首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ability of Rhizobia to colonize roots of certain legumes and promote their growth has been proven previously. In this study the symbiotic efficiency of 47 Rhizobium strains with 6 common bean cultivars was evaluated under greenhouse condition. Fourteen strains showed the best symbiotic efficiency, whereas some isolates could not induce nodules on host plants. The ability of fourteen superior strains to solubilize phosphorus and zinc and to produce auxin, HCN and siderohores was evaluated in the laboratory assays. Rhizobium strain Rb102 produced the highest amount of auxin (14.2?mg?l?1) in the medium containing l-tryptophan. None of the isolates were able to solubilize ZnO and ZnCO3 on solid medium but in liquid medium some of them had negligible solubilization. The highest P solubility in liquid and solid medium was observed in strains Rb113 and Rb130, respectively. Strain Rb102 produced the highest amount of siderophores. None of the isolates were able to produce HCN. This study showed that there was a great diversity between the strains of Rhizobium in terms of their plant growth promoting traits symbiotic efficiency which supports the importance of screening rhizobia for selecting the most efficient strains. The genetic diversity of the isolates was analyzed by PCR–RFLP of the 16S rDNA. Our rhizobia were clustered into 10 groups showing high levels of diversity.  相似文献   

2.
A procedure was designed which enabled the detection of ex planta nitrogenase activity in the fast-growing cowpea Rhizobium strain IHP100. Nitrogenase activity in agar culture under air occurred at a rate similar to that found for Bradyrhizobium strain CB756 but lower than that for Rhizobium strain ORS571. Hybridization studies showed that both nod and nif genes were located on a 410-kilobase Sym plasmid in strain IHP100.  相似文献   

3.
Isolation of a Bacterial Strain Able To Degrade Branched Nonylphenol   总被引:14,自引:3,他引:11       下载免费PDF全文
Conventional enrichment of microorganisms on branched nonylphenol (NP) as only carbon and energy source yielded mixed cultures able to grow on the organic compound. However, plating yielded no single colonies capable, alone or in combination with other isolates, of degrading the NP in liquid culture. Therefore, a special approach was used, referred to as “serial dilution-plate resuspension,” to reduce culture complexity. In this way, one isolate, TTNP3, tentatively identified as a Sphingomonas sp., was found to be able to grow on NP in liquid culture. Remarkably, this isolate was able to be filtered through a 0.45-μm-pore-diameter filter. Moreover, isolate TTNP3 did not form visible colonies on mineral medium with NP, and it formed visible colonies on R2A agar only after a prolonged incubation of 1 week. High-performance liquid chromatography and gas chromatography-mass spectroscopy analysis of the culture media indicated that the strain starts the degradation of NP with a fission of the phenol ring and preferably uses the para isomer of NP and not the ortho isomer. No distinct accumulation of an intermediary product could be observed.  相似文献   

4.
T. L. Wang  E. A. Wood  N. J. Brewin 《Planta》1982,155(4):350-355
The cytokinin content of roots and nodules of pea and the culture supernatants from two strains of Rhizobium leguminosarum has been examined. Roots, nodules and wild-type Rhizobium culture medium contained very little cytokinin as indicated by bioassay. Chemical ionisation gas chromatography-mass spectrometric analysis of the isopentenyladenine content of the culture medium from the Rhizobium strains confirmed that the content of the wild-type was low (approx. 1 ng dm-3) but that it was increased by the introduction of the Agrobacterium Ti plasmid into the Rhizobium strain.Abbreviations CI chemical ionisation - GCMS gas chromatography-mass spectrometry - HPLC high performance liquid chromatography - iPAde isopentenyladenine - MIM multiple ion monitoring  相似文献   

