首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The irregular xylem 2 (irx2) mutant of Arabidopsis thaliana exhibits a cellulose deficiency in the secondary cell wall, which is brought about by a point mutation in the KORRIGAN (KOR) beta,1-4 endoglucanase (beta,1-4 EGase) gene. Measurement of the total crystalline cellulose in the inflorescence stem indicates that the irx2 mutant contains approximately 30% of the level present in the wild type (WT). Fourier-Transform Infra Red (FTIR) analysis, however, indicates that there is no decrease in cellulose in primary cell walls of the cortical and epidermal cells of the stem. KOR expression is correlated with cellulose synthesis and is highly expressed in cells synthesising a secondary cell wall. Co-precipitation experiments, using either an epitope-tagged form of KOR or IRX3 (AtCesA7), suggest that KOR is not an integral part of the cellulose synthase complex. These data are supported by immunolocalisation of KOR that suggests that KOR does not localise to sites of secondary cell wall deposition in the developing xylem. The defect in irx2 plant is consistent with a role for KOR in the later stages of secondary cell wall formation, suggesting a role in processing of the growing microfibrils or release of the cellulose synthase complex.  相似文献   

2.
Taylor NG  Laurie S  Turner SR 《The Plant cell》2000,12(12):2529-2540
The irregular xylem 1 (irx1) mutant of Arabidopsis has a severe deficiency in the deposition of cellulose in secondary cell walls, which results in collapsed xylem cells. This mutation has been mapped to a 140-kb region of chromosome 4. A cellulose synthase catalytic subunit was found to be located in this region, and genomic clones containing this gene complemented the irx1 mutation. IRX1 shows homology to a previously described cellulose synthase (IRX3). Analysis of the irx1 and irx3 mutant phenotypes demonstrates that both IRX1 and IRX3 are essential for the production of cellulose in the same cell. Thus, IRX1 and IRX3 define distinct classes of catalytic subunits that are both essential for cellulose synthesis in plants. This finding is supported by coprecipitation of IRX1 with IRX3, suggesting that IRX1 and IRX3 are part of the same complex.  相似文献   

3.
Recessive mutations at three loci cause the collapse of mature xylem cells in inflorescence stems of Arabidopsis. These irregular xylem (irx) mutations were identified by screening plants from a mutagenized population by microscopic examination of stem sections. The xylem cell defect was associated with an up to eightfold reduction in the total amount of cellulose in mature inflorescence stems. The amounts of cell wall-associated phenolics and polysaccharides were unaffected by the mutations. Examination of the cell walls by using electron microscopy demonstrated that the decreases in cellulose content of irx lines resulted in an alteration of the spatial organization of cell wall material. This suggests that a normal pattern of cellulose deposition may be required for assembly of lignin or polysaccharides. The reduced cellulose content of the stems also resulted in a decrease in stiffness of the stem material. This is consistent with the irregular xylem phenotype and suggests that the walls of irx plants are not resistant to compressive forces. Because lignin was implicated previously as a major factor in resistance to compressive forces, these results suggest either that cellulose has a direct role in providing resistance to compressive forces or that it is required for the development of normal lignin structure. The irx plants had a slight reduction in growth rate and stature but were otherwise normal in appearance. The mutations should be useful in facilitating the identification of factors that control the synthesis and deposition of cellulose and other cell wall components.  相似文献   

4.
5.
The irregular xylem3 (irx3) mutant of Arabidopsis has a severe deficiency in secondary cell wall cellulose deposition that leads to collapsed xylem cells. The irx3 mutation has been mapped to the top arm of chromosome V near the marker nga106. Expressed sequence tag clone 75G11, which exhibits sequence similarity to cellulose synthase, was found to be tightly linked to irx3, and genomic clones containing the gene corresponding to clone 75G11 complemented the irx3 mutation. Thus, the IRX3 gene encodes a cellulose synthase component that is specifically required for the synthesis of cellulose in the secondary cell wall. The irx3 mutant allele contains a stop codon that truncates the gene product by 168 amino acids, suggesting that this allele is null. Furthermore, in contrast to radial swelling1 (rsw1) plants, irx3 plants show no increase in the accumulation of beta-1,4-linked glucose in the noncrystalline cell wall fraction. IRX3 and RSW1 fall into a distinct subgroup (Csa) of Arabidopsis genes showing homology to bacterial cellulose synthases.  相似文献   

