首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fresh, defrosted and delignified brewer's spent grains (BSG) were used as yeast supports for alcoholic fermentation of molasses. Glucose solution (12%) with and without nutrients was used for cell immobilization on fresh BSG, without nutrients for cell immobilization on defrosted and with nutrients for cell immobilization on delignified BSG. Repeated fermentation batches were performed by the immobilized biocatalysts in molasses of 7, 10 and 12 initial Baume density without additional nutrients at 30 and 20 degrees C. Defrosted BSG immobilized biocatalyst was used only for repeated fermentation batches of 7 initial Baume density of molasses without nutrients at 30 and 20 degrees C. After immobilization, the immobilized microorganism population was at 10(9) cells/g support for all immobilized biocatalysts. Fresh BSG immobilized biocatalyst without additional nutrients for yeast immobilization resulted in higher fermentation rates, lower final Baume densities and higher ethanol productivities in molasses fermentation at 7, 10 and 12 initial degrees Be densities than the other above biocatalysts. Adaptation of defrosted BSG immobilized biocatalyst in the molasses fermentation system was observed from batch to batch approaching kinetic parameters reported in fresh BSG immobilized biocatalyst. The results of this study concerning the use of fresh or defrosted BSG as yeast supports could be promising for scale-up operation.  相似文献   

2.
A unicellular green microalga, Chlorella sorokiniana, was immobilized on loofa (Luffa cylindrica) sponge and successfully used as a new biosorption system for the removal of lead(II) ions from aqueous solutions. The biosorption of lead(II) ions on both free and immobilized biomass of C. sorokiniana was investigated using aqueous solutions in the concentration range of 10–300 mg/L. The biosorption of lead(II) ions by C. sorokiniana biomass increased as the initial concentration of lead(II) ions increased in the medium. The maximum biosorption capacity for free and immobilized biomass of C. sorokiniana was found to be 108.04 and 123.67 mg lead(II)/g biomass, respectively. The biosorption kinetics were found to be fast, with 96 % of adsorption within the first 5 min and equilibrium reached at 15 min. The adsorption of lead(II) both by free and immobilized C. sorokiniana biomass followed the Langmuir isotherm. The biosorption capacities were detected to be dependent on the pH of the solution; and the maximum adsorption was obtained at a solution pH of about 5. The effect of light metal ions on lead(II) uptake was also studied and it was shown that the presence of light metal ions did not significantly affect lead(II) uptake. The loofa sponge‐immobilized C. sorokiniana biomass could be regenerated using 0.1 M HCl, with up to 99 % recovery. The desorbed biomass was used in five biosorption‐desorption cycles, and no noticeable loss in the biosorption capacity was observed. In addition, fixed bed breakthrough curves for lead(II) removal were presented. These studies demonstrated that loofa sponge‐immobilized biomass of C. sorokiniana could be used as an efficient biosorbent for the treatment of lead(II) containing wastewater.  相似文献   

3.
The sorption of heavy metals ions by immobilized Trichoderma viride biomass in a packed-bed column was studied. Fungal biomass T. viride was immobilized to Ca-alginate used for removal of Cr(VI), Ni(II) and Zn(II) ions from synthetic solutions and electroplating effluent. The experiments were conducted to study the effect of important design parameters such as bed height, flow rate and initial concentration of metal ions. The maximum sorption capacity was observed at flow rate 5 ml/min, bed height 20 cm and metal ions concentration 50 mg/L with immobilized biomass. Whereas, breakthrough time and saturation time decreased with increase flow rate and metal ions concentration and an inverse condition was found in bed height. The bed depth service time (BDST) Adams-Bohart model was used to analyze the experimental data. The regeneration efficiency was observed 40.1%, 75% and 53% for Cr(VI), Ni(II) and Zn(II) without any significant alteration in sorption capacity after 5th sorption-desorption cycles.  相似文献   

4.
Summary An indigenous strain of blue green microalga, Synechococcus sp., isolated from wastewater, was immobilized onto loofa sponge discs and investigated as a potential biosorbent for the removal of cadmium from aqueous solutions. Immobilization has enhanced the sorption of cadmium and an increase of biosorption (21%) at equilibrium was noted as compared to free biomass. The kinetics of cadmium biosorption was extremely rapid, with (96%) of adsorption within the first 5 min and equilibrium reached at 15 min. Increasing initial pH or initial cadmium concentration resulted in an increase in cadmium uptake. The maximum biosorption capacity of free and loofa immobilized biomass of Synechococcus sp. was found to be 47.73 and 57.76 mg g−1 biomass respectively. The biosorption equilibrium was well described by Langmuir adsorption isotherm model. The biosorbed cadmium was desorbed by washing the immobilized biomass with dilute HCl (0.1 M) and desorbed biomass was reused in five biosorption–desorption cycles without an apparent decrease in its metal biosorption capacity. The metal removing capacity of loofa immobilized biomass was also tested in a continuous flow fixed-bed column bioreactor and was found to be highly effective in removing cadmium from aqueous solution. The results suggested that the loofa sponge-immobilized biomass of Synechococcus sp. could be used as a biosorbent for an efficient removal of heavy metal ions from aqueous solution.  相似文献   

