) enzymes decolorized 89% of the dye which is 25% more than the parent strain and also the production of enzyme is Mnp (344U/mL), LiP (693U/mL), and Lac (59 U/mL) enzymes which is lower than mutant strain.  相似文献   

5.
There is an increasing interest in the development of enzymatic coloration of textile fabrics as an alternative to conventional textile dyeing processes, which is successful for dyeing protein fibers. However, unmodified cotton fabrics are difficult to be dyed through enzyme catalysis due to the lack of affinity of biosynthesized dyes to cotton fibers. In order to improve the enzyme‐catalyzed dyeability of cotton fibers, chitosan was used to coat cotton fabrics as template. A novel and facile bio‐coloration technique using laccase catalysis of hydroquinone was developed to dye chitosan‐templated cotton fabrics. The polymerization of hydroquinone with the template of chitosan under the laccase catalysis was monitored by ultraviolet‐vis spectrophotometer on the absorbance of reaction solution. A significant peak of UV‐vis spectrum at 246 nm corresponding to large conjugated structures appeared and increased with increasing the duration of enzymatic catalysis. The effect of different treatment conditions on the laccase‐catalyzed dyeing of cotton fabric was investigated to determine their optimal parameters of laccase‐catalyzed coloration. Fourier‐transform infrared spectroscopy spectra demonstrated the formation of H‐bond and Schiff base reaction between chitosan and polymerized hydroquinone. Scanning electron microscopy indicated that the surface of dyed cotton fiber was much rougher than that of the control sample. Moreover, X‐ray photoelectron spectroscopy also revealed the existence of the chitosan/polymerized hydroquinone complex and polymerized hydroquinone on the dyed cotton fibers. This chitosan‐templated approach offers possibility for biological dyeing coloration of cotton fabrics and other cellulosic materials.  相似文献   

6.
我国几种典型棉纺织产品的工业水足迹评价   总被引:2,自引:0,他引:2  
严岩  贾佳  王丽华  杜冲  刘馨磊  付晓  刘昕  吴钢 《生态学报》2014,34(23):7119-7126
产品水足迹评价能够揭示人类活动在产品全生命周期中的水资源综合影响,可以为提高水资源利用与管理水平和引导绿色消费提供重要的科学依据和技术手段,是当前水资源评价与管理领域的热点研究方向。纺织品是日常生活最主要的消费品之一,其工业生产过程需要利用大量的水资源,同时排放出的工业废水还会对周围水环境造成严重影响。为了揭示纺织品生产过程的水资源综合影响,运用工业水足迹的概念与原理,探讨和明确了纺织品工业水足迹评价的系统边界与内容,建立了相应的核算方法,并选择了花灰布、漂白布、染色布、色织布等四种典型棉纺织产品进行了工业水足迹评价。结果显示,漂白布的工业水足迹较小为36.51L/lb,花灰布次之为37.84L/lb,染色布的平均工业水足迹为61.52L/lb,色织布水足迹最大,平均值为81.51L/lb。比较同种类型、不同颜色纺织品的工业水足迹,由大到小依次为深色中色浅色,即颜色越深对水资源的影响程度最大。从水足迹构成来看,棉纺织产品的工业水足迹主要来自于直接工业水足迹,间接工业水足迹占比较小;在直接工业水足迹的构成中,蓝水足迹的贡献较大。  相似文献   

7.
In this research work, wool surface has been modified by liposome to investigate its effects on dyeing with weld, a yellow natural dye. To do this, samples were first treated with aluminium sulphate and afterward with different concentrations of liposomes at various temperatures for 30?minutes and, finally, dyed with weld at 75, 85, and 95°C for 30, 45, and 60?minutes. K/S values of fabric samples were calculated and washing, light and rub fastness properties of the samples were indicated. The results proposed that the sample treated with 1% liposomes and dyed at 75°C for 60?min has the highest K/S value. The central composite design (CCD) used for the experimental plan with three variables on the results of color strength and statistical analysis confirms the optimum conditions obtained by the experimental results. It was also found that washing, light, wet, and dry rub fastness properties of samples dyed with weld, including liposomes, have not significantly changed. The results of water drop absorption indicated that the hydrophobicity is higher for the samples pretreated with liposomes. The SEM picture of wool sample treated with mordant and liposomes and finally dyed with weld shows a coated layer on the fiber surface.  相似文献   

