首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluated whether herbivorous insects can be expected to have particular adaptations to withstand the harsh dry season in tropical dry forests (TDFs). We specifically investigated a possible escape in space, with herbivorous insects moving to the few evergreen trees that occur in this ecosystem; and escape in time, with herbivores presenting an increased nocturnal rather than diurnal activity during the dry season. We determined the variation in the free-feeding herbivorous insects (sap-sucking and leaf chewing) between seasons (beginning and middle of both rainy and dry seasons), plant phenological groups (deciduous and evergreen trees) and diel period (diurnal and nocturnal) in a Brazilian TDF. We sampled a total of 5827 insect herbivores in 72 flight-interception traps. Contrary to our expectations, we found a greater herbivore diversity during the dry season, with low species overlap among seasons. In the dry season, evergreen trees supported greater richness and abundance of herbivores as compared to deciduous trees. Insects were also more active at night during the dry season, but no diel differences in insect abundance were detected during the rainy season. These results indicate that the strategies used by insect herbivores to withstand the severe climatic conditions of TDFs during the dry season include both small-scale escape in space and time, with evergreen trees playing a key role in maintaining resident insect herbivore populations in TDFs. Relatively more nocturnal activity during the dry season may be related to the avoidance of harsh climatic conditions during the day. We suggest that the few evergreen tree species occurring in the TDF landscape should be especially targeted for protection in this threatened ecosystem, given their importance for insect conservation.  相似文献   

2.
Species‐specific responses to climate change will lead to changes in species interactions across multiple trophic levels. Interactions between plants and their insect herbivores, in particular, may become increasingly disrupted if mobile herbivores respond more rapidly to climatic change than their associated host plants. We present a multispecies transplant experiment aimed at assessing potential climatic impacts on patterns of leaf herbivory. Four shrubby understorey plant species were transplanted outside their native range into a climate 2.5°C warmer in annual mean temperature. After 12 months, we assessed the types and amount of herbivore leaf damage, compared with plants transplanted to a control site within their native range. The overall amount of foliage loss to herbivores ranged from approximately 3–10% across species and sites, a range consistent with most estimates of leaf loss in other studies. The most common types of leaf damage were sucking and chewing and this pattern was consistent for all four plant species at all sites. There were no significant differences in levels and patterns of herbivory between control and warm sites for three out of four plant species. This suggests that with moderate climate warming, most herbivory will continue to be dominated by chewers and suckers, and that the overall level of foliage loss will be similar to that experienced presently.  相似文献   

3.
Leaf phenology is important to herbivores, but the timing and extent of leaf drop has not played an important role in our understanding of herbivore interactions with deciduous plants. Using phylogenetic general least squares regression, we compared the phenology of leaves of 55 oak species in a common garden with the abundance of leaf miners on those trees. Mine abundance was highest on trees with an intermediate leaf retention index, i.e. trees that lost most, but not all, of their leaves for 2–3 months. The leaves of more evergreen species were more heavily sclerotized, and sclerotized leaves accumulated fewer mines in the summer. Leaves of more deciduous species also accumulated fewer mines in the summer, and this was consistent with the idea that trees reduce overwintering herbivores by shedding leaves. Trees with a later leaf set and slower leaf maturation accumulated fewer herbivores. We propose that both leaf drop and early leaf phenology strongly affect herbivore abundance and select for differences in plant defense. Leaf drop may allow trees to dispose of their herbivores so that the herbivores must recolonize in spring, but trees with the longest leaf retention also have the greatest direct defenses against herbivores.  相似文献   

4.
Individual plants may vary in their suitability as hosts for insect herbivores. The adaptive deme formation hypothesis predicts that this variability will lead to the fine-scale adaptation of herbivorous insects to host individuals. We studied individual and temporal variation in the quality of leaves of the tree species ash, lime, common oak, and sycamore in the field as food for herbivores. We determined herbivore attack and leaf consumption and performance of the generalist caterpillars of Spodoptera littoralis in the laboratory. We further assessed the concentrations of carbon, nitrogen and water in the leaves.All measures of leaf tissue quality varied among and within individuals for all tree species. The level of herbivory differed among the tree individuals in lime, oak and sycamore, but not in ash. Within host individuals, differences in herbivory between the upper and lower crown layer varied in direction and magnitude depending on tree species. In feeding experiments, herbivore performance also varied among and within tree individuals. However, variation in palatability was not consistently related to the leaf traits measured or to herbivory levels in the field. The ranking of individuals with respect to the quality of leaf tissue for herbivorous insects varied between years in lime and oak. Thus, trees of both species might present moving targets for herbivores which prevents fine-scale adaptations. In contrast, among individuals of ash and sycamore the pattern of insect performance remained constant over 2 years. These species may be more suitable hosts for the formation of adapted demes in herbivores.  相似文献   