6.
Cellulose biosynthesis is mediated by cellulose synthases (CesAs), which constitute into rosette-like cellulose synthase complexe (CSC) on the plasma membrane. Two types of CSCs in Arabidopsis are believed to be involved in cellulose synthesis in the primary cell wall and secondary cell walls, respectively. In this work, we found that the two type CSCs participated cellulose biosynthesis in differentiating xylem cells undergoing secondary cell wall thickening in Populus. During the cell wall thickening process, expression of one type CSC genes increased while expression of the other type CSC genes decreased. Suppression of different type CSC genes both affected the wall-thickening and disrupted the multilaminar structure of the secondary cell walls. When CesA7A was suppressed, crystalline cellulose content was reduced, which, however, showed an increase when CesA3D was suppressed. The CesA suppression also affected cellulose digestibility of the wood cell walls. The results suggest that two type CSCs are involved in coordinating the cellulose biosynthesis in formation of the multilaminar structure in Populus wood secondary cell walls.  相似文献   

7.
In higher plants, cellulose is synthesized by cellulose synthase complexes, which contain multiple isoforms of cellulose synthases (CESAs). Among the total 10 CESA genes in Arabidopsis, recessive mutations at three of them cause the collapse of mature xylem cells in inflorescence stems of Arabidopsis (irx1cesa8, irx3cesa7 and irx5cesa4). These CESA genes are considered secondary cell wall CESAs. The others (the function CESA10 is still unknown) are thought to be specialized for cellulose synthesis in the primary cell wall. A split-ubiquitin membrane yeast two-hybrid system was used to assess interactions among four primary CESAs (CESA1, CESA2, CESA3, CESA6) and three secondary CESAs (CESA4, CESA7, CESA8). Our results showed that primary CESAs could physically interact with secondary CESAs in a limited fashion. Analysis of transgenic lines showed that CESA1 could partially rescue irx1cesa8 null mutants, resulting in complementation of the plant growth defect, collapsed xylem and cellulose content deficiency. These results suggest that mixed primary and secondary CESA complexes are functional using experimental set-ups.  相似文献   

8.
The secondary cell wall in higher plants consists mainly of cellulose, lignin, and xylan and is the major component of biomass in many species. The Arabidopsis thaliana irregular xylem8 (irx8) mutant is dwarfed and has a significant reduction in secondary cell wall thickness. IRX8 belongs to a subgroup of glycosyltransferase family 8 called the GAUT1-related gene family, whose members include GAUT1, a homogalacturonan galacturonosyltransferase, and GAUT12 (IRX8). Here, we use comparative cell wall analyses to show that the irx8 mutant contains significantly reduced levels of xylan and homogalacturonan. Immunohistochemical analyses confirmed that the level of xylan was significantly reduced in the mutant. Structural fingerprinting of the cell wall polymers further revealed that irx8 is deficient in glucuronoxylan. To explore the biological function of IRX8, we crossed irx8 with irx1 (affecting cellulose synthase 8). The homozygous irx1 irx8 exhibited severely dwarfed phenotypes, suggesting that IRX8 is essential for cell wall integrity during cellulose deficiency. Taken together, the data presented show that IRX8 affects the level of glucuronoxylan and homogalacturonan in higher plants and that IRX8 provides an important link between the xylan polymer and the secondary cell wall matrix and directly affects secondary cell wall integrity.  相似文献   

9.
Samuga A  Joshi CP 《Gene》2002,296(1-2):37-44
We report here the molecular cloning and characterization of a new full-length cellulose synthase (CesA) cDNA, PtrCesA2 from aspen (Populus tremuloides) trees. The predicted PtrCesA2 protein shows a high degree of identity/similarity (87%/91%) to the predicted gene product of Arabidopsis AtCesA7 gene that has been associated with secondary cell wall development. Previously, a mutation in AtCesA7 gene (irx3) was correlated with a significant decrease in the amount of cellulose synthesized (about 70%) and genetic complementation of irx3 mutant with a wild-type AtCesA7 gene restored the normal phenotype. This is the first report of a full-length AtCesA7 ortholog from any non-Arabidopsis species. Interestingly, PtrCesA2 shares only 64% identity with our earlier reported PtrCesA1 from aspen suggesting its structural distinctness from the only other known CesA member from the aspen genome. PtrCesA1 is a xylem-specific and tension stress responsive gene that is highly similar to another Arabidopsis gene, AtCesA8 which also has been associated with secondary wall development. Moreover, AtCesA7 and AtCesA8 are suggested to be part of the same cellulose synthase complex. Isolation of PtrCesA2 from a xylem library enriched in cells with active secondary wall synthesis, PtrCesA2 expression levels similar to PtrCesA1 and high similarity of PtrCesA1 and PtrCesA2 to AtCesA8 and AtCesA7, respectively, suggest that both these aspen genes might be involved in the secondary wall development in aspen woody tissues. Availability of two aspen CesA orthologs will now enable us to examine if PtrCesA1 and PtrCesA2 functionally interact during aspen wood development that has long-term implications on genetic improvement of forest trees.  相似文献   