5.
The effect of copper(II), lead(II) and chromium(VI) ions on the growth and bioaccumulation properties of Aspergillus niger was investigated as a function of initial pH and initial metal ion concentration. The optimum pH values for growth and metal ion accumulation were determined as 5.0, 4.5 and 3.5 for copper(II), lead(II) and chromium(VI) ions, respectively. Although all metal ion concentrations caused an inhibition effect on the growth of A. niger, it was capable of removing of copper(II) and lead(II) with a maximum specific uptake capacity of 15.6 and 34.4 mg g−1 at 100 mg dm−3 initial copper(II) and lead(II) concentration, respectively. Growth of A. niger was highly effected by chromium(VI) ions and inhibited by 75 mg dm−3 initial chromium(VI) concentration since some inhibition occurred at lower concentrations.  相似文献   

6.
The biosorption of cadmium and lead ions from artificial aqueous solutions using waste baker's yeast biomass was investigated. The yeast cells were treated with caustic, ethanol and heat for increasing their biosorption capacity and the highest metal uptake values (15.63 and 17.49 mg g(-1) for Cd(2+) and Pb(2+), respectively) were obtained by ethanol treated yeast cells. The effect of initial metal concentration and pH on biosorption by ethanol treated yeast was studied. The Langmuir model and Freundlich equation were applied to the experimental data and the Langmuir model was found to be in better correlation with the experimental data. The maximum metal uptake values (qmax, mg g(-1)) were found as 31.75 and 60.24 for Cd(2+) and Pb(2+), respectively. Competitive biosorption experiments were performed with Cd(2+) and Pb(2+) together with Cu(2+) and the competitive biosorption capacities of the yeast biomass for all metal ions were found to be lower than in non-competitive conditions.  相似文献   

7.
Lee YC  Chang SP 《Bioresource technology》2011,102(9):5297-5304
The aim of this research was to develop a low cost adsorbent for wastewater treatment. The prime objective of this study was to search for suitable freshwater filamentous algae that have a high heavy metal ion removal capability. This study evaluated the biosorption capacity from aqueous solutions of the green algae species, Spirogyra and Cladophora, for lead (Pb(II)) and copper (Cu(II)). In comparing the analysis of the Langmuir and Freundlich isotherm models, the adsorption of Pb(II) and Cu(II) by these two types of biosorbents showed a better fit with the Langmuir isotherm model. In the adsorption of heavy metal ions by these two types of biosorbents, chemical and physical adsorption of particle surfaces was perhaps more significant than diffusion and adsorption between particles. Continuous adsorption-desorption experiments discovered that both types of biomass were excellent biosorbents with potential for further development.  相似文献   

8.
Papain, which is an industrially important enzyme, has been immobilized on fibrous polymer-modified composite beads, namely poly(methacrylic acid)-grafted chitosan/clay. Characterization studies have been done using FTIR and SEM analysis. Operating parameters such as pH and initial concentration of papain have been varied to obtain the finest papain immobilized polymer-modified composite beads. The immobilization capacity of composite beads has been determined as 34.47 ± 1.18 (n = 3) mg/g. The proteolytic activity of immobilized papain was operated using bovine serum albumin (BSA) and maximum velocity (V max) and Michaelis–Menten constant (Km) values of the free and immobilized enzymes were determined using Lineweaver–Burk and Eadie–Hofstee equations. Usability of papain immobilized polymer-modified composite beads as adsorbents for the elimination of mercury was investigated. The maximum removal capacity of PIPMC beads has been found to be 4.88 ± 0.21 mg Hg/g when the initial metal concentration and weight of polymer-modified composite beads were 50 mg/L and 0.04 g at pH 7, respectively. Mercury removal performance of the papain immobilized polymer-modified composite beads was investigated in conjunction with Cu (II), Zn (II) and Cd (II) ions. The mercury adsorption capacity of papain immobilized polymer-modified composite beads was a slight reduction from 1.15 to 0.89 mg/g in presence of multiple metal salts.  相似文献   

