首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An endoplasmic reticulum (ER)-located transmembrane protein, Ire1, triggers cytoprotective events upon ER stress. Chimeric yeast Ire1 carrying the luminal domain of the mammalian major Ire1 paralogue IRE1α is upregulated in ER-stressed yeast cells, but is poorly associated with the ER-located chaperone BiP even under non-stressed conditions. This observation contradicts the theory that BiP is the master regulator of IRE1α.  相似文献   

2.
3.
The unfolded protein response (UPR) is an intracellular signaling pathway that counteracts variable stresses that impair protein folding in the endoplasmic reticulum (ER). As such, the UPR is thought to be a homeostat that finely tunes ER protein folding capacity and ER abundance according to need. The mechanism by which the ER stress sensor Ire1 is activated by unfolded proteins and the role that the ER chaperone protein BiP plays in Ire1 regulation have remained unclear. Here we show that the UPR matches its output to the magnitude of the stress by regulating the duration of Ire1 signaling. BiP binding to Ire1 serves to desensitize Ire1 to low levels of stress and promotes its deactivation when favorable folding conditions are restored to the ER. We propose that, mechanistically, BiP achieves these functions by sequestering inactive Ire1 molecules, thereby providing a barrier to oligomerization and activation, and a stabilizing interaction that facilitates de-oligomerization and deactivation. Thus BiP binding to or release from Ire1 is not instrumental for switching the UPR on and off as previously posed. By contrast, BiP provides a buffer for inactive Ire1 molecules that ensures an appropriate response to restore protein folding homeostasis to the ER by modulating the sensitivity and dynamics of Ire1 activity.  相似文献   

4.
IRE1, an ER-localized transmembrane protein, plays a central role in the unfolded protein response. Upon ER stress, IRE1 senses the accumulation of unfolded proteins in the ER, and transfers signal from the ER to the cytosol. Recently, it was reported that the luminal domain of yeast Ire1 senses the unfolded proteins via a two-step mechanism, namely dissociation of BiP and direct interaction with unfolded proteins. However, it has been unclear whether a similar mechanism is applicable to mammalian IRE1α. To address this point, we analyzed luminal-domain mutants of mammalian IRE1α in cells, and evaluated the anti-aggregation activity of the luminal fragment of IRE1α in vitro. We generated a mutant that has low affinity for BiP, and this mutant was significantly activated even under normal conditions. Moreover, the luminal fragments of mammalian IRE1α did not exhibit anti-aggregation activity. These results suggest that in contrast to yeast Ire1, the regulation of mammalian IRE1α strongly depends on the dissociation of BiP.  相似文献   

5.
Chaperone protein BiP binds to Ire1 and dissociates in response to endoplasmic reticulum (ER) stress. However, it remains unclear how the signal transducer Ire1 senses ER stress and is subsequently activated. The crystal structure of the core stress-sensing region (CSSR) of yeast Ire1 luminal domain led to the controversial suggestion that the molecule can bind to unfolded proteins. We demonstrate that, upon ER stress, Ire1 clusters and actually interacts with unfolded proteins. Ire1 mutations that affect these phenomena reveal that Ire1 is activated via two steps, both of which are ER stress regulated, albeit in different ways. In the first step, BiP dissociation from Ire1 leads to its cluster formation. In the second step, direct interaction of unfolded proteins with the CSSR orients the cytosolic effector domains of clustered Ire1 molecules.  相似文献   

6.
7.
Lee KP  Dey M  Neculai D  Cao C  Dever TE  Sicheri F 《Cell》2008,132(1):89-100
Ire1 is an ancient transmembrane sensor of ER stress with dual protein kinase and ribonuclease activities. In response to ER stress, Ire1 catalyzes the splicing of target mRNAs in a spliceosome-independent manner. We have determined the crystal structure of the dual catalytic region of Ire1at 2.4 A resolution, revealing the fusion of a domain, which we term the KEN domain, to the protein kinase domain. Dimerization of the kinase domain composes a large catalytic surface on the KEN domain which carries out ribonuclease function. We further show that signal induced trans-autophosphorylation of the kinase domain permits unfettered binding of nucleotide, which in turn promotes dimerization to compose the ribonuclease active site. Comparison of Ire1 to a topologically disparate ribonuclease reveals the convergent evolution of their catalytic mechanism. These findings provide a basis for understanding the mechanism of action of RNaseL and other pseudokinases, which represent 10% of the human kinome.  相似文献   