10.
Extractability and recovery of cellulose from cell walls influences many industrial processes and also the utilisation of biomass for energy purposes. The utility of genetic manipulation of lignin has proven potential for optimising such processes and is also advantageous for the environment. Hemicelluloses, particularly secondary wall xylans, also influence the extractability of cellulose. UDP-glucuronate decarboxylase produces UDP-xylose, the precursor for xylans and the effect of its down-regulation on cell wall structure and cellulose extractability in transgenic tobacco has been investigated. Since there are a number of potential UDP-glucuronate decarboxylase genes, a 490bp sequence of high similarity between members of the family, was chosen for general alteration of the expression of the gene family. Sense and antisense transgenic lines were analysed for enzyme activity using a modified and optimised electrophoretic assay, for enzyme levels by western blotting and for secondary cell wall composition. Some of the down-regulated antisense plants showed high glucose to xylose ratios in xylem walls due to less xylose-containing polymers, while arabinose and uronic acid contents, which could also have been affected by any change in UDP-xylose provision, were unchanged. The overall morphology and stem lignin content of the modified lines remained little changed compared with wild-type. However, there were some changes in vascular organisation and reduction of xylans in the secondary walls was confirmed by immunocytochemistry. Pulping analysis showed a decreased pulp yield and a higher Kappa number in some lines compared with controls, indicating that they were less delignified, although the level of residual alkali was reduced. Such traits probably indicate that lignin was less available for removal in a reduced background of xylans. However, the viscosity was higher in most antisense lines, meaning that the cellulose was less broken-down during the pulping process. This is one of the first studies of a directed manipulation of hemicellulose content on cellulose extractability and shows both positive and negative outcomes.  相似文献   

11.
Xylan, the major hemicellulosic polysaccharide in Arabidopsis secondary cell walls, requires a number of glycosyltransferases (GT) to catalyse formation of the various glycosidic linkages found in the polymer. In this study, we characterized IRX10 and IRX10-like ( IRX10-L ), two highly homologous genes encoding members of the glycosyltransferase family 47 (GT47). T-DNA insertions in IRX10 gave a mild irregular xylem (irx) phenotype consistent with a minor defect in secondary cell-wall synthesis, whereas plants containing mutations in IRX10-L showed no change. However, irx10 irx10-L double mutant plants showed a much more severe irx and whole-plant phenotype, suggesting considerable functional redundancy between these two genes. Detailed biochemical analysis of the irx10 irx10-L double mutant showed a large reduction of xylan in the secondary cell walls, consistent with a specific defect in xylan biosynthesis. Furthermore, the irx10 irx10-L mutant retains the unique oligosaccharide found at the reducing end of Arabidopsis xylan, but shows a severe reduction in β(1,4) xylosyltransferase activity. These characteristics are similar to those of irx9 and irx14 , mutants that are believed to be defective in xylan chain elongation, and suggests that IRX10 and IRX10-L also play a role in elongation of the xylan backbone.  相似文献   

12.
13.
Mutations of Arabidopsis thaliana IRREGULAR XYLEM8 (IRX8) and IRX9 were previously shown to cause a collapsed xylem phenotype and decreases in xylose and cellulose in cell walls. In this study, we characterized IRX8 and IRX9 and performed chemical and structural analyses of glucuronoxylan (GX) from irx8 and irx9 plants. IRX8 and IRX9 are expressed specifically in cells undergoing secondary wall thickening, and their encoded proteins are targeted to the Golgi, where GX is synthesized. 1H-NMR spectroscopy showed that the reducing end of Arabidopsis GX contains the glycosyl sequence 4-beta-D-Xylp-(1-->4)-beta-D-Xylp-(1-->3)-alpha-L-Rhap-(1-->2)-alpha-D-GalpA-(1-->4)-D-Xylp, which was previously identified in birch (Betula verrucosa) and spruce (Picea abies) GX. This indicates that the reducing end structure of GXs is evolutionarily conserved in woody and herbaceous plants. This sequence is more abundant in irx9 GX than in the wild type, whereas irx8 and fragile fiber8 (fra8) plants are nearly devoid of it. The number of GX chains increased and the GX chain length decreased in irx9 plants. Conversely, the number of GX chains decreased and the chain length heterodispersity increased in irx8 and fra8 plants. Our results suggest that IRX9 is required for normal GX elongation and indicate roles for IRX8 and FRA8 in the synthesis of the glycosyl sequence at the GX reducing end.  相似文献   

