首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prion protein modifies TGF-beta induced signal transduction   总被引:1,自引:0,他引:1  
Members of the transforming growth factor-beta (TGF-beta) superfamily regulate a multitude of cellular processes as well as the expression of various proteins such as, e.g., matrix metalloproteinases (MMPs). These endopeptidases selectively degrade components of the extracellular matrix as well as non-matrix substrates like growth factors and cell surface receptors. MMPs are activated during embryonic development, morphogenesis, and tissue resorption/remodeling as well as in pathological conditions such as deranged wound healing and cancer metastasis. In this report we demonstrate that over-expression of cellular prion protein in mouse mammary gland epithelial cells is able to modulate TGF-beta induced signal transduction leading to a synergistic increase of secreted MMP-2 activity. This correlates with elevated substrate detachment of cells grown as an epithelial monolayer as well as interfering with morphogenesis of cells cultured in a three-dimensional collagen type I matrix.  相似文献   

2.
3.
ISG15, not just another ubiquitin-like protein   总被引:1,自引:0,他引:1  
ISG15 is a ubiquitin-like protein containing two ubiquitin homology domains and becomes conjugated to a variety of proteins when cells are treated with type I interferon or lipopolysaccharide. Although ISG15 shares several common properties with those of other ubiquitin-like molecules, it is a unique member, whose expression and conjugation to target proteins are tightly regulated by specific signaling pathways, indicating it may be associated with specialized functions in innate immune system. Loss of UBP43 (USP18), a protease that specifically removes ISG15 from ISG15-modified proteins, in mice leads to decreased life span, brain cell injury, and hypersensitivity to interferon stimulation. In UBP43 deficient cells, interferon induces a prolonged Stat1 tyrosine phosphorylation and DNA binding, which result in a prolonged and enhanced activation of interferon-stimulated genes.  相似文献   

4.
The biological effects of the ISG15 protein arise in part from its conjugation to cellular targets as a primary response to interferon-alpha/beta induction and other markers of viral or parasitic infection. Recombinant full-length ISG15 has been produced for the first time in high yield by mutating Cys78 to stabilize the protein and by cloning in a C-terminal arginine cap to protect the C terminus against proteolytic inactivation. The cap is subsequently removed with carboxypeptidase B to yield mature biologically active ISG15 capable of stoichiometric ATP-dependent thiolester formation with its human UbE1L activating enzyme. The three-dimensional structure of recombinant ISG15C78S was determined at 2.4-A resolution. The ISG15 structure comprises two beta-grasp folds having main chain root mean square deviation (r.m.s.d.) values from ubiquitin of 1.7 A (N-terminal) and 1.0 A (C-terminal). The beta-grasp domains pack across two conserved 3(10) helices to bury 627 A2 that accounts for 7% of the total solvent-accessible surface area. The distribution of ISG15 surface charge forms a ridge of negative charge extending nearly the full-length of the molecule. Additionally, the N-terminal domain contains an apolar region comprising almost half its solvent accessible surface. The C-terminal domain of ISG15 was superimposed on the structure of Nedd8 (r.m.s.d. = 0.84 A) bound to its AppBp1-Uba3 activating enzyme to model ISG15 binding to UbE1L. The docking model predicts several key side-chain interactions that presumably define the specificity between the ubiquitin and ISG15 ligation pathways to maintain functional integrity of their signaling.  相似文献   

5.
ISG15(Interferon stimulated gene 15,ISG15)蛋白是由干扰素诱导产生的一种泛素样蛋白分子,分子量大小约为15kD。ISG15同泛素分子相类似可以被共价结合于其他蛋白分子上,这种现象称为ISG化(ISGylation)现象。ISG化系统包括ISG15、UBE1L、UBCH8和HERC5四类蛋白分子,协同完成ISG化过程。ISG15及ISG化系统在抗病毒反应中具有重要作用。近几年对于ISG15的抗病毒作用和机制的研究已经有了很大的突破,ISG15的抗病毒作用也越来越受到人们重视,了解清楚ISG15抗病毒机制对于研制新的抗病毒药物及提出新的抗病毒策略具有重要意义。本文对ISG15在不同种病毒中的抗病毒机制研究进展进行了简要综述。  相似文献   

