首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Penicillium chrysogenum, an industrial microorganism used worldwide for penicillin production, is an excellent model to study the biochemistry and the cell biology of enzymes involved in the synthesis of secondary metabolites. The well-known peroxisomal location of the last two steps of penicillin biosynthesis (phenylacetyl–CoA ligase and isopenicillin N acyltransferase) requires the import into the peroxisomes of the intermediate isopenicillin N and the precursors phenylacetic acid and coenzyme A. The mechanisms for the molecular transport of these precursors are still poorly understood. In this work, a search was made, in the genome of P. chrysogenum, in order to find a Major Facilitator Superfamily (MFS) membrane protein homologous to CefT of Acremonium chrysogenum, which is known to confer resistance to phenylacetic acid. The paaT gene was found to encode a MFS membrane protein containing 12 transmembrane spanners and one Pex19p-binding domain for Pex19-mediated targeting to peroxisomal membranes. RNA interference-mediated silencing of the paaT gene caused a clear reduction of benzylpenicillin secretion and increased the sensitivity of P. chrysogenum to the penicillin precursor phenylacetic acid. The opposite behavior was found when paaT was overexpressed from the glutamate dehydrogenase promoter that increases phenylacetic acid resistance and penicillin production. Localization studies by fluorescent laser scanning microscopy using PaaT–DsRed and EGFP–SKL fluorescent fusion proteins clearly showed that the protein was located in the peroxisomal membrane. The results suggested that PaaT is involved in penicillin production, most likely through the translocation of side-chain precursors (phenylacetic acid and phenoxyacetic acid) from the cytosol to the peroxisomal lumen across the peroxisomal membrane of P. chrysogenum.  相似文献   

3.
To analyse the regulation of the biosynthesis of the secondary metabolite penicillin in Aspergillus nidulans, a strain with an inactivated acvA gene produced by targeted disruption was used. acvA encodes δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase (ACVS), which catalyses the first step in the penicillin biosynthetic pathway. To study the effect of the inactivated acvA gene on the expression of acvA and the second gene, ipnA, which encodes isopenicillin N synthase (IPNS), A. nidulans strain XEPD, with the acvA disruption, was crossed with strain AXB4A carrying acvA-uidA and ipnA-lacZ fusion genes. Ascospores with the predicted non-penicillin producing phenotype and a hybridization pattern indicating the presence of the disrupted acvA gene, and the fusion genes integrated in single copy at the chromosomal argB locus were identified. Both fusion genes were expressed at the same level as in the non-disrupted strain. Western blot analysis (immunoblotting) revealed that similar amounts of IPNS enzyme were present in both strains from 24 to 68 h of a fermentation run. In the acvA disrupted strain, IPNS and acyl-CoA: 6-aminopenicillanic acid acyltransferase (ACT) specific activities were detected, excluding a sequential induction mechanism of regulation of the penicillin biosynthesis gene ipnA and the third gene aat.  相似文献   

4.
5.
6.
Peroxisomes are eukaryotic organelles surrounded by a single bilayer membrane, containing a variety of proteins depending on the organism; they mainly perform degradation reactions of toxic metabolites (detoxification), catabolism of linear and branched-chain fatty acids, and removal of H2O2 (formed in some oxidative processes) by catalase. Proteins named peroxins are involved in recruiting, transporting, and introducing the peroxisomal matrix proteins into the peroxisomes. The matrix proteins contain the peroxisomal targeting signals PTS1 and/or PTS2 that are recognized by the peroxins Pex5 and Pex7, respectively. Initial evidence indicated that the penicillin biosynthetic enzyme isopenicillin N acyltransferase (IAT) of Penicillium chrysogenum is located inside peroxisomes. There is now solid evidence (based on electron microscopy and/or biochemical data) confirming that IAT and the phenylacetic acid- and fatty acid-activating enzymes are also located in peroxisomes. Similarly, the Acremonium chrysogenum CefD1 and CefD2 proteins that perform the central reactions (activation and epimerization of isopenicillin N) of the cephalosporin pathway are targeted to peroxisomes. Growing evidence supports the conclusion that some enzymes involved in the biosynthesis of mycotoxins (e.g., AK-toxin), and the biosynthesis of signaling molecules in plants (e.g., jasmonic acid or auxins) occur in peroxisomes. The high concentration of substrates (in many cases toxic to the cytoplasm) and enzymes inside the peroxisomes allows efficient synthesis of metabolites with interesting biological or pharmacological activities. This compartmentalization poses additional challenges to the cell due to the need to import the substrates into the peroxisomes and to export the final products; the transporters involved in these processes are still very poorly known. This article focuses on new aspects of the metabolic processes occurring in peroxisomes, namely the degradation and detoxification processes that lead to the biosynthesis and secretion of secondary metabolites.  相似文献   