9.
Response surface methodology (RSM) based on central composite rotatable design was used to investigate the effects of operating variable, mainly, pH, weight of biomass, and initial lead ion concentration on the lead adsorption capacity at ambient temperature using dried cells of Lactobacillius bulgaricus. Using RSM, quadratic polynomial equation was obtained for predicting the percent of lead ion removal. Analysis of variance showed that the effects of pH and weight of dried biomass were concluded to be the key factors influencing the capacity of lead ion removal. At pH lower than 2 (high acidic condition) and in alkaline condition, there is no significant biosorption. The optimum percent of lead ion removal was found at pH of 6.78, biomass concentration of 6.58 g/l and initial lead concentration 36.22 ppm. In this condition, percent of lead ion removal was 86.21%. This study showed RSM effectiveness for modeling of biosorption process.  相似文献   

10.
Biosorption is potentially an attractive technology for treatment of wastewater for retaining heavy metals from dilute solutions. This study investigated the feasibility of anaerobic granules as a novel type of biosorbent, for lead, copper, cadmium, and nickel removal from aqueous solutions. Anaerobic sludge supplied from a wastewater treatment plant in the province of Quebec was used. Anaerobic granules are microbial aggregates with a strong, compact and porous structure and excellent settling ability. After treatment of the biomass with Ca ions, the cation exchange capacity of the biomass was approximately 111 meq/100 g of biomass dry weight which is comparable to the metal binding capacities of commercial ion exchange resins. This work investigated the equilibrium, batch dynamics for the biosorption process. Binding capacity experiments using viable biomass revealed a higher value than those for nonviable biomass. Binding capacity experiments using non-viable biomass treated with Ca revealed a high value of metals uptake. The solution initial pH value affected metal sorption. Over the pH range of 4.0-5.5, pH-related effects were not significant. Meanwhile, at lower pH values the uptake capacity decreased. Time dependency experiments for the metal ions uptake showed that adsorption equilibrium was reached almost 30 min after metal addition. It was found that the q(max) for Pb2+, Cd2+, Cu2+, and Ni2+ ions, were 255, 60, 55, and 26 mg/g respectively (1.23, 0.53, 0.87, and 0.44 mmol/g respectively). The data pertaining to the sorption dependence upon metal ion concentration could be fitted to a Langmiur isotherm model. Based on the results, the anaerobic granules treated with Ca appear to be a promising biosorbent for removal of heavy metals from wastewater due to its optimal uptake of heavy metals, its particulate shape, compact porous structure, excellent settling ability, and its high mechanical strength.  相似文献   

11.
Abstract

In this work, the potential use of the immobilized cells of Chryseomonas luteola TEM 05 for the removal of Cr+6, Cd+2 and Co+2 ions from aqueous solutions was investigated. The living cells of C. luteola TEM 05 were firstly entrapped both in carrageenan and chitosan coated carrageenan gels and then used in biosoption of the metal ions in batch reactors at pH 6.0, 25°C, in 100 mg L?1 of each metal solution. Besides this, a process of competitive biosorption of these metal ions was also described and compared to single metal ion adsorption in solution. According to the immobilization results, the replacement of KCl by KCl-chitosan as gelling agent improved the mechanical strength and thermal stability of the gel. In addition, the C. luteola TEM 05 immobilized carrageenan-chitosan gel system was quite more efficient for the fast adsorption of metal ions from aqueous solution than the carrageenan gels without biomass.  相似文献   

12.
Yeast cells are capable of accumulation of various heavy metals, preferentially accumulating those of potential toxicity and also those of value. They retain their ability to accumulate heavy metals under a wide range of ambient conditions. In the present study it was shown that yeast cells in suspension accumulate heavy metal cations such as Cu2+, Co2+. The level of copper accumulation was dependent on the ambient metal concentration and was markedly inhibited by extremes of ambient pH. Temperature (5–40°C) and the presence of the alkali metal sodium had much smaller effects on the level of copper accumulation. This suggests that in waste-waters of pH 5.0–9.0, yeast biomass could provide an effective bioaccumlator for removal and/or recovery of the metal. During bioaccumulation and subsequent processes it is necessary to retain the biomass. It was shown in the present study that this could be achieved by cell immobilization. Immobilization allowed for complete removal of Cu2+, Co2+, and Cd2+ from synthetic metal solutions. The immobilized material could be freed of metals by use of the chelating agent ethylenediamine tetraacetic acid (EDTA) and recycled for further bioaccumulation events with little loss of accumulation capacity.Correspondence to: J. R. Duncan  相似文献   