6.
7.
The so-called 'response regulators' were originally discovered as common components of the widespread histidine (His)-->aspartate (Asp) phosphorelay signal transduction system in prokaryotes. Through the course of evolution, higher plants have also come to employ such prokaryotic response regulators (RRs) for their own signal transduction, such as the elicitation of plant hormone (e.g. cytokinin) responses. Furthermore, plants have evolved their own atypical variants of response regulators, pseudo response regulators (PRRs), which are used to modulate sophisticated biological processes, including circadian rhythms and other light-signal responses. Recent studies using the model plant Arabidopsis thaliana have begun to shed light on the interesting functions of these plant response regulators.  相似文献   

8.
干扰素刺激基因15(interferon-stimulated gene 15,ISG15)编码的ISG15蛋白是最早发现的类泛素修饰蛋白。不仅干扰素和病毒感染能诱导该基因的表达,一些抗肿瘤药物也能刺激ISG15的表达。近年来,ISG15及其修饰系统与肿瘤的关系备受关注。研究证实,ISG15的激活酶E1即UBE1L与某些肿瘤的抑制有关,而其他一些成分如ISG15解聚酶UBP43则与肿瘤发生发展有关。此外,ISG15高表达与肿瘤的转移有关,ISG15对化疗药物的敏感性也有影响。本文较为全面地阐述ISG15及其修饰系统在肿瘤抑制或发生发展中的生物学作用,这将增强对ISG15与肿瘤关系的基础性认识,并为发展新的肿瘤靶向性治疗提供理论依据。  相似文献   

9.
ISG15 is a ubiquitin-like protein that is induced by interferon and microbial challenge. Ubiquitin-like proteins are covalently conjugated to cellular proteins and may intersect the ubiquitin-proteasome system via common substrates or reciprocal regulation. To investigate the relationship between ISG15 conjugation and proteasome function, we treated interferon-induced cells with proteasome inhibitors. Surprisingly, inhibition of proteasomal, but not lysosomal, proteases dramatically enhanced the level of ISG15 conjugates. The stimulation of ISG15 conjugates occurred rapidly in the absence of protein synthesis and was most dramatic in the cytoskeletal protein fraction. Inhibition of ISG15 conjugation by ATP depletion abrogated the proteasome inhibitor-dependent increase in ISG15 conjugates, suggesting that the effect was mediated by de novo conjugation, rather than protection from proteasomal degradation or inhibition of ISG15 deconjugating activity. The increase in ISG15 conjugates did not occur through a stabilization of the ISG15 E1 enzyme, UBE1L. Furthermore, simultaneous modification of proteins by both ISG15 and ubiquitin did not account for the proteasome inhibitor-dependent increase in ISG15 conjugates. These findings provide the first evidence for a link between ISG15 conjugation and proteasome function and support a model in which proteins destined for ISG15 conjugation are proteasome-regulated.  相似文献   

10.
G proteins couple receptors for many hormones to effectors that regulate second messenger metabolism. Several endocrine disorders have been shown to be caused by either loss- or gain-of-function mutations in G proteins or G protein-coupled receptors. In pseudohypoparathyroidism type Ia (PHP Ia), there are generalized hormone resistance (parathyroid hormone [PTH], thyroid-stimulating hormone, gonadotropins) and associated abnormal physical features, Albright hereditary osteodystrophy. Subjects with PHP Ib are normal in appearance and show renal resistance to PTH. In McCune-Albright syndrome (MAS), subjects show autonomous endocrine hyperfunction associated with fibrous dysplasia of bone and skin hyperpigmentation. Germline loss-of-function mutations have been identified in the G(s)-alpha gene in PHP Ia, and recent evidence suggests that the G(s)-alpha gene is paternally imprinted in a tissue-specific manner. Abnormal imprinting of the G(s)-alpha gene may be the cause of PHP Ib. MAS, in contrast, is caused by gain-of-function missense mutations of the G(s)-alpha gene.  相似文献   

