首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Plants damaged by herbivores emit blends of volatile organic compounds (VOCs) that attract the herbivore’s natural enemies. Most work has focussed on systems involving one plant, one herbivore and one natural enemy, though, in nature, plants support multiple herbivores and multiple natural enemies of these herbivores. Our study aimed to understand how different aphid natural enemies respond to aphid-induced VOCs, and whether attraction of the natural enemies that responded to aphid-induced VOCs was altered by simultaneous damage by a chewing herbivore. We used a model system based on Brassica juncea (Brassicaceae), Myzus persicae (Hemiptera: Aphididae) and Plutella xylostella (Lepidoptera: Plutellidae). Ceraeochrysa cubana (Neuroptera: Chrysopidae) did not show preferences for any plant odour, while Cycloneda sanguinea (Coleoptera: Coccinellidae) responded to undamaged plants over air but not to aphid-damaged plants over undamaged plants. Therefore, no further tests were carried out with these two species. Chrysoperla externa (Neuroptera: Chrysopidae) preferred aphid-damaged plants, but not caterpillar-damaged plants, over undamaged plants, and preferred plants damaged by both herbivores over both undamaged plants and aphid-damaged plants. When tested for responses against undamaged plants, Aphidius colemani (Hymenoptera: Braconidae) preferred aphid-damaged plants but not plants damaged by caterpillars. Plants damaged by both herbivores attracted more parasitoids than undamaged plants, but not more than aphid-damaged plants. Thus, multiply damaged plants were equally attractive to A. colemani and more attractive to C. externa than aphid-damaged plants, while C. cubana and C. sanguinea did not respond to aphid-induced VOCs, highlighting how different natural enemies can have different responses to herbivore-damaged plants.  相似文献   

2.
Plants respond adaptively to herbivore stress in order to maintain fitness. Upon herbivore attack, plants emit blends of volatile organic compounds (VOCs) that differ from those that are constitutively emitted. These defense responses are typically specific to the identity of the attacking herbivore and often linked to the herbivore's feeding guild (e.g. chewing, phloem-feeding). Herbivores use plant volatiles to locate suitable host plants and changes in volatile emissions can affect host-plant location. Therefore, herbivores from separate feeding guilds can interact indirectly through the modulation of plant responses. In this study we tested how damage by an herbivore from one feeding guild affected the host-plant choice of an herbivore from a separate feeding guild, and vice versa. A chewing herbivore, the Colorado potato beetle (Leptinotarsa decemlineata), and a phloem feeding herbivore, the green peach aphid (Myzus persicae), were assayed in olfactometers to assess behavioral responses to odors emitted by potato plants (Solanum tuberosum) that were damaged by herbivores from the other feeding guild. Leptinotarsa decemlineata oriented more frequently towards undamaged plants compared to M. persicae damaged plants. Surprisingly, M. persicae preferred plants that were damaged by L. decemlineata, although previous studies had shown that they perform worse on these plants. Distinct differences were detected in the volatile profiles of herbivore-damaged and undamaged plants. Leptinotarsa decemlineata induced stronger volatile emissions compared to undamaged control plants, while M. persicae tended to suppress volatile emissions. These herbivores demonstrate contrasting induction of plant volatiles and behavioral responses. Exploring the nature of co-occurring herbivores and how they perceive potential hosts can play a significant role in understanding the ecological functions and community dynamics of plant plasticity and interactions with a variety of herbivores.  相似文献   

