首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cystic fibrosis (CF) is an autosomal recessive disease caused by CFTR mutations. It is characterized by high NaCl concentration in sweat and the production of a thick and sticky mucus, occluding secretory ducts, intestine and airways, accompanied by chronic inflammation and infections of the lungs. This causes a progressive and lethal decline in lung function. Therefore, finding the mechanisms driving the high susceptibility to lung infections has been a key issue. For decades the prevalent hypothesis was that a reduced airway surface liquid (ASL) volume and composition, and the consequent increased mucus concentration (dehydration), create an environment favoring infections. However, a few years ago, in a pig model of CF, the Na+/K+ concentrations and the ASL volume were found intact. Immediately a different hypothesis arose, postulating a reduced ASL pH as the cause for the increased susceptibility to infections, due to a diminished bicarbonate secretion through CFTR. Noteworthy, a recent report found normal ASL pH values in CF children and in cultured primary airway cells, challenging the ASL pH hypothesis. On the other hand, recent evidences revitalized the hypothesis of a reduced ASL secretion. Thus, the role of the ASL pH in the CF is still a controversial matter. In this review we discuss the basis that sustain the role of CFTR in modulating the extracellular pH, and the recent results sustaining the different points of view. Finding the mechanisms of CFTR signaling that determine the susceptibility to infections is crucial to understand the pathophysiology of CF and related lung diseases.  相似文献   

2.
Chronic respiratory infections in cystic fibrosis result from CFTR channel mutations but how these impair antibacterial defense is less clear. Airway host defense depends on lactoperoxidase (LPO) that requires thiocyanate (SCN-) to function and epithelia use CFTR to concentrate SCN- at the apical surface. To test whether CFTR mutations result in impaired LPO-mediated host defense, CF epithelial SCN- transport was measured. CF epithelia had significantly lower transport rates and did not accumulate SCN- in the apical compartment. The lower CF [SCN-] did not support LPO antibacterial activity. Modeling of airway LPO activity suggested that reduced transport impairs LPO-mediated defense and cannot be compensated by LPO or H2O2 upregulation.  相似文献   

3.
Cystic fibrosis (CF) lung disease starts in the first months of life and remains one of the most common fatal hereditary diseases. Early therapeutic interventions may provide an opportunity to prevent irreversible lung damage and improve outcome. Airway surface dehydration is a key disease mechanism in CF, however, its role in the in vivo pathogenesis and as therapeutic target in early lung disease remains poorly understood. Mice with airway-specific overexpression of the epithelial Na+ channel (βENaC-Tg) recapitulate airway surface dehydration and phenocopy CF lung disease. Recent studies in neonatal βENaC-Tg mice demonstrated that airway surface dehydration produces early mucus plugging in the absence of mucus hypersecretion, which triggers airway inflammation, promotes bacterial infection and causes early mortality. Preventive rehydration therapy with hypertonic saline or amiloride effectively reduced mucus plugging and mortality in neonatal βENaC-Tg mice. These results support clinical testing of preventive/early rehydration strategies in infants and young children with CF.  相似文献   

4.
Summary Injections of serum from human patients with cystic fibrosis into adult rats caused pronounced structural modifications and increased mitotic rate in the parotid gland. Mitotic rate was increased from a low level of 0.02/1,000 acinar cells in parotid glands of adult rats to 6.5/1,000 acinar cells after 2 or 3 days of serum injection. At the light and electron microscopic levels, significant acinar cell atrophy and degranulation were observed. Cellular necrosis, and increases in quantity of lysosome-like dense bodies, mast cells, and macrophages were also detected. These changes are suggestive of tissue response to injurious foreign protein. Furthermore, the fact that normal sera pronounced the same kind of effects (but greatly reduced in extent) strengthens the view that these effects result from the immunologic response of the host organ to foreign antigen. Since, however, the responses of the rat parotid to cystic fibrosis serum were considerably more marked than those elicited by normal serum, the rat parotid may thus have potential usefulness in assaying for the presence of human cystic fibrosis factor.This work was supported in part by U.S.P.H.S. Grant DE 02110The authors wish to thank Dr. Alexander Spock, Cystic Fibrosis Center, Duke University Medical Center, Durham, North Carolina, and Dr. Ralph Tiller, Children's Hospital, University of Alabama Medical Center, for generously supplying blood from patients with cystic fibrosis. The authors also want to thank Dr. A. Siegel, Department of Pathology, University of Alabama Medical Center, and Mr. R. Siegel, for determinations of serum catecholamine levels  相似文献   