5.
Dramatic differences in the height of lima beans (Phaseolus lunatus L.) treated with two different Rhizobium strains were studied. Lima beans were grown in Perlite in the greenhouse or in a minus-N culture solution in the growth chamber. The plants were inoculated with either Rhizobium sp. (lima bean) strain 127E15, which contains the constitutive nitrate reductase activity, or strain 127E14, which lacks that activity. For up to 3 weeks, no growth differences were observed in the plants inoculated with either strain. Five weeks after inoculation, however, those plants inoculated with strain 127E14 were significantly taller and had a larger number of leaves than those inoculated with strain 127E15. The difference in plant height was the result of increased internode elongation caused by inoculation with Rhizobium sp. 127E14. This response was observed with all lima bean cultivars tested, including Henderson, Fordhook, Allgreen, and Early Thorogreen. The growth difference occurred in plants cultured in the greenhouse or in the growth chamber.  相似文献   

6.
A Pseudomonas aeruginosa strain, RRLJ 04, and a Bacillus cereus strain, BS 03, were tested both individually and in combination with a Rhizobium strain, RH 2, for their ability to enhance plant growth and nodulation in pigeon pea (Cajanus cajan L.) under gnotobiotic, greenhouse and field conditions. Both of the rhizobacterial strains exhibited a positive effect on growth in terms of shoot height, root length, fresh and dry weight, nodulation and yield over the non-treated control. Co-inoculation of seeds with these strains and Rhizobium RH 2 also reduced the number of wilted plants, when grown in soil infested with Fusarium udum. Gnotobiotic studies confirmed that the suppression of wilt disease was due to the presence of the respective PGPR strains. Seed bacterization with drug-marked mutants of RRLJ 04 and BS 03 confirmed their ability to colonize and multiply along the roots. The results suggest that co-inoculation of these strains with Rhizobium strain RH 2 can be further exploited for enhanced growth, nodulation and yield in addition to control of fusarial wilt in pigeon pea.  相似文献   

7.
Soybean cells in suspension culture were inhibited in their growth by mixed culture with Rhizobium japonicum 5033. Rhizobium cells had the ability to adsorb on the surface of soybean cells. Cell envelope prepared from Rhizobium by sonic oscillation inhibited the growth of soybean cells. The growth-inhibiting activity of the cell envelope was depressed by β-glucosidase, KIO4, urea, sodium cholate, and Triton X-100, but was stable on heating at 120 C for 15 minutes. Adsorption of the cell envelope on soybean cells was depressed by only β-glucosidase. The sodium cholate-soluble fraction of the cell envelope had the growth-inhibiting activity. Results in this paper suggest that components of the Rhizobium cell surface cause the inhibition of soybean cell growth after the adsorption of the Rhizobium cell to the soybean cell.  相似文献   

8.
Insertion sequence (IS) element ISRLdTAL1145-1 from Rhizobium sp. (Leucaena diversifolia) strain TAL 1145 was entrapped in the sacB gene of the positive selection vector pUCD800 by insertional inactivation. A hybridization probe prepared from the whole 2.5-kb element was used to determine the distribution of homologous sequences in a diverse collection of 135 Rhizobium and Bradyrhizobium strains. The IS probe hybridized strongly to Southern blots of genomic DNAs from 10 rhizobial strains that nodulate both Phaseolus vulgaris (beans) and Leucaena leucocephala (leguminous trees), 1 Rhizobium sp. that nodulates Leucaena spp., 9 R. meliloti (alfalfa) strains, 4 Rhizobium spp. that nodulate Sophora chrysophylla (leguminous trees), and 1 nonnodulating bacterium associated with the nodules of Pithecellobium dulce from the Leucaena cross-inoculation group, producing distinguishing IS patterns for each strain. Hybridization analysis revealed that ISRLdTAL1145-1 was strongly homologous with and closely related to a previously isolated element, ISRm USDA1024-1 from R. meliloti, while restriction enzyme analysis found structural similarities and differences between the two IS homologs. Two internal segments of these IS elements were used to construct hybridization probes of 1.2 kb and 380 bp that delineate a structural similarity and a difference, respectively, of the two IS homologs. The internal segment probes were used to analyze the structures of homologous IS elements in other strains. Five types of structural variation in homolog IS elements were found. The predominate IS structural type naturally occurring in a strain can reasonably identify the strain's cross-inoculation group relationships. Three IS structural types were found in Rhizobium species that nodulate beans and Leucaena species, one of which included the designated type IIB strain of R. tropici (CIAT 899). Weak homology to the whole IS probe, but not with the internal segments, was found with two Bradyrhizobium japonicum strains. The taxonomic and ecological implications of the distribution of ISRLdTAL1145-1 are discussed.  相似文献   