11.
12.
His-Asp phosphorelays are evolutionary-conserved powerful biological tactics for intracellular signal transduction. Such a phosphorelay is generally made up of "sensor histidine (His)-kinases", "response regulators", and "histidine-containing (HPt) phosphotransmitters". In the higher plant, Arabidopsis thaliana, results from recent intensive studies suggested that His-Asp phosphorelays may be widely used for propagating environmental stimuli, such as phytohormones (e.g., ethylene and cytokinin). In this study, we first inspected extensively the occurrence of Arabidopsis response regulators in order to compile and characterize them. The results showed that this higher plant has, at least, 14 members of the family of response regulators that can be classified into two distinct subtypes (type-A and type-B), as judged from their structural designs, biochemical properties, and expression profiles. Comparative studies were conducted for each representative (ARR3 and ARR4 for type-A, and ARR10 for type-B). It was suggested that expression of the type-A response regulator is cytokinin-inducible, while that of the type-B response regulator appears to be not. Results from yeast two-hybrid analyses suggested that the type-B response regulator may have an ability to stably interact with a set of HPt phosphotransmitters (AHPs). These and other results will be discussed with special reference to the His-Asp phosphorelay signaling network in Arabidopsis thaliana.  相似文献   

13.
ISG15, an interferon-upregulated ubiquitin-like protein, is covalently conjugated to various cellular proteins (ISGylation). In this study, we found that protein phosphatase 2Cbeta (PP2Cbeta), which functions in the nuclear factor kappaB (NF-kappaB) pathway via dephosphorylation of TGF-beta-activated kinase, was ISGylated, and analysis by NF-kappaB luciferase reporter assay revealed that PP2Cbeta activity was suppressed by co-expression of ISG15, UBE1L, and UbcH8. We determined the ISGylation sites of PP2Cbeta and constructed its ISGylation-resistant mutant. In contrast to the wild type, this mutant suppressed the NF-kappaB pathway even in the presence of ISG15, UBE1L, and UbcH8. Thus, we propose that ISGylation negatively regulates PP2Cbeta activity.  相似文献   

14.
The functional role of mitochondria in cell physiology has previously centered around metabolism, with oxidative phosphorylation playing a pivotal role. Recently, however, this perspective has changed significantly with the realization that mitochondria are active participants in signal transduction pathways, not simply the passive recipients of injunctions from the rest of the cell. In this review the emerging role of the mitochondrion in cell signaling is discussed in the context of cytochrome c release, hydrogen peroxide formation from the respiratory chain, and the nitric oxide-cytochrome c oxidase signaling pathway.  相似文献   

15.
Mathematical models of protein kinase signal transduction   总被引:14,自引:0,他引:14  
We have developed a mathematical theory that describes the regulation of signaling pathways as a function of a limited number of key parameters. Our analysis includes linear kinase-phosphatase cascades, as well as systems containing feedback interactions, crosstalk with other signaling pathways, and/or scaffolding and G proteins. We find that phosphatases have a more pronounced effect than kinases on the rate and duration of signaling, whereas signal amplitude is controlled primarily by kinases. The simplest model pathways allow amplified signaling only at the expense of slow signal propagation. More complex and realistic pathways can combine high amplification and signaling rates with maintenance of a stable off-state. Our models also explain how different agonists can evoke transient or sustained signaling of the same pathway and provide a rationale for signaling pathway design.  相似文献   

16.
未折叠蛋白反应的信号转导   总被引:6,自引:0,他引:6  
李明  丁健  缪泽鸿 《生命科学》2008,20(2):246-252
在内质网中,分泌性蛋白、跨膜蛋白和内质网驻留蛋白折叠成天然构象,经过修饰后,形成有活性的功能性蛋白质。如果蛋白质在内质网内的折叠受到抑制,造成未折叠蛋白聚集,将引起内质网应激。激活未折叠蛋白反应(unfolded protein response,UPR),使蛋白质的生物合成减少,内质网的降解功能增强,从而降低内质网负担,维持细胞内的稳态。如果内质网应激持续存在,则可能诱发细胞凋亡。研究表明,未折叠蛋白反应能在多种肿瘤细胞中发生,并能促进肿瘤细胞的生长。本文对未折叠蛋白反应与肿瘤研究的最新进展进行综述。  相似文献   