5.
6.
Cystic fibrosis is a common genetic disorder characterized by a severe lung inflammation and fibrosis leading to the patient's death. Enhanced angiogenesis in cystic fibrosis (CF) tissue has been suggested, probably caused by the process of inflammation, as similarly described in asthma and chronic bronchitis. The present study demonstrates an intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells. Microarray experiments showed that CF airway epithelial cells expressed several angiogenic factors such as VEGF-A, VEGF-C, bFGF, and PLGF at higher levels than control cells. These data were confirmed by real-time quantitative PCR and, at the protein level, by ELISA. Conditioned media of these cystic fibrosis cells were able to induce proliferation, migration and sprouting of cultured primary endothelial cells. This report describes for the first time that cystic fibrosis epithelial cells have an intrinsic angiogenic activity. Since excess of angiogenesis is correlated with more severe pulmonary disease, our results could lead to the development of new therapeutic applications.  相似文献   

7.
Auxotrophy of Pseudomonas aeruginosa in cystic fibrosis   总被引:4,自引:0,他引:4  
Seventy-four of 403 (18.4%) sputum isolates of Pseudomonas aeruginosa from 49 of 136 (36.0%) adults with cystic fibrosis (CF) were auxotrophic mutants. Two of 11 (18.2%) isolates of P. aeruginosa taken from patients with non-CF bronchiectasis were also auxotrophic. All 99 strains taken from non-bronchiectatic sources were prototrophic. Forty-six of 55 (83.6%) CF auxotrophs required one or more of 36 growth factors tested; the requirements for the remaining 9 isolates were not identified. Methionine was the sole factor required by 17 of 22 (77.3%) isolated which depended on a single factor. We conclude that auxotrophy is a feature of P. aeruginosa infection in cystic fibrosis.  相似文献   

8.
Cystic fibrosis (CF), a multiorgan genetic disease, is caused by loss of function of CFTR, a cAMP-regulated anion channel. In CF airway epithelia, defective Cl and bicarbonate secretion impairs mucociliary clearance and other innate defense mechanisms, favoring the colonization of the lungs by highly virulent bacteria. The airway epithelium expresses TMEM16A, a second type of Cl channel that is activated by cytosolic Ca2+. TMEM16A is particularly expressed in goblet cells. This specific localization could be important in the release and hydration of mucins. Activation of TMEM16A with pharmacological agents could circumvent the primary defect in CF. This strategy needs to be carefully designed and tested to avoid possible undesired effects due to the expression of TMEM16A in other cell types such as bronchial smooth muscle cells.This article is part of a Directed Issue entitled: Cystic Fibrosis: From o-mics to cell biology, physiology, and therapeutic advances.  相似文献   

9.
The absence or decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) induces increased Na(+) absorption and hyperabsorption of the airway surface liquid (ASL) resulting in a dehydrated and hyperviscous ASL. Although the implication of abnormal airway submucosal gland function has been suggested, the ion and water content in the Cystic Fibrosis (CF) glandular secretory granules, before exocytosis, is unknown. We analyzed, in non-CF and CF human airway glandular cell lines (MM-39 and KM4, respectively), the ion content in the secretory granules by electron probe X-ray microanalysis and the water content by quantitative dark field imaging on freeze-dried cryosections. We demonstrated that the ion content (Na(+), Mg(2+), P, S and Cl(-)) is significantly higher and the water content significantly lower in secretory granules from the CF cell line compared to the non-CF cell line. Using videomicroscopy, we observed that the secretory granule expansion was deficient in CF glandular cells. Transfection of CF cells with CFTR cDNA or inhibition of non-CF cells with CFTR(inh)-172, respectively restored or decreased the water content and granule expansion, in parallel with changes in ion content. We hypothesize that the decreased water and increased ion content in glandular secretory granules may contribute to the dehydration and increased viscosity of the ASL in CF.  相似文献   

10.
In the genetic disease cystic fibrosis (CF), the most common mutation F508del promotes the endoplasmic reticulum (ER) retention of misfolded CF proteins. Furthermore, in homozygous F508del-CFTR airway epithelial cells, the histamine Ca2+ mobilization is abnormally increased. Because the uptake of Ca2+ by mitochondria during Ca2+ influx or Ca2+ release from ER stores may be crucial for maintaining a normal Ca2+ homeostasis, we compared the mitochondria morphology and distribution by transmission electron microscopy technique and the mitochondria membrane potential variation (ΔΨmit) using a fluorescent probe (TMRE) on human CF (CF-KM4) and non-CF (MM39) tracheal serous gland cell lines. Confocal imaging of Rhod-2–AM-loaded or of the mitochondrial targeted cameleon 4mtD3cpv-transfected human CF and non-CF cells, were used to examine the ability of mitochondria to sequester intracellular Ca2+. The present study reveals that (i) the mitochondria network is fragmented in F508del-CFTR cells, (ii) the ΔΨmit of CF mitochondria is depolarized compared non-CF mitochondria, and (iii) the CF mitochondria Ca2+ uptake is reduced compared non-CF cells. We propose that these defects in airway epithelial F508del-CFTR cells are the consequence of mitochondrial membrane depolarization leading to a deficient mitochondrial Ca2+ uptake.  相似文献   