13.
The study was navigated to examine the metal biosorbing ability of bacterial strain OSM29 recovered from rhizosphere of cauliflower grown in soil irrigated consistently with industrial effluents. The metal tolerant bacterial strain OSM29 was identified as Bacillus thuringiensis following 16S rRNA gene sequence analysis. In the presence of the varying concentrations (25–150 mgl−1) of heavy metals, such as cadmium, chromium, copper, lead and nickel, the B. thuringiensis strain OSM29 showed an obvious metal removing potential. The effect of certain physico-chemical factors such as pH, initial metal concentration, and contact time on biosorption was also assessed. The optimum pH for nickel and chromium removal was 7, while for cadmium, copper and lead, it was 6. The optimal contact time was 30 min. for each metal at 32 ± 2 °C by strain OSM29. The biosorption capacity of the strain OSM29 for the metallic ions was highest for Ni (94%) which was followed by Cu (91.8%), while the lowest sorption by bacterial biomass was recorded for Cd (87%) at 25 mgl−1 initial metal ion concentration. The regression coefficients obtained for heavy metals from the Freundlich and Langmuir models were significant. The surface chemical functional groups of B. thuringiensis biomass identified by Fourier transform infrared (FTIR) were amino, carboxyl, hydroxyl, and carbonyl groups, which may be involved in the biosorption of heavy metals. The biosorption ability of B. thuringiensis OSM29 varied with metals and was pH and metal concentration dependent. The biosorption of each metal was fairly rapid which could be an advantage for large scale treatment of contaminated sites.  相似文献   

14.
The effects of different metal ions, carbohydrates, heat and enzymatic treatments on the flocculation of yeast cells caused by a flocculant type of Lactobacillus fermentum were investigated. Calcium ion was required at pH 3.0, 4.5 and 6.2 for complete flocculation. Some flocculation was detected at pH 4.5 even if no calcium was added to the system. Manganese and magnesium ions were capable of partly replacing calcium at pH 6.2. Mannose had an inhibitory effect on flocculation, while other sugars had no effect. Protease is capable of inhibiting the flocculating ability of bacterial cells. Heat treatment of bacterial cells also destroyed the flocculating ability and the effectiveness of this treatment was pH dependent. No effect of protease or heat treatment on yeast cells was found. The results suggest that a cell wall component of L. fermentum, mannan residues of yeast cells and divalent ions were involved in this phenomenon.  相似文献   

15.
Saccharomyces cerevisiae NCYC 1190 cells accumulated (after 1 h) lead and cadmium at similar levels, and to a lesser degree also copper. During heavy metal accumulation, there was a considerable loss of viability of copper-treated cells (about 99% in the first 20 min of contact with the metal), and a less pronounced lethal effect on cadmium- and lead-treated cells (about 66% and 46% after 1 h of contact with cadmium or lead, respectively) was detected. During copper accumulation, a leakage of UV-absorbing compounds and inorganic phosphate was observed; this did not occur with lead, whereas with cadmium a small amount of leakage of inorganic phosphate was detected. The filtrates of copper-treated cells contained copper-binding molecules. The copper-binding capacity of the filtrates increased with time according to the release of inorganic phosphate and UV-absorbing compounds. These compounds can bind an appreciable quantity of metal ions, making them unavailable for cell uptake and thus reducing the efficiency of heavy metals removal by yeast cells.  相似文献   

16.
AIMS: The aim was to develop a new, efficient and cost-effective biosorbent for the removal of heavy metals from aqueous solution. METHODS AND RESULTS: A new biosorbent was developed by immobilizing a unicellular green microalga Chlorella sorokiniana within luffa sponge discs and used for the removal of metal ions from aqueous solution. Microalgal-luffa sponge immobilized discs (MLIDs) removed Ni(II) very rapidly, with 97% of equilibrium loading being reached in 5 min. MLIDs were tested for their potential to remove Ni(II) from aqueous solution in fixed-bed column bioreactor. The regenerated MLIDs retained 92.9% of the initial binding capacity for Ni(II) up to five cycles of reuse. CONCLUSIONS: In this study for the first time, C. sorokiniana biomass immobilized within luffa sponge disc was successfully used as a metal biosorbent for the removal of Ni(II). It appears that MLIDs can be used as an effective biosorbent for efficient removal of Ni(II) or other metals from aqueous solution. SIGNIFICANCE AND IMPACT OF THE STUDY: MLIDs biosorption system was shown to have good biosorption properties with respect to Ni(II). Efficient metal removal ability of MLIDs, low cost and simplicity of the technique used for the preparation of MILDs could provide an attractive strategy for developing high-affinity biosorption system for heavy metal removal.  相似文献   