5.
Rex G. Cates 《Oecologia》1980,46(1):22-31
Summary Leaf tissue preferences of monophagous, oligophagous, and polyphagous insect herbivores were determined using young and mature leaf tissue abundances and herbivore feeding observations. Larvae of monophagous and oligophagous herbivores preferred young leaf tissues while, overall, larvae of polyphagous species preferred mature leaves of their various host plants. Even though a species is often polyphagous over its geographical range, larvae from local populations may be very specialized in their diet. When this occurs these specialized larvae prefer the more nutritious and perhaps more toxic young leaves of some of their host plants. Resource abundance and plant chemistry are discussed as major factors influencing herbivore feeding patterns.  相似文献   

6.
Host-specificity of folivorous insects in a moist tropical forest   总被引:3,自引:0,他引:3  
1. To assess the degree of herbivore host-specificity in the moist tropical forest on Barro Colourado Island, Panama, I conducted an extensive series of feeding trials on the common insect herbivores from 10 tree species.
2. The herbivores were offered leaves from both congeneric and confamilial plant species to their known host species, as well as leaves from the most abundant tree species in the forest.
3. The amount of damage caused by these herbivores to young, expanding leaves was also measured on nine of the tree species.
4. Of 46 herbivores species (seven Coleoptera, one Orthoptera, 38 Lepidoptera), 26% were specialized to a single plant species, 22% were limited to feeding on a single genus and 37% were able to feed on several genera within a single family. The remaining 15% were generalists, able to feed from several different plant families.
5. The causes of leaf damage varied extensively across the tree species. On average, specialist herbivores caused 58% of the damage to young leaves, generalists herbivores 8% and fungal pathogens 34%. For four of the tree species, pathogens were the most important cause of leaf damage.
6. In this forest, most chewing herbivores appear to have fairly narrow diets, and these specialists are responsible for most of the insect herbivory.  相似文献   

7.
Metabolomics provides an unprecedented window into diverse plant secondary metabolites that represent a potentially critical niche dimension in tropical forests underlying species coexistence. Here, we used untargeted metabolomics to evaluate chemical composition of 358 tree species and its relationship with phylogeny and variation in light environment, soil nutrients, and insect herbivore leaf damage in a tropical rainforest plot. We report no phylogenetic signal in most compound classes, indicating rapid diversification in tree metabolomes. We found that locally co-occurring species were more chemically dissimilar than random and that local chemical dispersion and metabolite diversity were associated with lower herbivory, especially that of specialist insect herbivores. Our results highlight the role of secondary metabolites in mediating plant–herbivore interactions and their potential to facilitate niche differentiation in a manner that contributes to species coexistence. Furthermore, our findings suggest that specialist herbivore pressure is an important mechanism promoting phytochemical diversity in tropical forests.  相似文献   

8.
9.
Insect herbivores were sampled from the foliage of 15 species of Ficus (Moraceae) in rainforest and coastal habitats in the Madang area, Papua New Guinea. The collection included 13 193 individuals representing 349 species of leaf-chewing insects and 44 900 individuals representing 430 species of sap-sucking insects. Despite a high sampling intensity, the species accumulation curve did not reach an asymptote. This pattern was attributed to the highly aggregated distribution of insects on individual host trees. The number of insect species collected on a particular Ficus species ranged from 34 to 129 for leaf-chewing and from 51 to 219 for sap-sucking insects. Two Ficus species growing on the seashore sustained less speciose insect communities than their counterparts growing in forest. For the forest figs, significant predictors of insect species richness included leaf palatability and leaf production for leaf-chewing insects (40% of the variance explained), and tree density and leaf expansion for sap-sucking insects (75%). The high faunal overlap among Ficus communities and the importance of local resources for insect herbivores suggest that highly specialized interactions between insect herbivores and Ficus in Papua New Guinea have not been conserved in evolutionary time. This is at variance with the dogma of old, extremely specialized and conservative interactions between insect herbivores and their hosts, providing numerous ecological niches in the floristically rich tropics.  相似文献   