9.
A uniquely abnormal shoot development (shoot tip-bending, leaf curling, release from apical dominance, and stunted growth) in pigeonpea (Cajanus cajan Millsp) induced by a nodulating Rhizobium strain, IC3342, is thought to be due to a hormonal imbalance. Amaranthus betacyanin bioassay indicated that xylem exudate and leaf extracts from pigeonpea plants with Rhizobium-induced leaf curl symptoms contained high concentrations of cytokinin relative to those in normal plants. Radioimmunoassay (RIA) of samples purified with high performance liquid chromatography revealed that zeatin riboside (ZR) and dihydrozeatin riboside (DZR) concentrations in xylem sap from plants with leaf curl symptoms were 7 to 9 times higher than those in the sap from symptomless, nodulated plants. The sap from symptomless plants nodulated by a Curl mutant had ZR and DZR concentrations comparable to those in the normal plant sap. RIA indicated that the respective concentrations of zeatin and N6-isopenteny-ladenine in culture filtrates of the curl-inducing strain IC3342 were 26 and 8 times higher than those in filtrates of a related normal nodulating strain (ANU240). Gas chromatographic-mass spectrometric analyses revealed similar differences. Gene-specific hybridization and sequence comparisons failed to detect any homology of IC3342 DNA to Agrobacterium tumefaciens or Pseudomonas savastanoi genetic loci encoding enzymes involved in cytokinin biosynthesis.  相似文献   

10.
Nine strains of Rhizobium meliloti, ranging in competitive ability on Medicago sativa from excellent to poor in autoclaved soils, were paired in 29 combinations and used to inoculate M. sativa in a liquid rooting medium. A positive correlation (r = 0.545) between strain ratios in nodules after 28 days and root surface cell ratios after 7 days was determined. Two cell fractions from the root surface, representing loosely and firmly adhering cells, were investigated. Infectivity was linked to the more firmly adhering cells. A significant relationship was established between the cell ratios of competing strains in the two fractions. In another experiment, adherence of cells of both infective and noninfective Rhizobium strains to roots of M. sativa and Trifolium repens was demonstrated; the ratios of loosely to firmly adhering cells on the root surface were significantly narrower with the infective combinations than with noninfective strain-legume associations.  相似文献   

11.
Survival of Rhizobium in Acid Soils   总被引:4,自引:4,他引:0       下载免费PDF全文
A Rhizobium strain nodulating cowpeas did not decline in abundance after it was added to sterile soils at pH 6.9 and 4.4, and the numbers fell slowly in nonsterile soils at pH 5.5 and 4.1. A strain of R. phaseoli grew when added to sterile soils at pH 6.7 and 6.9; it maintained large, stable populations in soils of pH 4.4, 5.5, and 6.0, but the numbers fell markedly and then reached a stable population size in sterile soils at pH 4.3 and 4.4. The abundance of R. phaseoli added to nonsterile soils with pH values of 4.3 to 6.7 decreased similarly with time regardless of soil acidity, and the final numbers were less than in the comparable sterile soils. The minimum pH values for the growth of strains of R. meliloti in liquid media ranged from 5.3 to 5.9. Two R. meliloti strains, which differed in acid tolerance for growth in culture, did not differ in numbers or decline when added to sterile soils at pH 4.8, 5.2, and 6.3. The population size of these two strains was reduced after they were introduced into nonsterile soils at pH 4.8, 5.4, and 6.4, and the number of survivors was related to the soil pH. The R. meliloti strain that was more acid sensitive in culture declined more readily in sterile soil at pH 4.6 than did the less sensitive strain, and only the former strain was eliminated from nonsterile soil at pH 4.8; however, the less sensitive strain also survived better in limed soil. The cell density of the two R. meliloti strains was increased in pH 6.4 soil in the presence of growing alfalfa. The decline and elimination of the tolerant, but not the sensitive, strain was delayed in soil at pH 4.6 by roots of growing alfalfa.  相似文献   