17.
存在于酵母菌细胞表面的絮凝蛋白与邻近细胞表面寡聚甘露糖链相互作用,从而使细胞相互聚集形成细胞团的生理过程称为酵母菌絮凝。编码絮凝蛋白的基因中存在大量衔接重复序列,这些重复序列的变化不但使酵母菌呈现出絮凝特性的多样性,而且由重复序列驱动的基因内或基因间重组使酵母菌的絮凝特性具有非常明显的遗传不稳定性。文中综述了基因内重复序列对酵母菌絮凝特性和遗传稳定性的影响,将为基于序列调控策略改进酵母菌絮凝特性及遗传稳定性奠定理论基础,为絮凝特性在发酵工业或环境修复过程中的可控应用提供新的解决策略。  相似文献   

18.
Biosorption of heavy metals by Saccharomyces cerevisiae: a review   总被引:14,自引:0,他引:14  
Heavy metal pollution has become one of the most serious environmental problems today. Biosorption, using biomaterials such as bacteria, fungi, yeast and algae, is regarded as a cost-effective biotechnology for the treatment of high volume and low concentration complex wastewaters containing heavy metal(s) in the order of 1 to 100 mg/L. Among the promising biosorbents for heavy metal removal which have been researched during the past decades, Saccharomyces cerevisiae has received increasing attention due to the unique nature in spite of its mediocre capacity for metal uptake compared with other fungi. S. cerevisiae is widely used in food and beverage production, is easily cultivated using cheap media, is also a by-product in large quantity as a waste of the fermentation industry, and is easily manipulated at molecular level. The state of the art in the field of biosorption of heavy metals by S. cerevisiae not only in China, but also worldwide, is reviewed in this paper, based on a substantial number of relevant references published recently on the background of biosorption achievements and development. Characteristics of S. cerevisiae in heavy metal biosorption are extensively discussed. The yeast can be studied in various forms for different purposes. Metal-binding capacity for various heavy metals by S. cerevisiae under different conditions is compared. Lead and uranium, for instances, could be removed from dilute solutions more effectively in comparison with other metals. The yeast biosorption largely depends on parameters such as pH, the ratio of the initial metal ion and initial biomass concentration, culture conditions, presence of various ligands and competitive metal ions in solution and to a limited extent on temperature. An assessment of the isotherm equilibrium model, as well as kinetics was performed. The mechanisms of biosorption are understood only to a limited extent. Elucidation of the mechanism of metal uptake is a real challenge in the field of biosorption. Various mechanism assumptions of metal uptake by S. cerevisiae are summarized.  相似文献   

19.
Humin extracted from Sphagnum peat moss was immobilized in a silica matrix and column experiments were performed in order to evaluate the removal and recovery of metal ions from aqueous solution under flow conditions. These experiments also allowed testing the recycling capacity of the column. Single-element solutions of Cu(II) and Pb(II), and a multi-metal solution containing Cd(II), Cu(II), Pb(II), Ni(II), and Cr(III) were passed through the columns at a flow rate of 2 ml/min. A 0.5 M sodium citrate solution was used as the stripping agent in the metal-ion recovery process. Humin immobilized in the silica matrix exhibited a similar, and in some cases, even a higher capacity than other biosorbents for the removal of metal ions from aqueous solutions under flow conditions. The sodium citrate was effective in removing Cu(II), Pb(II), Cd(II), and Ni(II) from the metal saturated column. The selectivity of the immobilized biomass was as follows: Cr(III)>Pb(II)>Cu(II)>Cd(II)>Ni(II). This investigation provides a new, environmentally friendly and cost-effective possibility to clean up heavy-metal contaminated wastewaters by using the new silica-immobilized humin material.  相似文献   

20.
Summary We reportUndaria pinnatifida as a potential biosorbent for lead removal.U. pinnatifida exhibited approximately 350 mg of lead uptake capacity per gram of dry biomass within a pII range of 3 to 4. The major cellular component ofU. pinnatifida in lead binding was thought as alginic acid existing in the cell wall.U. pinnatifida adsorbed lead ion selectively over other alkaline metal ions such as K+, Na+, Mg++ and Ca++. It was confirmed by using instrumental analysis including EDX and XPS thatU. pinnatifida adsorbed lead ions on the surface of itself.This research was supported by Bioprocess Engineering Research Center and Kyunggi Chemical Industrial Company.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号