3.
Endozoochrous seed dispersal by herbivorous mammals has been verified repeatedly and its possible influence on the structure and function of herbaceous communities has been suggested. Quantitative studies, however, are lacking in the field of seed dispersal via the dung of herbivore guilds in little-altered environments. The present paper analyses seed dispersal via rabbit, fallow deer, red deer and cow dung in a Mediterranean dehesa (open woodland used for hunting and ranching) during the seeding season. Dung seed content was determined by the glasshouse cultivation of eight dung samples from each herbivore, collected fortnightly between February and August. The four herbivores disperse many seeds (spring averages are 6–15 seeds per gram of dry dung and maxima of 25–70) from a large number of species (totals between 52 and 78). Dispersal seems to be mainly determined by seed production of the plant comminity. This is reflected in (i) the dissemination of a high percentage of the species present in the dehesa, (ii) great seasonal variability, related to seed production, in the amount of seeds and number of species dispersed, and (iii) a high semi-quantitative similarity of seed content in the four types of herbivore dung throughout the year. There is also important quantitative variation that depends on animal traits and feeding habits. These results and the characteristics of species found in dung suggest the adaptation of plant species to the dispersal of their seeds via herbivore gut. This process may well have profound implications for vegetation dynamics and the evolution of plant traits.  相似文献   

4.
Seed dispersal via ingestion and defecation by large herbivores provides a possible aid for ecological restoration of plant communities, by connecting source communities of target species with habitat restoration sites. It is also a possible threat due to invasion of weeds, grasses or exotic species. Insight into the factors determining internal seed dispersal could therefore improve the management of grazed ecosystems.

We recorded viable seed density in cattle, sheep and pony dung samples and monitored dung pat colonisation in the field. In addition, we counted the distribution of dung pats in plots spread over all habitat units in our study site.

The three herbivore species appeared to disperse large quantities of many species (61 in total) from a variety of plant families, monocots as well as dicots. The density of viable seeds in herbivore dung and the colonisation of dung pats were positively correlated with Ellenberg nitrogen indicator values and seed supply, but not with seed mass or shape.

The results imply that many seeds are dispersed from high productive to low productive parts of the grazed area. In free-ranging systems, we therefore recommend enclosure and separate management of plant communities on nutrient-poor soils with high conservation interest. For habitat restoration sites we recommend integrated grazing only with target plant communities on nutrient-poor soils and not with plant communities on nutrient-richer soils.  相似文献   


5.
The opening of a canopy gap at Los Tuxtlas rainforest has an impact on populations of the understory herb Aphelandra aurantiaca: the ratio of recruited seedlings per reproductive individual is 1:17 in mature forest vs. gaps. Predation occurring before seed dispersal seems a plausible explanation for this observed difference. In a field experiment, in which insecticide was applied to plants growing in gaps and mature forest, we evaluated the extent to which herbivore damage to flowers, fruits, and seeds reduces the number of seeds available for seedling establishment. Under natural conditions, ∼30% of the flowers and >70% of the capsules of A. aurantiaca showed herbivore damage, but its impact changed depending on the type of forest habitat. Flower and fruit herbivores caused more damage in closed forest than in gaps, and this difference was even bigger under the insecticide treatment. Insecticide effectiveness varied depending on the type of forest patch. The highest herbivore impact on seeds was found in the mature forest without insecticide treatment, where most seeds were destroyed. The percentages of seed damage reported here show that predispersal predation is limiting seedling recruitment, especially in mature forest. Other possible explanations might be differences in insect composition, densities, and behavior between gaps and mature forest.  相似文献   

6.
Generally, effects of herbivory on plant fitness have been measured in terms of female reproductive success (seed production). However, male plant fitness, defined as the number of seeds sired by pollen, contributes half of the genes to the next generation and is therefore crucial to the evolution of natural plant populations. This is the first study to examine effects of insect herbivory on both male and female plant reproductive success. Through controlled field and greenhouse experiments and genetic paternity analysis, we found that foliar damage by insects caused a range of responses by plants. In one environment, damaged plants had greater success as male parents than undamaged plants. Neither effects on pollen competitive ability nor pollinator visitation patterns could explain the greater siring success of these damaged plants. Success of damaged plants as male parents appeared to be due primarily to changes in allocation to flowers versus seeds after damage. Damaged plants produced more flowers early in the season, but not more seeds, than undamaged plants. Based on total seed production, male fitness measures from the first third of the season, and flower production, we estimated that damaged and undamaged plants had equal total reproductive success at the end of the season in this environment. In a second, richer environment, damaged and undamaged plants had equal male and female plant fitness, and no traits differed significantly between the treatments. Equal total reproductive success may not be ecologically or evolutionarily equivalent if it is achieved differentially through male versus female fitness. Genes from damaged plants dispersed through pollen may escape attack from herbivores, if such attack is correlated spatially from year to year.  相似文献   