12.
Fluorescein isothiocyanate (FITC)-labeled lectin purified from the root of Lotononis bainesii Baker was bound by cells of five out of seven L. bainesii-nodulating strains of Rhizobium under culture conditions. With the exception of a strain of Rhizobium leguminosarum, strains of noninfective rhizobia failed to bind the root lectin under these conditions. The two nonlectin binding L. bainesii-specific strains did not bind root lectin on the L. bainesii rhizoplane although this was observed with three other L. bainesii-nodulating strains. A single Rhizobium japonicum strain bound root lectin on the L. bainesii rhizoplane. There was no evidence of an interaction between the L. bainesii seed lectin and the Rhizobium strains tested.

Root lectin-specific FITC-labeled antibodies were bound to the tips of developing root hairs and lateral growth points of more mature root hairs of L. bainesii seedlings. The damaged edges of severed root hairs always bound FITC-labeled root lectin antibody. Seed lectin-specific FITC-labeled antibodies were not bound to the roots of L. bainesii. The preemergent root hair region of L. bainesii was most susceptible to infection by rhizobia but nodules also emerged in the developing and mature root hair regions. Lectin exposed at growth points on L. bainesii root hairs may provide a favorable site for host plant recognition of infective strains of Rhizobium.

  相似文献   

13.
Preinfection events in legume-Rhizobium symbiosis were analyzed by studying the different nodulation behaviors of two rhizobial strains in cowpeas (Vigna sinensis). Log-phase cultures of Rhizobium sp. strain 1001, an isolate from the plant nodule, initiated host responses leading to infection within 2 h after inoculation, whereas log-phase cultures of Rhizobium sp. strain 32H1 took at least 7 h to trigger a discernible response. The delay observed with strain 32H1 could be eliminated by incubating the rhizobial suspension, before inoculation, for 4.5 h either in the cowpea rhizosphere/rhizoplane condition or in the root exudate of cowpea plants, grown without NH4+ in the rooting medium. The delay could not be eliminated by incubating the rhizobial suspension in the rooting medium of plants grown in the presence of 5 mM NH4+, indicating that there is a regulatory role of combined nitrogen in triggering preinfection events by the legume. The substance(s) in the root exudate which elicited the faster nodulation response by Rhizobium sp. strain 32H1 could be separated into a high-molecular-weight fraction by Sephadex G-100 gel filtration. The data support the notion that legume roots release substances that favor the development of rhizobial features essential for infection and nodulation.  相似文献   

14.
Rhizobium sp. strain WR1001, isolated from the Sonoran Desert by Eskew and Ting, was found to be able to grow in defined medium containing NaCl up to 500 mM, a concentration approaching that of sea water. Therefore, it is a valuable strain for studying the biochemical basis of salt tolerance. Intracellular free glutamate was found to increase rapidly in response to osmotic stress by NaCl. It accounted for 88% of the amino acid pool when the bacterium was grown in 500 mM NaCl. The role of glutamate dehydrogenase in glutamate biosynthesis was examined in several Rhizobium strains. Both NADH- and NADPH-dependent glutamate dehydrogenase activities in various Rhizobium strains were observed. The range of activity differed considerably depending on the particular strain. KCl (500 mM) did not stimulate glutamate dehydrogenase activity, as reported in a number of bacterial strains by Measures. The low activity of glutamate dehydrogenase in Rhizobium sp. strain WR1001 apparently cannot fulfill a biosynthetic function of glutamate formation in response to medium NaCl concentrations.  相似文献   