17.
Emerging evidence suggests that plasma membrane calcium ATPases (PMCAs) play a key role as regulators of calcium-triggered signal transduction pathways via interaction with partner proteins. PMCAs regulate these pathways by targeting specific proteins to cellular sub-domains where the levels of intracellular free calcium are kept low by the calcium ejection properties of PMCAs. According to this model, PMCAs have been shown to interact functionally with the calcium-sensitive proteins neuronal nitric oxide synthase, calmodulin-dependent serine protein kinase, calcineurin and endothelial nitric oxidase synthase. Transgenic animals with altered expression of PMCAs are being used to evaluate the physiological significance of these interactions. To date, PMCA interactions with calcium-dependent partner proteins have been demonstrated to play a crucial role in the pathophysiology of the cardiovascular system via regulation of the nitric oxide and calcineurin/nuclear factor of activated T cells pathways. This new evidence suggests that PMCAs play a more sophisticated role than the mere ejection of calcium from the cells, by acting as modulators of signaling transduction pathways.  相似文献   

18.
The normal cellular isoform of the prion protein (PrPC) is a glycosylphosphatidylinositol-anchored cell surface protein that is expressed widely, including in lymphoid cells. We compared lectin-induced mitogenesis and selected cell signaling pathways in splenocytes from wild-type BALB/c mice and Zrch Prnp0/0 (PrP0/0) mice bred on a BALB/c background for more than 10 generations. 3H-thymidine incorporation induced by concanavalin A (Con A) or phytohemagglutinin (PHA) was significantly reduced in PrP0/0 splenocytes, most prominently early in activation (24 and 48 h). Con A activation in PrP0/0 splenocytes was associated with differences in the phosphorylation (P) patterns of protein kinase C (PKC alpha/beta, but not delta) and the PKC downstream effectors p44/42MAPK (mitogen-activated protein kinase). P-PKC and P-MAPK profiles were similar in wild-type and PrP0/0 splenocytes following PMA treatment, indicating that the ability of these 2 enzymes to be phosphorylated is not impaired in the absence of PrPC. Con A-induced calcium fluxes, monitored by indo-1 fluorescence, were equivalent in PrP0/0 and PrP+/+ splenocytes, suggesting that calcium-dependent mechanisms are not directly implicated in the differential phosphorylation patterns or mitotic responses. Our data indicate that PrP0/0 splenocytes display defects in upstream or downstream mechanism(s) that modulate PKCalpha/beta phosphorylation, which in turn affects its capacity to regulate splenocyte mitosis, consistent with a role for PrPC in immune function.  相似文献   

19.
20.
This review summarizes the evolution of ideas concerning insulin signal transduction, the current information on protein ser/thr kinase cascades as signalling intermediates, and their status as participants in insulin regulation of energy metabolism. Best characterized is the Ras-MAPK pathway, whose input is crucial to cell fate decisions, but relatively dispensable in metabolic regulation. By contrast the effectors downstream of PI-3 kinase, although less well elucidated, include elements indispensable for the insulin regulation of glucose transport, glycogen and cAMP metabolism. Considerable information has accrued on PKB/cAkt, a protein kinase that interacts directly with Ptd Ins 3OH phosphorylated lipids, as well as some of the elements further downstream, such as glycogen synthase kinase-3 and the p70 S6 kinase. Finally, some information implicates other erk pathways (e.g. such as the SAPK/JNK pathway) and Nck/cdc42-regulated PAKs (homologs of the yeast Ste 20) as participants in the cellular response to insulin. Thus insulin recruits a broad array of protein (ser/thr) kinases in its target cells to effectuate its characteristic anabolic and anticatabolic programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号