11.
S-nitrosothiols (SNOs) are endogenous signaling molecules with a broad spectrum of beneficial airway effects. SNOs are normally present in the airway, but levels tend to be low in cystic fibrosis (CF) patients. We and others have demonstrated that S-nitrosoglutathione (GSNO) increases the expression, maturation, and function of wild-type and mutant F508del cystic fibrosis transmembrane conductance regulator (CFTR) in human bronchial airway epithelial (HBAE) cells. We hypothesized that membrane permeable SNOs, such as S-nitrosoglutathione diethyl ester (GNODE) and S-nitroso-N-acetyl cysteine (SNOAC) may be more efficient in increasing the maturation of CFTR. HBAE cells expressing F508del CFTR were exposed to GNODE and SNOAC. The effects of these SNOs on the expression and maturation of F508del CFTR were determined by cell surface biotinylation and Western blot analysis. We also found for the first time that GNODE and SNOAC were effective at increasing CFTR maturation at the cell surface. Furthermore, we found that cells maintained at low temperature increased cell surface stability of F508del CFTR whereas the combination of low temperature and SNO treatment significantly extended the half-life of CFTR. Finally, we showed that SNO decreased the internalization rate of F508del CFTR in HBAE cells. We anticipate identifying the novel mechanisms, optimal SNOs, and lowest effective doses which could benefit cystic fibrosis patients.  相似文献   

12.
The composition and depth of the airway surface liquid (ASL) are key parameters in airway physiology that are thought to be important in the pathophysiology of cystic fibrosis and other diseases of the airways. We reported novel fluorescent indicator and microscopy methods to measure [Na+], [Cl-], pH, and depth of the ASL in large airways (Jayaraman, S., Y. Song, L. Vetrivel, L. Shankar, and A.S. Verkman. 2001. J. Clin. Invest. 107:317-324.). Here we report a stripped-lung preparation to measure ASL composition and depth in small distal airways. Distal ASL was stained with ion- or pH-sensitive fluorescent indicators by infusion into mouse trachea of a perfluorocarbon suspension of the indicator. After stripping the pleura and limited microdissection of the lung parenchyma, airways were exposed for measurement of ASL [Na+], [Cl-], and pH by ratio imaging microscopy, and depth by confocal microscopy. The stripped-lung preparation was validated in stability and tissue viability studies. ASL [Na+] was 122 +/- 2 mM, [Cl-] was 123 +/- 4 mM and pH was 7.28 +/- 0.07, and not dependent on airway size (<100- to >250-mum diameter), ENaC inhibition by amiloride, or CFTR inhibition by the thiazolidinone CFTRinh-172. ASL depth was 8-35 mum depending on airway size, substantially less than that in mouse trachea of approximately 55 mum, and not altered significantly by amiloride. These results establish a novel lung preparation and fluorescence approach to study distal airway physiology and provide the first data on the composition and depth of distal ASL.  相似文献   

13.
Cystic fibrosis (CF) is a fatal disease affecting the lungs and digestive system by impairment of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). While over 1000 mutations in CFTR have been associated with CF, the majority of cases are linked to the deletion of phenylalanine 508 (ΔF508). F508 is located in the first nucleotide binding domain (NBD1) of CFTR. This mutation is sufficient to impair the trafficking of CFTR to the plasma membrane and, thus, its function. As an ABC transporter, recent structural data from the family provide a framework on which to consider the effect of the ΔF508 mutation on CFTR. There are fifty-seven known structures of ABC transporters and domains thereof. Only six of these structures are of the intact transporters. In addition, modern bioinformatic tools provide a wealth of sequence and structural information on the family. We will review the structural information from the RCSB structure repository and sequence databases of the ABC transporters. The available structural information was used to construct a model for CFTR based on the ABC transporter homologue, Sav1866, and provide a context for understanding the molecular pathology of Cystic Fibrosis.  相似文献   

14.
Cystic fibrosis (CF) lung disease is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene and is characterized by a perpetuated feedback loop of bacterial infection and inflammation. Both intrinsic (CFTR-dependent) and extrinsic (CFTR-independent) mechanisms contribute to the inflammatory phenotype of CF lung disease. Innate immune cells, initially recruited to combat bacterial pathogens, are acting in a dysregulated and non-resolving fashion in CF airways and cause harm to the host by releasing proteases and oxidants. Targeting harmful immune pathways, while preserving protective ones, remains the challenge for the future. This review highlights current concepts of innate immune dysregulation in CF lung disease.This article is part of a Directed Issue entitled: Cystic Fibrosis: From o-mics to cell biology, physiology, and therapeutic advances.  相似文献   