15.
Azospirillum spp. have shown potential to enhance nodulation and plant growth of legumes when coinoculated with Rhizobium. The effect of Azospirillum on the Rhizobium-legume symbiosis is, however, dependent on the host genotype used. Previous greenhouse experiments identified two genotypes of common bean (Phaseolus vulgaris L.), BAT477 and DOR364, contrasting in nodulation response to Azospirillum when coinoculated with Rhizobium. Genetic analysis revealed a genetic basis (Quantitative Trait Loci) on the bean genome related to the differential responsiveness to Azospirillum between the two bean genotypes. In this study, on-station and on-farm field experiments in different regions in Cuba were conducted to evaluate the agronomic relevance of the differences in response to AzospirillumRhizobium coinoculation between the two genotypes BAT477 and DOR364. It was observed that AzospirillumRhizobium coinoculation as compared to single Rhizobium inoculation increased the amount of fixed nitrogen and the yield of DOR364 across all sites. For BAT477, on the contrary, a negative effect of AzospirillumRhizobium coinoculation on yield and nitrogen fixation was observed on most of the sites as compared to single Rhizobium inoculation. The modified stability regression equations resulting from this study may contribute to predict how a combination of genotype and inoculum will perform at a certain environmental setting. This study highlights the importance of genotype × inocula interactions in agricultural outputs and establishes a link between greenhouse phenotype, genetic background and performance in the field.  相似文献   

16.
Fly-ash-tolerant Rhizobium strains were isolated from plants grown in fly-ash-contaminated soil, axenically under laboratory conditions. Saplings of both plants were raised in N2-free Jenson medium and inoculated with 2.6 × 108 cell ml−1 and 5.2 × 108 cell ml−1 of culture after 10 d of growth. Plants were transferred into 100% fly-ash under natural condition. Rhizobium-inoculated plants grown on 100% fly-ash showed marked increase in relation to root-shoot length, biomass yield, photosynthetic pigment, protein content and nodulation frequency compared to uninoculated plant grown in control (100% fly-ash). Inoculation of fly-ash-tolerant Rhizobium increased the accumulation of Fe, Zn, Cu Cd and Cr in different tissues vis-à-vis enhanced translocation of metals to the aboveground part of plant. Although inoculation of fly-ash-tolerant Rhizobium strains (VR-1 and VA-1) enhanced the translocation of more Fe to shoot parts, nevertheless, the amount of Rhizobium inoculants supplied to the plant was found to be very important since it has a positive role in increasing plant growth through increased N2 supply via nitrogenase activity. Results suggest that an integrated approach employing biotechnological means and inoculation of plants with host-specific fly-ash-tolerant Rhizobium strain may prove a stimulus to a fly-ash management programme.  相似文献   

17.

Background

Prevotella intermedia (P. intermedia), a gram-negative, black-pigmented anaerobic rod, has been implicated in the development of chronic oral infection. P. intermedia strain 17 was isolated from a chronic periodontitis lesion in our laboratory and described as a viscous material producing strain. The stock cultures of this strain still maintain the ability to produce large amounts of viscous materials in the spent culture media and form biofilm-like structures. Chemical analyses of this viscous material showed that they were mainly composed of neutral sugars with mannose constituting 83% of the polysaccharides. To examine the biological effect of the extracellular viscous materials, we identified and obtained a naturally-occurring variant strain that lacked the ability to produce viscous materials in vitro from our stock culture collections of strain 17, designated as 17-2. We compared these two strains (strains 17 versus 17-2) in terms of their capacities to form biofilms and to induce abscess formation in mice as an indication of their pathogeniCity. Further, gene expression profiles between these two strains in planktonic condition and gene expression patterns of strain 17 in solid and liquid cultures were also compared using microarray assays.

Results

Strain 17 induced greater abscess formation in mice as compared to that of the variant. Strain 17, but not 17-2 showed an ability to interfere with the phagocytic activity of human neutrophils. Expression of several genes which including those for heat shock proteins (DnaJ, DnaK, ClpB, GroEL and GroES) were up-regulated two to four-fold with statistical significance in biofilm-forming strain 17 as compared to the variant strain 17-2. Strain 17 in solid culture condition exhibited more than eight-fold up-regulated expression levels of several genes which including those for levanase, extracytoplasmic function-subfamily sigma factor (σE; putative) and polysialic acid transport protein (KpsD), as compared to those of strain 17 in liquid culture media.