8.
Wool is a natural animal fiber commonly used in fabrics, but requires physical and chemical processing treatment for such applications. With the aim of developing new woollen textile products using environmentally friendly treatments, proteolytic bacteria were isolated from raw wool samples of Merino sheep and screened for wool-degrading activity. Two isolates were identified as Bacillus megaterium L4 and Bacillus thuringiensis L11 by 16S rRNA gene sequence analysis. Both isolates grew on a minimal medium using wool-fiber or wool-fabric as sole carbon and nitrogen sources. Bacterial growth was correlated with extracellular protease activity, and maximal protease production was in early stationary phase. The exoprotease produced by L11 was found to be a thermo-tolerant metalloprotease stabilized by calcium or magnesium, and had optimum activity at pH 7.0 and temperature at 40°C. During bacterial growth the wool-fiber lost weight, but it did not show changes in diameter. When wool-fabric was used instead of wool-fiber weight loss and non-shrinking was found. These are encouraging results for textile processing that should be useful for development of new textile products by direct microbial processing. A potential alternative that could be suggested from our study would be to treat wool with wool-degrading microorganisms in order to develop environmentally friendly processes.  相似文献   

9.
One of the basic tasks in the field of biodeterioration is to recognise the microbial species responsible for the destruction of particular substrates, and to identify factors impacting the level of damage caused by microorganisms. Even in 1839, it was known that there existed some fungi capable of attacking keratinized tissues, although, at that time, only dermatophytes were recognised. The relevant literature pertaining to microbiological deterioration of keratinous substrates includes 299 fungi belonging to 100 genera. Representatives of the genera Aspergillus, Penicillium, Chrysosporium, Fusarium, Microsporum, Trichophyton, and Acremonium appear to be the most common. Of the 299 species collected, 107 belonging primarily to the Onygenales and Eurotiales are pathogenic to humans. The research focusing on microbial ability to colonize and destroy keratinous materials has been carried out mainly on sheep fleece, hairs, and feathers, but only a few authors have dealt with woollen fabric biodeterioration, which is of particular significance for the preservation of antique textiles.  相似文献   

10.
This research studied the adherent behaviour of gram-negative Escherichia coli on different weft knitted textile fabrics made of cotton, polyester filaments and polyester (staple)-cotton blended yarn. We compared the bacterial adherence of 18-h-old E. coli cells on all the three types of fabrics under the same experimental conditions. The maximum adherence was found in cotton, followed by the polyester blend; the least adherence was in polyester fabrics. Scanning electron micrographs showed that surface morphology of fabrics also plays an important role during adherence. Cotton fabric, with a rough surface, attracted more bacterial cells compared to the smooth polyester surface. Comparing the FTIR spectra of different fabrics and E. coli it was found that both cotton and E. coli have abundant free hydroxyl groups that may interact strongly with each other and with other hydrophilic groups such as carboxyl, phosphate, and amides. This may be one of the reasons for the greater adherence on cotton as compared to hydrophobic polyester fabric. Finally, the effect of bacterial adherence on loss of strength in different fabrics was analysed. It was found that the maximum decrease in strength occurred in cotton fabrics and the least in polyester fabrics. The present study suggests a procedure for quantifying bacterial adherence on different textile fabrics. This technique can be used with different bacterial strains and varieties of fabrics for quantifying the adherent bacterial cells, and would be of great use in developing and comparing different antimicrobial finished products of the textile industry.  相似文献   

11.
Chitosan, a naturally available biopolymer which is now increasingly being used as a functional finish on textile substrates to impart antimicrobial characteristics and increase dye uptake of fabrics was applied on wool fabrics. Henna a natural dye with proven bactericidal properties was applied on wool fabrics along with chitosan to impart antimicrobial characteristics. The effect of chitosan application on the dyeing properties of wool fabrics was studied by measuring the K/S values of the treated substrates at various concentrations of chitosan and the dye. The antimicrobial properties of chitosan and natural dyes both when applied independently and collectively on fabrics were assessed. The results proved that the chitosan treated wool fabrics showed increase dye uptake of fabrics. The treated fabrics were found to be antimicrobial and the chitosan treatment enhances the antimicrobial characteristics of the dyes. Fastness properties of the applied finish to washing, rubbing and perspiration have also been discussed.  相似文献   