14.
15.
In nature, angiosperm trees develop tension wood on the upper side of their leaning trunks and drooping branches. Development of tension wood is one of the straightening mechanisms by which trees counteract leaning or bending of stem and resume upward growth. Tension wood is characterized by the development of a highly crystalline cellulose-enriched gelatinous layer next to the lumen of the tension wood fibers. Thus experimental induction of tension wood provides a system to understand the process of cellulose biosynthesis in trees. Since KORRIGAN endoglucanases (KOR) appear to play an important role in cellulose biosynthesis in Arabidopsis, we cloned PtrKOR, a full-length KOR cDNA from aspen xylem. Using RT-PCR, in situ hybridization, and tissue-print assays, we show that PtrKOR gene expression is significantly elevated on the upper side of the bent aspen stem in response to tension stress while KOR expression is significantly suppressed on the opposite side experiencing compression stress. Moreover, three previously reported aspen cellulose synthase genes, namely, PtrCesA1, PtrCesA2, and PtrCesA3 that are closely associated with secondary cell wall development in the xylem cells exhibited similar tension stress-responsive behavior. Our results suggest that coexpression of these four proteins is important for the biosynthesis of highly crystalline cellulose typically present in tension wood fibers. Their simultaneous genetic manipulation may lead to industrially relevant improvement of cellulose in transgenic crops and trees.Suchita Bhandari and Takeshi Fujino contributed equally to this research.  相似文献   

16.
The application of nitrogen-containing fertilisers is one approach used to increase growth rates and productivity of forest tree plantations. However, the effects of nitrogen fertilisation on wood properties have not been systematically assessed. The aim of this work was to document the impacts of nitrogen fertilisation on wood formation and secondary xylem fibre properties. We used three fertilisation treatments in which the level of ammonium nitrate was adjusted to 0, 1 and 10 mM in a complete nutrient solution applied daily over a period of 28 days in standardised greenhouse experiments with clonal material of Populus trichocarpa (Torr and Gray) × deltoides (Bartr. ex Marsh). We showed that there was a short-term and repeatable response in which xylem fibre morphology and secondary cell wall structure adapt to a shift in N availability. Under high-nitrogen exposure, xylem fibres were 17% wider and 18% shorter compared to the adequate nitrogen treatment. A very significant thickening of the fibre cell walls was also observed throughout the stem of trees receiving the high-N treatment. It appeared that cell wall structure was greatly affected by the high-N treatment as fibres developed a modified inner cell wall layer. Histological observations indicated that the internal cell wall layer was enriched in cellulose and chemical determinations showed that wood contained more holocellulose. Together, these results indicate that the response of poplar to nitrogen availability may involve marked effects on secondary xylem formation.  相似文献   

17.
Studies involving the habituation of plant cell cultures to cellulose biosynthesis inhibitors have achieved significant progress as regards understanding the structural plasticity of cell walls. However, since habituation studies have typically used high concentrations of inhibitors and long-term habituation periods, information on initial changes associated with habituation has usually been lost. This study focuses on monitoring and characterizing the short-term habituation process of maize (Zea mays) cell suspensions to dichlobenil (DCB). Cellulose quantification and FTIR spectroscopy of cell walls from 20 cell lines obtained during an incipient DCB-habituation process showed a reduction in cellulose levels which tended to revert depending on the inhibitor concentration and the length of time that cells were in contact with it. Variations in the cellulose content were concomitant with changes in the expression of several ZmCesA genes, mainly involving overexpression of ZmCesA7 and ZmCesA8. In order to explore these changes in more depth, a cell line habituated to 1.5 μM DCB was identified as representative of incipient DCB habituation and selected for further analysis. The cells of this habituated cell line grew more slowly and formed larger clusters. Their cell walls were modified, showing a 33% reduction in cellulose content, that was mainly counteracted by an increase in arabinoxylans, which presented increased extractability. This result was confirmed by immunodot assays graphically plotted by heatmaps, since habituated cell walls had a more extensive presence of epitopes for arabinoxylans and xylans, but also for homogalacturonan with a low degree of esterification and for galactan side chains of rhamnogalacturonan I. Furthermore, a partial shift of xyloglucan epitopes toward more easily extractable fractions was found. However, other epitopes, such as these specific for arabinan side chains of rhamnogalacturonan I or homogalacturonan with a high degree of esterification, seemed to be not affected.  相似文献   