Conclusion

These results demonstrate that the capaCity to form biofilm in P. intermedia contribute to their resistance against host innate defence responses.  相似文献   

18.
ALK-break positive non-small cell lung cancer (NSCLC) patients initially respond to crizotinib, but resistance occurs inevitably. In this study we aimed to identify fusion genes in crizotinib resistant tumor samples. Re-biopsies of three patients were subjected to paired-end RNA sequencing to identify fusion genes using deFuse and EricScript. The IGV browser was used to determine presence of known resistance-associated mutations. Sanger sequencing was used to validate fusion genes and digital droplet PCR to validate mutations. ALK fusion genes were detected in all three patients with EML4 being the fusion partner. One patient had no additional fusion genes. Another patient had one additional fusion gene, but without a predicted open reading frame (ORF). The third patient had three additional fusion genes, of which two were derived from the same chromosomal region as the EML4-ALK. A predicted ORF was identified only in the CLIP4-VSNL1 fusion product. The fusion genes validated in the post-treatment sample were also present in the biopsy before crizotinib. ALK mutations (p.C1156Y and p.G1269A) detected in the re-biopsies of two patients, were not detected in pre-treatment biopsies. In conclusion, fusion genes identified in our study are unlikely to be involved in crizotinib resistance based on presence in pre-treatment biopsies. The detection of ALK mutations in post-treatment tumor samples of two patients underlines their role in crizotinib resistance.  相似文献   

19.
Some strains of the former genus Agrobacterium have high biotechnological interest and are currently misclassified. Consequently, in this study, the taxonomic status of the non-pathogenic strain Agrobacterium radiobacter K84, used in biological control, and the tumourigenic strain Agrobacterium tumefaciens AKE10, able to regenerate tobacco transgenic plants, was revised. The phylogenetic analysis of the chromosomal genes rrs, atpD and recA showed that they should be reclassified into Rhizobium rhizogenes. The analysis of virulence genes located in the Ti plasmid (pTi) outside T-DNA showed a common phylogenetic origin among strains AKE10, R. rhizogenes 163C and A. tumefaciens (currently R. radiobacter) C58. However, the genes located inside the T-DNA, mainly the 6b gene, of strain AKE10 were phylogenetically close to those of strain 163C but divergent from those of strain C58. Furthermore, the T-DNA of tumourigenic strains from R. rhizogenes conferred on them the ability to regenerate tumour tissue resembling fasciation in tobacco plants. These results showed the existence of a highly mosaic genetic organization in tumourigenic strains of the genus Rhizobium and provided evidence of the involvement of T-DNA from tumourigenic strains of R. rhizogenes in fasciation of Nicotiana leaves. The data further suggested that pathogenic strains of Rhizobium could be good models to analyse bacterial evolution.  相似文献   

20.
Like other filamentous fungi, the medicinal ascomycete Cordyceps militaris frequently degenerates during continuous maintenance in culture by showing loss of the ability to reproduce sexually or asexually. Degeneration of fungal cultures has been related with cellular accumulation of reactive oxygen species (ROS). In this study, an antioxidant glutathione peroxidase (Gpx) gene from Aspergillus nidulans was engineered into two C. militaris strains, i.e., the Cm01 strain which can fruit normally and the Cm04 strain which has lost the ability to form fruiting bodies on different media through subculturing. The results showed that the mitotically stable mutants had higher Gpx activities and stronger capacity to scavenge cellular ROS than their parental strains. Most significantly, the fruiting ability of Cm04 strain was restored by overexpression of the antioxidant enzyme. However, after being successively transferred for up to ten generations, two of three Cm04 mutants again lost the ability to fruit on insect pupae while Cm01 transformants remained fertile. This study confirms the relationship between fungal culture degeneration and cellular ROS accumulation. Our results indicate that genetic engineering with an antioxidant gene can be an effective way to reverse fungal degeneration during subculturing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号