10.
Woody climbers or, ‘lianas’, are one of the features that characterise rainforests. They contribute substantially to plant diversity and leaf biomass which makes them a potentially important food source for herbivores. Here, we focus on insect herbivores, folivores in particular, to show how disparities in the quantitative and qualitative availability of leaves between lianas and trees may differentially influence insect folivory and the herbivore communities themselves. We develop a conceptual model and show that lianas in general have lower structural and chemical defences, a greater nutritional profile and a preferable phenology in comparison with trees, which, contrary to our expectations, has led to assemblages of more‐specialised insects. The impacts this has on higher trophic levels and broader ecological networks, however, are poorly known. We show through a study of four tropical floras from different biogeographic realms that lianas are likely to be a target for a wide range of insect herbivore taxa as they are a phylogenetically diverse group and increase diversity of higher taxa at local scales. This, in combination with their highly palatable leaves, may also make them a suitable temporary food source for insects during times when preferred host plants are scarce. This phenomenon has been observed in mammalian herbivores but awaits investigation in insects as does the effects this may have on survival and fitness. Apparent recent increases in liana abundances in some forests, likely due to climate change, makes understanding their role in supporting and maintaining biodiversity an increasingly important and necessary challenge. Since trees or saplings have usually been the subject of studies on insect herbivory, major knowledge gaps remain about the ways in which lianas contribute to, support and maintain the ecosystems in which they exist. We use our conceptual model to guide future research directions and express the necessity for caution when extrapolating explanations of herbivory derived from data on trees to growth forms with fundamentally different ecologies.  相似文献   

11.
Abstract Insects feeding on ten species of wild crucifer were investigated. Differences in host plant range and insect community structure were examined with regard to anti-herbivore defense mechanisms. Most of the crucifer species deterred insect herbivory by disappearing in the summer or by lowering their intrinsic quality as food for insects. Species with these defense mechanisms were exploited by only a few specialized herbivorous insects that seemed to have counter defenses. The plants without these defense mechanisms were used by many herbivorous insect species. Rorippa indica lacked direct defenses, but supported a low total density of herbivore individuals. This crucifer has an indirect defense mechanism: ants attracted to floral nectar defended the plant from deleterious herbivores. Crucifers that disappeared seasonally lacked other anti-herbivore defense mechanisms. This suggests that the phonological response is an alternative other responses to herbivore attack.  相似文献   

12.
Increased levels of atmospheric carbon dioxide (CO2) are likely to affect the trophic relationships that exist between plants, their herbivores and the herbivores' natural enemies. This study takes advantage of an open‐top CO2 fertilization experiment in a Florida scrub oak community at Kennedy Space Center, Florida, consisting of eight chambers supplied with ambient CO2 (360 ppm) and eight chambers supplied with elevated CO2 (710 ppm). We examined the effects of elevated CO2 on herbivore densities and levels of leaf consumption, rates of herbivore attack by natural enemies and effects on leaf abscission. Cumulative levels of herbivores and herbivore damage were significantly lower in elevated CO2 than in ambient CO2. This may be because leaf nitrogen levels are lower in elevated CO2. More herbivores die of host plant‐induced death in elevated CO2 than in ambient CO2. Attack rates of herbivores by parasitoids are also higher in elevated CO2, possibly because herbivores need to feed for a longer time in order to accrue sufficient nitrogen (N), thus exposing themselves longer to natural enemies. Insect herbivores cause an increase in abscission rates of leaves throughout the year. Because of the lower insect density in elevated CO2, we thought, abscission rates would be lower in these chambers. However, abscission rates were significantly higher in elevated CO2. Thus, the direct effects of elevated CO2 on abscission are greater than the indirect effects on abscission mediated via lower insect densities. A consequence of increased leaf abscission in elevated CO2 is that nutrient deposition rates to the soil surface are accelerated.  相似文献   

13.
John A. Barone 《Biotropica》2000,32(2):307-317
The Janzen–Connell model of tropical forest tree diversity predicts that seedlings and young trees growing close to conspecific adults should experience higher levels of damage and mortality from herbivorous insects, with the adult trees acting as either an attractant or source of the herbivores. Previous research in a seasonal forest showed that this pattern of distance‐dependent herbivory occurred in the early wet season during the peak of new leaf production. I hypothesized that distance‐dependent herbivory may occur at this time because the new foliage in the canopy attracts high numbers of herbivores that are limited to feeding on young leaves. As a consequence, seedlings and saplings growing close to these adults are more likely to be discovered and damaged by these herbivores. In the late wet season, when there is little leaf production in the canopy, leaf damage is spread more evenly throughout the forest and distance dependence disappears. I tested three predictions based on this hypothesis: (1) the same species of insect herbivores attack young and adult trees of a given plant species; (2) herbivore densities increase on adult trees during leaf production; and (3) herbivore densities in the understory rise during the course of the wet season. Censuses were conducted on adults and saplings of two tree species, raribea asterolepis and Alseis blackiana. Adults and saplings of both species had largely the same suite of chewing herbivore species. On adults of Q. asterolepis, the density of chewing herbivores increased 6–10 times during leaf production, but there was no increase in herbivore density on adults of A. blackiana. Herbivore densities increased 4.5 times on A. blackiana saplings and 8.9 times on Q. asterolepis saplings during the wet season, but there were no clear trends on the adults of either species. These results suggest that the potential of adult trees as a source of herbivores on saplings depends on the value of new leaves to a tree species' herbivores, which may differ across tree species.  相似文献   