7.
Many microorganisms secrete surface‐active glycolipids. The basidiomycetous fungus Ustilago maydis produces two different classes of glycolipids, mannosylerythritol lipids (MEL) and ustilagic acids (UAs). Here we report that biosynthesis of MELs is partially localized in peroxisomes and coupled to peroxisomal fatty acid degradation. The acyltransferases, Mac1 and Mac2, which acylate mannosylerythritol with fatty acids of different length, contain a type 1 peroxisomal targeting signal (PTS1). We demonstrate that Mac1 and Mac2 are targeted to peroxisomes, while other enzymes involved in MEL production reside in different compartments. Mis‐targeting of Mac1 and Mac2 to the cytosol did not block MEL synthesis but promoted production of MEL species with altered acylation pattern. This is in contrast to peroxisome deficient mutants that produced MELs similar to the wild type. We could show that cytosolic targeting of Mac1 and Mac2 reduces the amount of UA presumably due to competition for overlapping substrates. Interestingly, hydroxylated fatty acids characteristic for UAs appear in MELs corroborating cross‐talk between both biosynthesis pathways. Therefore, peroxisomal localization of MEL biosynthesis is not only prerequisite for generation of the natural spectrum of MELs, but also facilitates simultaneous assembly of different glycolipids in a single cell.  相似文献   

8.
In plants, peroxisomes are the organelles involved in various metabolic processes and physiological functions including β-oxidation, mobilization of seed storage lipids, photorespiration, and hormone biosynthesis. We have recently shown that, in fungi and plants, peroxisomes play a vital role in biosynthesis of biotin, an essential cofactor required for various carboxylation and decarboxylation reactions. In fungi, the mutants defective in peroxisomal protein import exhibit biotin auxotrophy. The fungal BioF protein, a 7-keto-8-aminopelargonic acid (KAPA) synthase catalyzing the conversion of pimeloyl-CoA to KAPA in biotin biosynthesis, contains the peroxisomal targeting sequence 1 (PTS1), and its peroxisomal targeting is required for biotin biosynthesis. In plants, biotin biosynthesis is essential for embryo development. We have shown that the peroxisomal targeting sequences of the BioF proteins are conserved throughout the plant kingdom, and the Arabidopsis thaliana BioF protein is indeed localized in peroxisomes. Our findings suggest that peroxisomal localization of the BioF protein is evolutionarily conserved among eukaryotes, and required for biotin biosynthesis and plant growth and development.  相似文献   

9.
10.
β-lactam antibiotics (e.g. penicillins, cephalosporins) are of major clinical importance and contribute to over 40% of the total antibiotic market. These compounds are produced as secondary metabolites by certain actinomycetes and filamentous fungi (e.g. Penicillium, Aspergillus and Acremonium species). The industrial producer of penicillin is the fungus Penicillium chrysogenum. The enzymes of the penicillin biosynthetic pathway are well characterized and most of them are encoded by genes that are organized in a cluster in the genome. Remarkably, the penicillin biosynthetic pathway is compartmentalized: the initial steps of penicillin biosynthesis are catalyzed by cytosolic enzymes, whereas the two final steps involve peroxisomal enzymes. Here, we describe the biochemical properties of the enzymes of β-lactam biosynthesis in P. chrysogenum and the role of peroxisomes in this process. An overview is given  相似文献   

11.
In Penicillium chrysogenum the beta-lactam biosynthetic pathway is compartmentalized. This fact forces the occurrence of transport processes of penicillin-intermediate molecules across cell membranes. Many aspects around this molecular traffic remain obscure but are supposed to involve transmembrane transporter proteins. In the present work, an in-depth study has been developed on a Major Facilitator-type secondary transporter from P. chrysogenum named as PenM. The reduction of penM expression level reached by penM targeted silencing, leads to a decrease in benzylpenicillin production in silenced transformants, especially in SilM-35. On the contrary, the penM overexpression from a high efficiency promoter increases the benzylpenicillin production and the expression of the biosynthetic genes. Moreover, when the silenced strain SilM-35 is cultured under penicillin production conditions with 6-aminopenicillanic acid supplementation, an increase in the benzylpenicillin production proportional to the 6-aminopenicillanic acid availability is observed. By this phenomenon, it can be concluded that due to the penM silencing the benzylpenicillin transport remains intact but the peroxisomal isopenicillin N import results affected. As a culminating result, obtained by the expression of the fluorescent recombinant PenM-DsRed protein, it was determined that PenM is naturally located in P. chrysogenum peroxisomes. In summary, our experimental results suggest that PenM is involved in penicillin production most likely through the translocation of isopenicillin N from the cytosol to the peroxisomal lumen across P. chrysogenum peroxisomal membrane.  相似文献   