18.
The brittle culm (bc) mutants of Gramineae plants having brittle skeletal structures are valuable materials for studying secondary cell walls. In contrast to other recessive bc mutants, rice Bc6 is a semi-dominant bc mutant with easily breakable plant bodies. In this study, the Bc6 gene was cloned by positional cloning. Bc6 encodes a cellulose synthase catalytic subunit, OsCesA9, and has a missense mutation in its highly conserved region. In culms of the Bc6 mutant, the proportion of cellulose was reduced by 38%, while that of hemicellulose was increased by 34%. Introduction of the semi-dominant Bc6 mutant gene into wild-type rice significantly reduced the percentage of cellulose, causing brittle phenotypes. Transmission electron microscopy analysis revealed that Bc6 mutation reduced the cell wall thickness of sclerenchymal cells in culms. In rice expressing a reporter construct, BC6 promoter activity was detected in the culms, nodes, and flowers, and was localized primarily in xylem tissues. This expression pattern was highly similar to that of BC1, which encodes a COBRA-like protein involved in cellulose synthesis in secondary cell walls in rice. These results indicate that BC6 is a secondary cell wall-specific CesA that plays an important role in proper deposition of cellulose in the secondary cell walls.  相似文献   

19.
Plant cell walls are degraded by glycoside hydrolases that often contain noncatalytic carbohydrate-binding modules (CBMs), which potentiate degradation. There are currently 11 sequence-based cellulose-directed CBM families; however, the biological significance of the structural diversity displayed by these protein modules is uncertain. Here we interrogate the capacity of eight cellulose-binding CBMs to bind to cell walls. These modules target crystalline cellulose (type A) and are located in families 1, 2a, 3a, and 10 (CBM1, CBM2a, CBM3a, and CBM10, respectively); internal regions of amorphous cellulose (type B; CBM4-1, CBM17, CBM28); and the ends of cellulose chains (type C; CBM9-2). Type A CBMs bound particularly effectively to secondary cell walls, although they also recognized primary cell walls. Type A CBM2a and CBM10, derived from the same enzyme, displayed differential binding to cell walls depending upon cell type, tissue, and taxon of origin. Type B CBMs and the type C CBM displayed much weaker binding to cell walls than type A CBMs. CBM17 bound more extensively to cell walls than CBM4-1, even though these type B modules display similar binding to amorphous cellulose in vitro. The thickened primary cell walls of celery collenchyma showed significant binding by some type B modules, indicating that in these walls the cellulose chains do not form highly ordered crystalline structures. Pectate lyase treatment of sections resulted in an increased binding of cellulose-directed CBMs, demonstrating that decloaking cellulose microfibrils of pectic polymers can increase CBM access. The differential recognition of cell walls of diverse origin provides a biological rationale for the diversity of cellulose-directed CBMs that occur in cell wall hydrolases and conversely reveals the variety of cellulose microstructures in primary and secondary cell walls.  相似文献   

20.
To identify loci in Arabidopsis involved in the control of transpirational water loss and transpiration efficiency (TE) we carried out an infrared thermal imaging-based screen. We report the identification of a new allele of the Arabidopsis CesA7 cellulose synthase locus designated AtCesA7(irx3-5) involved in the control of TE. Leaves of the AtCesA7(irx3-5) mutant are warmer than the wild type (WT). This is due to reduced stomatal pore widths brought about by guard cells that are significantly smaller than the WT. The xylem of the AtCesA7(irx3-5) mutant is also partially collapsed, and we suggest that the small guard cells in the mutant result from decreased water supply to the developing leaf. We used carbon isotope discrimination to show that TE is increased in AtCesA7(irx3-5) when compared with the WT. Our work identifies a new class of genes that affects TE and raises the possibility that other genes involved in cell wall biosynthesis will have an impact on water use efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号