7.
The elimination of the largest herbivores (elephants and rhinoceroses) from many forests in tropical East Asia may have severe consequences for plant species that depend on them for seed dispersal. We assessed the capacity of Malayan tapirs Tapirus indicus—the next largest nonruminant herbivore in the region—as a substitute for the lost megafauna in this role by studying their ability to disperse the seeds of nine fleshy‐fruited plants with seeds 5–97 mm in length. We combined information from feeding trials, germination tests, and field telemetry to assess the effect of tapir consumption on seed viability and to estimate how far the seeds would be dispersed. The tapirs (N=8) ingested few seeds. Seed survival through gut passage was moderately high for small‐seeded plants (e.g., 36.9% for Dillenia indica) but very low for medium‐ (e.g., 7.6% for Tamarindus indica) and large‐seeded (e.g., 2.8% for Artocarpus integer) plants. Mean seed gut passage times were long (63–236 h) and only the smallest seeds germinated afterwards. Using movement data from four wild tapirs in Peninsular Malaysia we estimated mean dispersal distances of 917–1287 m (range=22–3289 m) for small‐seeded plants. Malayan tapirs effectively dispersed small‐seeded plants but acted as seed predators for the large‐seeded plants included in our study, suggesting that they cannot replace larger herbivores in seed dispersal. With the absence of elephants and rhinos many megafaunal‐syndrome plants in tropical East Asia are expected to face severe dispersal limitation problems.  相似文献   

8.
Coastal plants provide precious and irreplaceable services to human and coastal ecosystems, but people are still rather unaware how coastal plants relate with sea tides. We assumed that their seeds may reflect some relationships with tides. Our objective was to understand seed dispersal of plants living in the upper coastal regions, not reached by normal tides, but inundated by storm surges. For this purpose, we observed seed characteristics, especially seed buoyancy, of coastal and non-inundated plants of the Shandong Peninsula, north China. Through field simulation, we studied how buoyancy affected the dispersal during tides, using twig segments as retrievable dummies of seeds, in order to collect evidences with concern, how seed dispersal could occur during storm surges, which are extremes of tides. Coastal plants had predominantly buoyant seeds, while inland-growing plants had largely non-buoyant seeds. Ninety percent of buoyant twig segments (mimicking seeds) were recaptured after tides on experimentally used coastal areas; only 1% of non-buoyant ones of such dummies were recaptured, whereas the rest probably had been swept away by wave action to deposit at the sea bottom. Buoyant twig segments (mimicking seeds) dispersed along the coastlines as tides surged towards the coast. About 10% of these buoyant twigs were swept away with off-shore currents, but they might land elsewhere, similar as it might happen with long-distance dispersal of seeds.  相似文献   

9.
Seed dispersal by ants is an important ecological process that maintains the structure anddiversity of natural communities, however, it is vulnerable to biological invasions. Argentine ants are one of the worst invasive ant species and cause severe changes in ecosystem processes and native ant biodiversity declines in invaded sites. Here, we studied seed removal by ants combining observations and a cafeteria experiment with seeds of four myrmecochorous plant species (Centaurea sphaerocephala, Rosmarinus officinalis, Silybum marianum, and Ulex australis) in two sites (invaded and uninvaded) located in the Mediterranean Montado ecosystem and classified as High Nature Value farmland (HNV). Significant differences in daily seed removal rates were found between the two study sites. In uninvaded sites, several native ant species were attracted to the seeds, resulting in all seeds being removed rapidly. The majority of seed removal events were carried out by two key seed disperses Pheidole pallidula (71%) and Aphaenogaster iberica (26%) with a clear preference for diaspored with larger and heavier elaiosome (i.e., C. sphaerocephala, S. marianum). By contrast, while the Argentine ant showed some interest (68% of seeds were interacted with), no seed removal events were observed. The extirpation of the local ant fauna by the Argentine ant and its inability to ensure seed dispersal services may lead to the interference and eventually to the collapse of seed dispersal of the four studied myrmecochorous plants in the invaded site in the future. We argue that these discrete but severe consequences of an invasive species on a key ecological process may strongly affect the functioning of the Montado ecosystem.  相似文献   