14.
Plants respond to herbivory through different defensive mechanisms. The induction of volatile emission is one of the important and immediate response of plants to herbivory. Herbivore-induced plant volatiles (HIPVs) are involved in plant communication with natural enemies of the insect herbivores, neighboring plants, and different parts of the damaged plant. Release of a wide variety of HIPVs in response to herbivore damage and their role in plant-plant, plant-carnivore and intraplant communications represents a new facet of the complex interactions among different trophic levels. HIPVs are released from leaves, flowers, and fruits into the atmosphere or into the soil from roots in response to herbivore attack. Moreover, HIPVs act as feeding and/or oviposition deterrents to insect pests. HIPVs also mediate the interactions between the plants and the microorganisms. This review presents an overview of HIPVs emitted by plants, their role in plant defense against herbivores and their implications for pest management.  相似文献   

15.
Tree diversity is increasingly acknowledged as an important driver of insect herbivory. However, there is still a debate about the direction of associational effects that can range from associational resistance (i.e., less damage in mixed stands than in monocultures) to the opposite, associational susceptibility. Discrepancies among published studies may be due to the overlooked effect of spatially dependent processes such as tree location within forests. We addressed this issue by measuring crown defoliation and leaf damage made by different guilds of insect herbivores on oaks growing among conspecific versus heterospecific neighbors at forest edges versus interior, in two closed sites in SW France forests. Overall, oaks were significantly less defoliated among heterospecific neighbors (i.e., associational resistance), at both forest edge and interior. At the leaf level, guild diversity and leaf miner herbivory significantly increased with tree diversity regardless of oak location within stands. Other guilds showed no clear response to tree diversity or oak location. We showed that herbivore response to tree diversity varied among insect feeding guilds but not between forest edges and interior, with inconsistent patterns between sites. Importantly, we show that oaks were more defoliated in pure oak plots than in mixed plots at both edge and forest interior and that, on average, defoliation decreased with increasing tree diversity from one to seven species. We conclude that edge conditions could be interacting with tree diversity to regulate insect defoliation, but future investigations are needed to integrate them into the management of temperate forests, notably by better understanding the role of the landscape context.  相似文献   

16.
Edge habitats create environmental gradients that affect plant community composition and herbivore behavior. Silvicultural disturbance creates edge habitat with direct (via changes in light) and indirect (via changes in herbivore behavior) consequences for the growth and survival of tree seedlings, and thus, the composition of the future forest stands. Herbivores, particularly ungulates, can be a major limiting factor in oak regeneration, and silvicultural disturbance may alter the abundance or behavior of herbivores following harvest. We measured the severity of herbivory on experimentally planted white (Quercus alba) and black oak (Quercus velutina) seedlings by white-tailed deer (Odocoileus virginianus) and eastern cottontail rabbits (Sylvilagus floridanus), as well as foliar damage from insects, across gradients created by clearcuts in a deciduous forest in Indiana, USA. Overall browse pressure on oaks was low in our study. Nonetheless, spatial variation in herbivory depended on herbivore taxa; herbivory by rabbits was highest inside harvest openings, whereas foliar damage by insects peaked in the forest. Intensity of deer herbivory was constant across the edge. In addition, we observed indirect interactions among herbivore species mediated by a seedling’s browsing history. Herbivore damage by deer was positively related to past browsing by rabbits, and foliar damage from insects was positively related to past browsing by both deer and rabbits. Increasing woody plant competition reduced herbivory on seedlings by both deer and rabbits. Given the lack of spatial variability in deer herbivory and low overall herbivory by rabbits, we suspect that interactions between timber harvesting and herbivory did not have a strong impact on oak seedlings at our study sites.  相似文献   