12.
A series of novel disperse dyes containing azo group were synthesized through a diazotization and coupling process. The 4‐amino‐N‐2‐aminomethylpyridine‐1,8‐naphthalimide was diazotized by nitrosylsulphuric acid and coupled with various aromatic amines such as N,N‐diethylaniline, N,N‐dihydroxyethylaniline, 8‐hydroxyquinoline, and 2‐methylindole. Chemical structures of the synthesized dyes were characterized by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), proton nuclear magnetic resonance (1H NMR), carbon nuclear magnetic resonance (13C NMR), elemental analysis, and ultraviolet–visible (UV–visible) spectroscopy. The spectrophotometric data of all dyes were evaluated in various solvents with different polarity. Eventually, the dyes were applied on polyamide fabrics in order to investigate their dyeing properties. The fastness properties of the dyed fabrics such as wash, light, and rubbing fastness degrees were measured by standard methods. Moreover, the color gamut of the synthesized dyes was measured on polyamide fabrics. Results indicated that some of the synthesized dyes were able to dye polyamide fabrics with deep shades. They had very good wash and rubbing fastness degrees and moderate‐to‐good light fastness on polyamide fabrics. The antibacterial and antifungal activities of the synthesized dyes were evaluated in soluble state and on the dyed fabrics. The results indicated that dye 2 containing N,N‐dihydroxyethylaniline as coupler had the highest activity against all the bacteria and fungi used. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1086–1095, 2015  相似文献   

13.
Textile dyes are engineered to be resistant to environmental conditions. During recent years the treatment of textile dye effluents has been the focus of significant research because of the potentially low cost of the process. Mechanisms of biological textile dye decolorization depend greatly on the chemical structure of the dye and the microorganisms used. While basidiomycetous filamentous fungi are well recognized for dye decolorization through ligninolytic enzymes, reports on textile dye decolorization mechanisms of basidiomycetous yeasts have been scarce. Decolorization of several textile dyes by Trichosporon akiyoshidainum occurs during the first 12 h of cultivation. This fast decolorization process could not be solely related to siderophore production or dye sorption to biomass; it was shown to be a co-metabolic process. T. akiyoshidainum could use glucose, sucrose, and maltose as alternative carbon sources, and urea as an alternative nitrogen source with similar decolorization rates. The activity of two enzymes, manganese peroxidase and tyrosinase, were induced by the presence of dyes in the culture media, pointing to their potential role during the decolorization process. Manganese peroxidase titers reached 666 U l−1 to 10538 U l−1, while tyrosinase titers ranged between 84 U l−1 and 786 U l−1, depending on the dye tested. The present work provides a useful background to propose new eco-friendly alternatives for wastewater treatment in textile dying industries.  相似文献   

14.
本文研究了提取自麻栎壳斗的植物染料(麻栎染料)的耐酸、碱稳定性,染浴pH值及铝、铁离子等环保型媒染剂对其染毛织物效果的影响,并且探究了其染色动力学.研究表明,麻栎染料在强酸性染浴(pH=3)中对羊毛织物直接性好,染色后毛织物得棕色,也可采用铝离子、铁离子对直接染色后的毛织物进行后媒染,以得到不同色相的毛织物,尤其是铁后...  相似文献   

15.
Poly-N-vinyl-2-pyrrolidone functionalization was done for improved the dyeability of dichlorotriazine dyes on cotton fabric. The synthesized ZnO nanoparticles were padded on functionalized cotton fabrics to improve antibacterial activity. The modification effects were characterized by FTIR, XRD, SEM and EDX studies. The antibacterial activity was done against Staphylococcus aureus and Escherichia coli bacterium. The dye exhaustion and fastness properties were analyzed for dyeing with sodium chloride, sodium sulfate and trisodium citrate bio-salt as exhausting agents. The functionalized cotton fabric showed improved dye uptake and good fastness properties. Poly-N-vinyl-2-pyrrolidone with ZnO nanoparticles padded fabrics showed very good antibacterial activity.  相似文献   

16.
New cellulases from the fungi Acrophialophora nainiana and Penicillium echinulatum were used in the finishing of knitted cotton fabrics (biopolishing) and compared with the well established enzymes from Trichoderma reesei. Both cellulases reduced the pilling tendency with a lower weight loss than T. reesei cellulases. Cellulases from P. echinulatum were also studied in stonewashing of denim fabrics to obtain the fashionable aged look in indigo dyed jeans ware and were found to remove more colour from denim fabrics and produce less indigo dye redeposition (back-staining) than commercial acid or neutral cellulases under the test conditions. Efficiency was found to be influenced by pH during textile processing and the substrate used for the production of cellulases. Cellulases produced by P. echinulatum grown on cellulose showed better stonewashing results (higher colour removal and less back-staining) than cellulases produced on sugar cane bagasse. The substrate used during enzyme production of P. echinulatum cellulases seems to have a significant influence on cellulose composition, which affects textile processing results.  相似文献   