12.
Siderophores play a central role in iron metabolism and virulence of most fungi. Both Aspergillus fumigatus and Aspergillus nidulans excrete the siderophore triacetylfusarinine C (TAFC) for iron acquisition. In A. fumigatus, green fluorescence protein‐tagging revealed peroxisomal localization of the TAFC biosynthetic enzymes SidI (mevalonyl‐CoA ligase), SidH (mevalonyl‐CoA hydratase) and SidF (anhydromevalonyl‐CoA transferase), while elimination of the peroxisomal targeting signal (PTS) impaired both, peroxisomal SidH‐targeting and TAFC biosynthesis. The analysis of A. nidulans mutants deficient in peroxisomal biogenesis, ATP import or protein import revealed that cytosolic mislocalization of one or two but, interestingly, not all three enzymes impairs TAFC production during iron starvation. The PTS motifs are conserved in fungal orthologues of SidF, SidH and SidI. In agreement with the evolutionary conservation of the partial peroxisomal compartmentalization of fungal siderophore biosynthesis, the SidI orthologue of coprogen‐type siderophore‐producing Neurospora crassa was confirmed to be peroxisomal. Taken together, this study identified and characterized a novel, evolutionary conserved metabolic function of peroxisomes.  相似文献   

13.
To analyse the regulation of the biosynthesis of the secondary metabolite penicillin in Aspergillus nidulans, a strain with an inactivated acvA gene produced by targeted disruption was used. acvA encodes -(l--aminoadipyl)-l-cysteinyl-d-valine synthetase (ACVS), which catalyses the first step in the penicillin biosynthetic pathway. To study the effect of the inactivated acvA gene on the expression of acvA and the second gene, ipnA, which encodes isopenicillin N synthase (IPNS), A. nidulans strain XEPD, with the acvA disruption, was crossed with strain AXB4A carrying acvA-uidA and ipnA-lacZ fusion genes. Ascospores with the predicted non-penicillin producing phenotype and a hybridization pattern indicating the presence of the disrupted acvA gene, and the fusion genes integrated in single copy at the chromosomal argB locus were identified. Both fusion genes were expressed at the same level as in the non-disrupted strain. Western blot analysis (immunoblotting) revealed that similar amounts of IPNS enzyme were present in both strains from 24 to 68 h of a fermentation run. In the acvA disrupted strain, IPNS and acyl-CoA: 6-aminopenicillanic acid acyltransferase (ACT) specific activities were detected, excluding a sequential induction mechanism of regulation of the penicillin biosynthesis gene ipnA and the third gene aat.  相似文献   

14.
The distribution of some enzymes between peroxisomes and cytosol, or a dual localization in both these compartments, can be difficult to reconcile. We have used photobleaching in live cells expressing green fluorescent protein (GFP)-fusion proteins to show that imported bona fide peroxisomal matrix proteins are retained in the peroxisome. The high mobility of the GFP-fusion proteins in the cytosol and absence of peroxisomal escape makes it possible to eliminate the cytosolic fluorescence by photobleaching, to distinguish between exclusively cytosolic proteins and proteins that are also present at low levels in peroxisomes. Using this technique we found that GFP tagged bile acid-CoA:amino acid N-acyltransferase (BAAT) was exclusively localized in the cytosol in HeLa cells. We conclude that the cytosolic localization was due to its carboxyterminal non-consensus peroxisomal targeting signal (-SQL) since mutation of the -SQL to -SKL resulted in BAAT being efficiently imported into peroxisomes.  相似文献   