10.
Animals may disperse cultivated trees outside the agricultural land, favoring the naturalization or, even, the invasiveness of domestic plants. However, the ecological and conservation implications of new or unexplored mutualisms between cultivated trees and wild animals are still far from clear. Here, we examine the possible role of an expanding and, locally, overabundant pigeon species (Columba palumbus) as an effective disperser of domestic olive trees (Olea europaea), a widespread cultivated tree, considered a naturalized and invasive species in many areas of the world. By analyzing crop and gizzard content we found that olive fruits were an important food item for pigeons in late winter and spring. A proportion of 40.3% pigeons consumed olive seeds, with an average consumption of 7.8 seeds per pigeon and day. Additionally, most seed sizes (up to 0.7 g) passed undamaged through the gut and were dispersed from cultivated olive orchards to areas covered by protected Mediterranean vegetation, recording minimal dispersal distances of 1.8–7.4 km. Greenhouse experiments showed that seeds dispersed by pigeons significantly favored the germination and establishment in comparison to non-ingested seeds. The ability of pigeons to effectively disperse domestic olive seeds may facilitate the introduction of cultivated olive trees into natural systems, including highly-protected wild olive woodlands. We recommend harvesting ornamental olive trees to reduce both pigeon overpopulation and the spread of artificially selected trees into the natural environment.  相似文献   

11.
Herbivore feeding may induce an array of responses in plants, and each response may have its own temporal dynamics. Precise timing of these plant responses is vital for them to have optimal effect on the herbivores feeding on the plant. This study measured the temporal dynamics of various systemically induced responses occurring in Brassica juncea (L.) Czern. (Brassicaceae) leaves after insect herbivory in India and The Netherlands. Morphological (trichomes, leaf size) and chemical (glucosinolates, amino acids, sugars) responses were analysed. The effects of systemic responses were assessed using a specialist [Plutella xylostella L. (Lepidoptera: Plutellidae)] and a generalist [Spodoptera litura Fabricius (Lepidoptera: Noctuidae)] herbivore. We tested the hypotheses that morphological responses were slower than chemical responses and that generalist herbivores would be more affected by induced responses than specialists. Glucosinolates and trichomes were found to increase systemically as quickly as 4 and 7 days after herbivore damage, respectively. Amino acids, sugars, and leaf size remained unaffected during this period. The generalist S. litura showed a significant feeding preference for undamaged leaves, whereas the specialist herbivore P. xylostella preferred leaves that were damaged 9 days before. Performance bioassays on generalist S. litura revealed that larvae gained half the weight on leaves from damaged plants as compared to larvae feeding on leaves from undamaged plants. These studies show that although morphological responses are somewhat slower than chemical responses, they also contribute to induced plant resistance in a relatively short time span. We argue that before considering induced responses as resistance factors, their effect should be assessed at various points in time with both generalist and specialist herbivores.  相似文献   