17.
Plant defensive traits drive patterns of herbivory and herbivore diversity among plant species. Over the past 30 years, several prominent hypotheses have predicted the association of plant defenses with particular abiotic environments or geographic regions. We used a strongly supported phylogeny of oaks to test whether defensive traits of 56 oak species are associated with particular components of their climatic niche. Climate predicted both the chemical leaf defenses and the physical leaf defenses of oaks, whether analyzed separately or in combination. Oak leaf defenses were higher at lower latitudes, and this latitudinal gradient could be explained entirely by climate. Using phylogenetic regression methods, we found that plant defenses tended to be greater in oak species that occur in regions with low temperature seasonality, mild winters, and low minimum precipitation, and that plant defenses may track the abiotic environment slowly over macroevolutionary time. The pattern of association we observed between oak leaf traits and abiotic environments was consistent with a combination of a seasonality gradient, which may relate to different herbivore pressures, and the resource availability hypothesis, which posits that herbivores exert greater selection on plants in resource-limited abiotic environments.  相似文献   

18.
Plant monocultures are commonly believed to be more susceptible to herbivore attacks than stands composed of several plant species. However, few studies have experimentally tested the effects of tree species diversity on herbivory. In this paper, we present a meta-analysis of uniformly collected data on insect herbivore abundance and damage on three tree species (silver birch, black alder and sessile oak) from seven long-term forest diversity experiments in boreal and temperate forest zones. Our aim was to compare the effects of forest diversity on herbivores belonging to different feeding guilds and inhabiting different tree species. At the same time we also examined the variation in herbivore responses due to tree age and sampling period within the season, the effects of experimental design (plot size and planting density) and the stability of herbivore responses over time. Herbivore responses varied significantly both among insect feeding guilds and among host tree species. Among insect feeding guilds, only leaf miner densities were consistently lower and less variable in mixed stands as compared to tree monocultures regardless of the host tree species. The responses of other herbivores to forest diversity depended largely on host tree species. Insect herbivory on birch was significantly lower in mixtures than in birch monocultures, whereas insect herbivory on oak and alder was higher in mixtures than in oak and alder monocultures. The effects of tree species diversity were also more pronounced in older trees, in the earlier part of the season, at larger plots and at lower planting density. Overall our results demonstrate that forest diversity does not generally and uniformly reduce insect herbivory and suggest instead that insect herbivore responses to forest diversity are highly variable and strongly dependent on the host tree species and other stand characteristics as well as on the type of the herbivore.  相似文献   

19.
Urbanization is an important driver of the diversity and abundance of tree‐associated insect herbivores, but its consequences for insect herbivory are poorly understood. A likely source of variability among studies is the insufficient consideration of intra‐urban variability in forest cover. With the help of citizen scientists, we investigated the independent and interactive effects of local canopy cover and percentage of impervious surface on insect herbivory in the pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe. We found that the damage caused by chewing insect herbivores as well as the incidence of leaf‐mining and gall‐inducing herbivores consistently decreased with increasing impervious surface around focal oaks. Herbivory by chewing herbivores increased with increasing forest cover, regardless of impervious surface. In contrast, an increase in local canopy cover buffered the negative effect of impervious surface on leaf miners and strengthened its effect on gall inducers. These results show that—just like in non‐urban areas—plant–herbivore interactions in cities are structured by a complex set of interacting factors. This highlights that local habitat characteristics within cities have the potential to attenuate or modify the effect of impervious surfaces on biotic interactions.  相似文献   

20.
The plant richness hypothesis (PRH) is used to explain herbivorous insect richness based on the number of plant species, predicting a positive relationship. However, the influence of plant richness on insect distribution can become stronger with greater levels of specialization of herbivores. In this meta-analysis, I tested whether there is any difference in the correlation force recorded between studies that investigated endophagous versus exophagous herbivores, and galling versus non-galling guilds, in order to determine whether more specialized groups have a stronger relationship. Furthermore, I calculated whether effect sizes were homogeneous between galling studies carried out at local and regional scales, and between tropical and temperate regions. A total of 52 correlations were analyzed between plant species richness and herbivore species richness, with 18 correlations derived from galling herbivores and 34 from non-galling herbivores. The effect sizes were significant and positive in all studies, being higher for endophages than for exophages, and for galling than for non-galling studies. These results provide evidence that groups of insects with a higher level of host specialization and specificity (e.g., endophagous and galling) exhibit a greater dependence on plant richness. There was no difference in effect sizes for galling studies between the local and regional level or between tropical and temperate groups. Despite the large variability found for galling studies, effect sizes were consistent independently of climatic region and latitudinal variation. These results suggest that the PRH for galling insects can be generalized to most ecosystem and vegetation types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号