17.
Recently, various studies have focused on the development of multifunctional non-woven polyethylene terephthalate (PT; polyester) textiles. Herein, we introduce multifunctional non-woven polyester fabrics by pad dry curing silver nitrate (AgNO3) and aniline monomer into plasma-pretreated non-woven PT textile. This creates a nanocomposite layer of silver nanoparticles (AgNPs) and polyaniline (PANi) on the fabric surface. In order to prepare a non-woven fibrous mat, we applied the melt-spinning technique on previously shredded recycled PT plastic waste. On the surface of the cloth, PANi was synthesized by REDOX polymerization of aniline. Due to the oxidative polymerization, the silver ions (Ag+) were converted to Ag0NPs. PANi acted as a conductor while AgNPs inhibited the growth of microorganisms. Microwave-assisted curing with trimethoxyhexadecylsilane (TMHDS) gave PT textiles with superhydrophobic properties. The morphological studies were performed using Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The stiffness and breathability of finished non-woven PT textile materials were analyzed to establish their comfort levels. Both of Escherichia coli and Staphylococcus aureus were used to test the efficacy of the AgNPs-treated textiles as antimicrobial materials. Moreover, the processed polyester textiles showed excellent electrical conductivity and great ultraviolet-ray blocking.  相似文献   

18.
Clothing textiles protect our human body against external factors. These textiles are not sterile and can harbor high bacterial counts as sweat and bacteria are transmitted from the skin. We investigated the microbial growth and odor development in cotton and synthetic clothing fabrics. T-shirts were collected from 26 healthy individuals after an intensive bicycle spinning session and incubated for 28 h before analysis. A trained odor panel determined significant differences between polyester versus cotton fabrics for the hedonic value, the intensity, and five qualitative odor characteristics. The polyester T-shirts smelled significantly less pleasant and more intense, compared to the cotton T-shirts. A dissimilar bacterial growth was found in cotton versus synthetic clothing textiles. Micrococci were isolated in almost all synthetic shirts and were detected almost solely on synthetic shirts by means of denaturing gradient gel electrophoresis fingerprinting. A selective enrichment of micrococci in an in vitro growth experiment confirmed the presence of these species on polyester. Staphylococci were abundant on both cotton and synthetic fabrics. Corynebacteria were not enriched on any textile type. This research found that the composition of clothing fibers promotes differential growth of textile microbes and, as such, determines possible malodor generation.  相似文献   

19.
Triphenylmethane dyes belong to the most important group of synthetic colorants and are used extensively in the textile industries for dying cotton, wool, silk, nylon, etc. They are generally considered as the xenobiotic compounds, which are very recalcitrant to biodegradation. Sphingomonas paucimobilis, was isolated from the soil sample collected from contaminated sites of textile industry located in KsarHellal, Tunisia, and it was able to decolorize Malachite Green (MG) dye (50 mg/l) within 4 h under shaking condition (pH 9 and temperature 25°C). The effect of inoculum size, dye concentration, temperature and initial pH of the solution were studied. The results obtained from the batch experiments revealed the ability of the tested bacteria to remove dye. UV–Vis spectroscopy and FTIR analysis of samples before and after decolorization confirmed the ability of the tested strain to decolorize MG. In addition, the phytotoxicity study revealed the degradation of MG into non-toxic product by S. paucimobilis.  相似文献   

20.
Pleurotus sajor-caju PS2001 was screened in Petri dish plates to assess the dye-decolorizing ability of industrial textile dyes. P. sajor-caju PS2001 was also cultivated in solid-state fermentation containing sawdust of Pinus sp. and wheat bran to obtain the enzymatic extract, showing laccase and manganese-peroxidase activity, which was used to test the capacity to degrade the textile dyes. Additional tests of decolorization were performed in liquid cultures. Anthraquinone-type textile dyes proved to be substrates for the enzymatic system of P. sajor-caju PS2001. Cultures in Petri dish plates showed that the anthraquinone dye Reactive Blue 220 can act as a redox mediator for the enzymatic reactions involved in the decolorization process, and enables the azo dye degradation. Reactive Blue 220 and Acid Blue 280 were completely decolorized in 30 min and 60 min, respectively, during the tests with precipitated enzymatic extract, while the azo dyes showed resistance to degradation. Additionally, in submerged cultures with dyes, veratryl alcohol oxidases and lignin peroxidase activities were observed. These results suggest that the strain P. sajor-caju PS2001 has great potential for use in the bioremediation technology of recalcitrant pollutant such as textile effluents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号