12.
Urban environments expose species to contrasting selection pressures relative to rural areas due to altered microclimatic conditions, habitat fragmentation, and changes in species interactions. To improve our understanding on how urbanization impacts selection through biotic interactions, we assessed differences in plant defense and tolerance, dispersal, and flowering phenology of a common plant species (Taraxacum officinale) along an urbanization gradient and their reaction norms in response to a biotic stressor (i.e., herbivory). We raised plants from 45 lines collected along an urbanization gradient under common garden conditions and assessed the impact of herbivory on plant growth (i.e., aboveground biomass), dispersal capacity (i.e., seed morphology), and plant phenology (i.e., early seed production) by exposing half of our plants to two events of herbivory (i.e., grazing by locusts). Independent from their genetic background, all plants consistently increased their resistance to herbivores by which the second exposure to locusts resulted in lower levels of damage suffered. Herbivory had consistent effects on seed pappus length, with seeds showing a longer pappus (and, hence, increased dispersal capacities) regardless of urbanization level. Aboveground plant biomass was neither affected by urbanization nor herbivore presence. In contrast to consistent responses in plant defenses and pappus length, plant fitness did vary between lines. Urban lines had a reduced early seed production following herbivory while rural and suburban lines did not show any plastic response. Our results show that herbivory affects plant phenotypes but more importantly that differences in herbivory reaction norms exist between urban and rural populations.  相似文献   

13.
This report presents data from experiments on seed dispersal by wind for ten species of the family Apiaceae. Seed shadows were obtained in the field under natural conditions, using wind speeds between four and ten m/s. The flight of individual seeds was followed by eye, and seed shadows were acquired, with median distances varying from 0.7 to 3.1 m between species. Multiple regression models of wind speed and seed weight on dispersal distance were significant for six out of ten species; wind speed had significant effects in seven cases, but seed weight only once. A good correlation between mean terminal falling velocity of the seeds of a species and median dispersal distance, indicates the promising explanatory power that individual terminal velocity data might have on dispersal distance, together with wind speed and turbulence. The theory that seeds that seem to be adapted to wind dispersal travel much longer distances than seeds that have no adaptation was tested. Flattened and winged seeds were indeed found to be transported further by wind, but not much further. Moreover, the species with wind-adapted seeds were also taller, being an alternative explanation since their seeds experienced higher wind speeds at these greater heights. Furthermore, flattened and winged seeds were disseminated from ripe umbels at lower wind speeds in the laboratory. This means that the observed difference in dispersal distance would have been smaller when species specific thresholds for wind speed were incorporated in the field experiments. We argue therefore, that seed morphology is not always the best predictor in classifying species in groups with distinctly different dispersal ability.  相似文献   

14.
Dispersal limitation between habitat fragments is a known driver of landscape-scale biodiversity loss. In Europe, agricultural intensification during the twentieth century resulted in losses of both grassland habitat and traditional grassland seed dispersal vectors such as livestock. During the same period, populations of large wild herbivores have increased in the landscape. Usually studied in woodland ecosystems, these animals are found to disperse seeds from grasslands and other open habitats. We studied endozoochorous seed dispersal by roe deer (Capreolus capreolus) in fragmented grasslands and grassland remnants, comparing dispersed subcommunities of plant species to those in the established vegetation and the seed bank. A total of 652 seedlings of 67 species emerged from 219 samples of roe deer dung. This included many grassland species, and several local grassland specialists. Dispersal had potentially different effects on diversity at different spatial scales. Almost all sites received seeds of species not observed in the vegetation or seed bank at that site, suggesting that local diversity might not be dispersal limited. This pattern was less evident at the landscape scale, where fewer new species were introduced. Nonetheless, long-distance dispersal by large wild herbivores might still provide connectivity between fragmented habitats within a landscape in the areas in which they are active. Finally, as only a subset of the available species were found to disperse in space as well as time, the danger of future biodiversity loss might still exist in many isolated grassland habitats.  相似文献   