15.
16.
The rice pathogen Fusarium fujikuroi is known to produce a wide range of secondary metabolites, such as the pigments bikaverin and fusarubins, the mycotoxins fusarins and fusaric acid, and the phytohormones gibberellic acids (GAs), which are applied as plant growth regulators in agri- and horticulture. The development of high-producing strains is a prerequisite for the efficient biotechnological production of GAs. In this work, we used different molecular approaches for strain improvement to directly affect expression of early isoprenoid genes as well as GA biosynthetic genes. Overexpression of the first GA pathway gene ggs2, encoding geranylgeranyl diphosphate synthase 2, or additional integration of ggs2 and cps/ks, the latter encoding the bifunctional ent-copalyldiphosphate synthase/ent-kaurene synthase, revealed an enhanced production level of 150 %. However, overexpression of hmgR and fppS, encoding the key enzymes of the mevalonate pathway, hydroxymethylglutaryl coenzyme A reductase, and farnesyldiphosphate synthase, resulted in a reduced production level probably due to a negative feedback regulation of HmgR. Subsequent deletion of the transmembrane domains of HmgR and overexpression of the remaining catalytic domain led to an increased GA content (250 %). Using green fluorescent protein and mCherry fusion constructs, we localized Cps/Ks in the cytosol, Ggs2 in small point-like structures, which are not the peroxisomes, and HmgR at the endoplasmatic reticulum. In summary, it was shown for the first time that amplification or truncation of key enzymes of the isoprenoid and GA pathway results in elevated production levels (2.5-fold). Fluorescence microscopy revealed localization of the key enzymes in different compartments.  相似文献   

17.
We have analyzed the role of the three members of the Pex11 protein family in peroxisome formation in the filamentous fungus Penicillium chrysogenum. Two of these, Pex11 and Pex11C, are components of the peroxisomal membrane, while Pex11B is present at the endoplasmic reticulum. We show that Pex11 is a major factor involved in peroxisome proliferation. We also demonstrate that P. chrysogenum cells deleted for known peroxisome fission factors (all Pex11 family proteins and Vps1) still contain peroxisomes. Interestingly, we find that, unlike in mammals, Pex16 is not essential for peroxisome biogenesis in P. chrysogenum, as partially functional peroxisomes are present in a pex16 deletion strain. We also show that Pex16 is not involved in de novo biogenesis of peroxisomes, as peroxisomes were still present in quadruple Δpex11 Δpex11B Δpex11C Δpex16 mutant cells. By contrast, pex3 deletion in P. chrysogenum led to cells devoid of peroxisomes, suggesting that Pex3 may function independently of Pex16. Finally, we demonstrate that the presence of intact peroxisomes is important for the efficiency of ß-lactam antibiotics production by P. chrysogenum. Remarkably, distinct from earlier results with low penicillin producing laboratory strains, upregulation of peroxisome numbers in a high producing P. chrysogenum strain had no significant effect on penicillin production.  相似文献   

18.
19.
At least three different subcellular compartments, including peroxisomes, are involved in cholesterol synthesis. Recently, it has been demonstrated that peroxisomes contain a number of enzymes involved in cholesterol biogenesis that previously were considered to be cytosolic or located in the endoplasmic reticulum. Peroxisomes have been shown to contain acetoacetyl-CoA thiolase, HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, phosphomevalonate kinase, phosphomevalonate decarboxylase, isopentenyl diphosphate isomerase and FPP synthase. Moreover, the activities of these enzymes are also significantly decreased in liver tissue and fibroblast cells obtained from patients with peroxisomal deficiency diseases. In addition, the cholesterol biosynthetic capacity is severely impaired in cultured skin fibroblasts obtained from patients with peroxisomal deficiency diseases. These findings support the proposal that peroxisomes play an essential role in isoprenoid biosynthesis. This paper presents a review of peroxisomal protein targeting and of recent studies demonstrating the localization of cholesterol biosynthetic enzymes in peroxisomes and the identification of peroxisomal targeting signals in these proteins.  相似文献   

20.
Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers with diverse plastic‐like properties. PHA biosynthesis in transgenic plants is being developed as a way to reduce the cost and increase the sustainability of industrial PHA production. The homopolymer polyhydroxybutyrate (PHB) is the simplest form of these biodegradable polyesters. Plant peroxisomes contain the substrate molecules and necessary reducing power for PHB biosynthesis, but peroxisomal PHB production has not been explored in whole soil‐grown transgenic plants to date. We generated transgenic sugarcane (Saccharum sp.) with the three‐enzyme Ralstonia eutropha PHA biosynthetic pathway targeted to peroxisomes. We also introduced the pathway into Arabidopsis thaliana, as a model system for studying and manipulating peroxisomal PHB production. PHB, at levels up to 1.6%–1.8% dry weight, accumulated in sugarcane leaves and A. thaliana seedlings, respectively. In sugarcane, PHB accumulated throughout most leaf cell types in both peroxisomes and vacuoles. A small percentage of total polymer was also identified as the copolymer poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) in both plant species. No obvious deleterious effect was observed on plant growth because of peroxisomal PHA biosynthesis at these levels. This study highlights how using peroxisomal metabolism for PHA biosynthesis could significantly contribute to reaching commercial production levels of PHAs in crop plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号