15.
Antibodies raised against the cystic fibrosis transmembrane regulator protein (CFTR) were used to localize CFTR in intestinal tissues of piglets and mice. Positive staining for CFTR was detected in goblet cells of both species. A second population of epithelial cells of unknown phenotype was also labeled by anti-CFTR antibodies. The labeling pattern was abolished by preincubation of anti-CFTR antibodies with the immunogen or when non-immune IgG was used in place of anti-CFTR antibodies. These results support other studies that suggest that alterations in goblet cell function may be involved in the intestinal abnormalities associated with cystic fibrosis. Received: 4 May 1995 / Accepted: 6 September 1995  相似文献   

16.
BackgroundZinc status has been previously documented in cystic fibrosis (CF) infants, children and adolescents. However, despite the increasing life expectancy observed in CF populations, data regarding zinc status of CF adults are surprisingly lacking. The objectives of this study were to (1) characterize zinc status and (2) explore associations between zinc status and clinical outcomes of CF adult patients.MethodsA retrospective chart review was performed for patients who had their plasma zinc measured between 2009 and 2012. Data included demographics, clinical characteristics, biochemical parameters and co-morbid conditions.ResultsA total of 304 CF patients were included in the study. These patients displayed a good nutritional status (mean BMI ± SD: 22.7 ± 3.5) and moderate lung disease (mean FEV1 ± SD: 66.3 ± 22.2). Low plasma zinc concentration (<9.2 μmol/L) was found in 68 out of 304 CF patients (22.4%). Compared to patients with normal zinc, those with low zinc had significantly lower forced vital capacity and forced expiratory volume in one second. 72% of CF adults with low zinc suffered from bone disease (vs 49% with normal zinc, p = 0.037) and 79% had impaired glycemic status (vs 58%, p = 0.016). Accordingly, negative correlations were found between plasma zinc and glucose (r = −0.139, p = 0.0001), HbA1c (r = −0.237, p = 0.0001) and fructosamine (r = −0.134, p = 0.034). In multiple linear regression, albumin and glycemic status were significant predictors of plasma zinc.ConclusionOur data indicated that nearly one quarter of CF adults with good nutritional status and moderate lung disease had low plasma zinc concentration and that low zinc status was associated with worse clinical outcomes.  相似文献   

17.
Cysticfibrosis (CF) is caused by mutations in the CF transmembraneconductance regulator (CFTR) protein, an epithelial chloride channelexpressed in the airways, pancreas, testis, and other tissues. Acentral question is how defective CFTR function in CF leads to chroniclung infection and deterioration of lung function. Several mechanismshave been proposed to explain lung disease in CF, including abnormalairway surface liquid (ASL) properties, defective airway submucosalgland function, altered inflammatory response, defective organellaracidification, loss of CFTR regulation of plasma membrane iontransporters, and others. This review focuses on the physiology of theASL and submucosal glands with regard to their proposed role in CF lungdisease. Experimental evidence for defective ASL properties and glandfunction in CF is reviewed, and deficiencies in understanding ASL/glandphysiology are identified as areas for further investigation. New modelsystems and measurement technologies are being developed to makeprogress in establishing lung disease mechanisms in CF, which shouldfacilitate mechanism-based design of therapies for CF.

  相似文献   

18.
19.
Improved antimicrobial therapies against the classical spectrum of pathogenic bacteria which colonise the lungs of cystic fibrosis (CF) patients has resulted in improved life expectancy and quality of life. Bacterial species that are resistant to a broad range of antibiotics including Stenotrophomonas maltophilia and Alcaligenes xylosoxidans have now emerged as potential new pathogens to fill the niche. At present, it is unclear from clinical data whether these microbes are commensal or pathogenic. In this study we have quantified the inflammatory potential of lipopolysaccharide (LPS) from eight species of Gram-negative organisms which have been cultured with increasing frequency from CF patients. Inflammatory responses induced by LPS from whole human blood and a human-derived monocyte cell line (THP-1) were assessed. Enzyme-linked immunosorbent assays were used to detect interleukin-6, interleukin-8, and tumour necrosis factor alpha (TNF). A bioassay was also used to assess TNF activity. With the exception of S. maltophilia, LPS extracted from all of the bacteria tested upregulated, by varying degrees, expression of each of the proinflammatory cytokines assayed. This study represents the first comprehensive report of the endotoxic potential of a new wave of microbes which are associated with CF.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号