15.
This paper reports an experimental study of water dispersal potential and germination of the shingle beach plant Mertensia maritima in which we consider the effects of physical factors (cold treatment, mechanical wear of the pericarp and salt-water exposure) on the diaspores. Our approach also includes testing effects of different orders of the treatments, in contrast to most earlier studies of diaspore ecology. A cold period was necessary to break seed dormancy, and prolonged cold treatment (stratification at 2°C) enhanced germination. Mechanical wear of the pericarp before cold treatment did not affect germination, whereas mechanical wear after cold treatment increased germination significantly. Seeds exposed to 6 weeks of cold treatment before floating in salt water for 6 weeks did not germinate. In contrast, for seeds given the same cold treatment after floating, the germination was more than 50%. Most undamaged and slightly damaged nutlets stayed afloat throughout the dispersal experiment (9 weeks) in 3% salt water, whereas seeds that fell out of damaged nutlets sunk immediately. Thus, the results suggest that the potential for long-distance dispersal is high unless the diaspores (nutlets) are severely damaged, but the order of cold treatment and water dispersal seems to be of great importance for germination: seeds dispersed in autumn (before cold periods) have a much higher probability of germinating than seeds dispersed in winter or early spring (after a cold period). Similar effects of the relative timing of physical processes have hitherto only been reported for two other water-dispersed beach plants. Future studies in diaspore ecology should consider such timing effects as they may be important determinants of the distribution and abundance of plants.  相似文献   

16.
Herbivore-induced plants responses can affect the preference and performance of herbivores and their natural enemies. These responses may vary depending on the identity and number of herbivore species feeding on the plant so that when herbivores from different guilds feed on plants, the interactions between plants, herbivores, and natural enemies may be disrupted. Tomato plants were damaged either by the caterpillar Spodoptera exigua, or the aphid Macrosiphum euphorbiae, or damaged by both herbivores, or undamaged controls. We measured the preference and performance of S. exigua and its parasitoid Cotesia marginiventris, and activity of proteinase inhibitors (PI) as an indicator of induced resistance. Compared to undamaged plants, caterpillar damage reduced the number of eggs laid by S. exigua adults, reduced growth, consumption, and survival of larval S. exigua and C. marginiventris, and increased activity of PIs 43%; but did not increase attraction of C. marginiventris. While pupal mass of S. exigua was not affected, the pupal mass of C. marginiventris decreased on caterpillar-damaged plants compared to controls. In contrast, plants damaged by aphids were preferred for oviposition by S. exigua, and had increased larval consumption and survival, compared to controls. Aphid feeding did not affect the preference or performance of C. marginiventris, or PI activity, compared to controls. While oviposition was deterred on caterpillar-damaged plants, plants damaged by both herbivores received the same amount of oviposition as controls. The attraction of C. marginiventris to plants damaged by caterpillars and aphids was increased compared to controls. However, plants damaged by both herbivores had similar PI activity, larval growth and survival of S. exigua and C. marginiventris, as plants singly damaged by caterpillars. Overall, the preference component for both the herbivore and parasitoid was more strongly affected by damage due to multiple herbivores than the performance component.  相似文献   

17.
Plant domestication is assumed to result in reduced levels of defensive compounds in crops, because this makes the plants more suitable for consumption by humans and livestock. We argue that this should mainly be reflected in the concentrations of defense compounds in the plant parts that are used for consumption and not necessarily for other parts of crop plants. We tested this hypothesis for domesticated lima bean (Phaseolus lunatus), by comparing its chemical defenses against a leaf herbivore, the beet armyworm (Spodoptera exigua), and a seed predator, the beetle Zabrotes subfasciatus. For seeds and leaves we determined the concentrations of cyanogenic glycosides (CNGs) in cultivated varieties and wild populations and evaluated the preference and performance of the herbivores when exposed to leaves and seeds from wild and cultivated plants. Concentrations of CNGs were significantly different between wild and cultivated plants. In the leaves the concentration of CNGs in the cultivated varieties were more than double that of the wild leaves. In contrast, seeds from cultivated plants had up to 20 times lower CNG concentration compared to seeds from the wild populations. Insect preference and performance do not parallel the chemical data. Larvae of S. exigua preferred wild leaves but had higher survival on cultivated leaves. The beetles, however, strongly preferred seeds from cultivated plants and females developed more quickly on these seeds. We conclude that domestication of P. lunatus has altered the concentration of CNGs in both the seeds and the leaves in opposite directions. This results in differential effects on the herbivores that attack these two plant structures. The contrasting effect of domestication on different plant tissues can be explained by the fact that bean plants have been specifically selected for human consumption of the seeds. Tissue-specific effects of plant domestication on plant defenses can be expected for other crops as well.  相似文献   

18.
Selective pressures on seed size could vary among the different stages of plant life cycles, so no simple relation could explain a priori its evolution. Here, we determined the relationships between seed size and two fitness components—seed dispersal and survival from predation—in a bird-dispersed tree, Crataegus monogyna. We interpret these relationships in relation to the patterns of mass allocation to fruit and seed components. Selection patterns were assessed at two levels (1) selection pressures on the parent tree; comparing seed dispersal efficiency among individual plants and (2) selection pressures at the individual seed level; comparing seed size variation (i) before and after dispersal, and (ii) before and after postdispersal seed predation. Dispersal efficiency (percentage of seed crop dispersed) was positively correlated with fruit mass and fruit width. Differences in crop size did not offset this effect, and larger seeds were overrepresented in the seed rain relative to the seed pool before dispersal. However, the advantage of larger seeds during the dispersal stage was cancelled later by an opposite selection pressure exerted by seed predators. As a result, smaller seeds had a higher probability of surviving postdispersal seed predation, establishing an evolutionary conflict imposed by the need for dispersal and the danger of being predated. Birds and rodents preferentially selected highly profitable fruits and seeds in terms of the relative proportion of their components. Larger fruits had a higher pulp to seed proportion than smaller ones, and all seeds had the same proportion of coat relative to the embryo-plus-endosperm fraction. Hence, although predator pressures were stronger than disperser ones, larger seeds invested proportionally less in structural defense than in dispersal.  相似文献   

19.
Questions: Is the red fox a potential vector for epizoochorous seed dispersal? Can seed attachment and retention be predicted from plant and seed traits? Location: Grasslands in southern Norway. Methods: Epizoochorous seed attachment on the red fox was studied by walking a dummy fox through the vegetation and comparing seeds found on the dummy with the estimated seed availability in the vegetation. Seed retention, i.e. the ability of different seeds to stay on the fox, was estimated in a separate experiment. Seed attachment and retention were related to plant and seed traits using statistical models that account for heteroscedasticity and zero‐inflated data. Results: The majority of seeds attached to the fox originated from a few species, but also species without specific seed traits that are supposed to enhance epizoochory attached at least some seeds to the fox. The probability of seed attachment was positively related to plant height, bristle and hooked seed appendages, and negatively related to winged appendages, seed mass, and seed sphericity. Seed retention was positively related to the seed traits bristles, hooks and pappus. For several species, the results indicate a high potential for dispersal over long distances. Conclusions: In modern agricultural landscapes, large herbivores are often restricted in their mobility or are found at low densities, and other animal vectors may therefore be important for seed dispersal. In our study, a range of plant species were able to disperse by attaching seeds to, and having their seeds retained in, the fox fur some distance. We suggest that the red fox may be an important vector for epizoochorous seed dispersal in the agricultural landscape.  相似文献   

20.
Summary The ability of the biennial herb, Pastinaca sativa L. (wild parsnip), to respond to and compensate for destruction of primary umbel seeds by the larvae of Depressaria pastinacella (Lepidoptera: Oecophoridae) was analyzed by comparing umbel and seed production of damaged and undamaged plants collected from five populations. Plants with a basal stem diameter smaller than 8 mm suffer a reduction in seed set of about 50% when the primary umbel is destroyed but larger plants are able to compensate for loss of primary umbel seeds by increased seed set of tertiary umbels. Depending on plant size, this is due to either an increase in the number of tertiary umbels that reach maturity or an increase in the number of seeds per tertiary umbel. Although seeds of tertiary umbels are significantly smaller than those of primary or secondary umbels, their viability is equivalent to that of secondary seeds and may be greater than that of primary seeds. Characteristics of P. sativa's reproduction, such as the long flowering period and the initiation of more umbels than the plant is normally able to bring to maturity, are important to P. sativa's ability to compensate for the effects of herbivore damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号