8.
The unfolded protein response (UPR) activates Ire1, an endoplasmic reticulum (ER) resident transmembrane kinase and ribonuclease (RNase), in response to ER stress. We used an in vivo assay, in which disappearance of the UPR-induced spliced HAC1 messenger ribonucleic acid (mRNA) correlates with the recovery of the ER protein-folding capacity, to investigate the attenuation of the UPR in yeast. We find that, once activated, spliced HAC1 mRNA is sustained in cells expressing Ire1 carrying phosphomimetic mutations within the kinase activation loop, suggesting that dephosphorylation of Ire1 is an important step in RNase deactivation. Additionally, spliced HAC1 mRNA is also sustained after UPR induction in cells expressing Ire1 with mutations in the conserved DFG kinase motif (D828A) or a conserved residue (F842) within the activation loop. The importance of proper Ire1 RNase attenuation is demonstrated by the inability of cells expressing Ire1-D828A to grow under ER stress. We propose that the activity of the Ire1 kinase domain plays a role in attenuating its RNase activity when ER function is recovered.  相似文献   

9.
Immunoglobulin heavy chain-binding protein (BiP) is a member of the hsp70 family of chaperones and one of the most abundant proteins in the ER lumen. It is known to interact transiently with many nascent proteins as they enter the ER and more stably with protein subunits produced in stoichiometric excess or with mutant proteins. However, there also exists a large number of secretory pathway proteins that do not apparently interact with BiP. To begin to understand what controls the likelihood that a nascent protein entering the ER will associate with BiP, we have examined the in vivo folding of a murine λI immunoglobulin (Ig) light chain (LC). This LC is composed of two Ig domains that can fold independent of the other and that each possess multiple potential BiP-binding sequences. To detect BiP binding to the LC during folding, we used BiP ATPase mutants, which bind irreversibly to proteins, as “kinetic traps.” Although both the wild-type and mutant BiP clearly associated with the unoxidized variable region domain, we were unable to detect binding of either BiP protein to the constant region domain. A combination of in vivo and in vitro folding studies revealed that the constant domain folds rapidly and stably even in the absence of an intradomain disulfide bond. Thus, the simple presence of a BiP-binding site on a nascent chain does not ensure that BiP will bind and play a role in its folding. Instead, it appears that the rate and stability of protein folding determines whether or not a particular site is recognized, with BiP preferentially binding to proteins that fold slowly or somewhat unstably.  相似文献   

10.
11.
Eukaryotic cells activate the unfolded-protein response (UPR) upon endoplasmic reticulum (ER) stress, where the stress is assumed to be the accumulation of unfolded proteins in the ER. Consistent with previous in vitro studies of the ER-luminal domain of the mutant UPR initiator Ire1, our study show its association with a model unfolded protein in yeast cells. An Ire1 luminal domain mutation that compromises Ire1's unfolded-protein-associating ability weakens its ability to respond to stress stimuli, likely resulting in the accumulation of unfolded proteins in the ER. In contrast, this mutant was activated like wild-type Ire1 by depletion of the membrane lipid component inositol or by deletion of genes involved in lipid homeostasis. Another Ire1 mutant lacking the authentic luminal domain was up-regulated by inositol depletion as strongly as wild-type Ire1. We therefore conclude that the cytosolic (or transmembrane) domain of Ire1 senses membrane aberrancy, while, as proposed previously, unfolded proteins accumulating in the ER interact with and activate Ire1.  相似文献   

12.
BiP is an Hsp70 homologue found in the endoplasmic reticulum of eukaryotic cells. Like other Hsp70 chaperones, BiP interacts with its substrate proteins in an ATP-dependent manner. The functional analysis has so far been performed mainly with short, synthetic peptides. Here, we present an experimental system that allows to study the partial reactions of the BiP chaperone cycle for a natural substrate protein domain in its soluble, stably unfolded conformation. This unfolded antibody domain forms a binary complex with BiP in the absence of ATP. The dissociation of the BiP dimer seems to be the rate-limiting step in this reaction. The BiP-C(H)3 complexes dissociate rapidly in the presence of ATP. The affinity for BiP-binding peptides and the non-native antibody domain was determined to be similar, suggesting that only the peptide binding site is involved in these interactions. Furthermore, these results imply that, also in the context of the antibody domain, an extended peptide sequence is recognized. However, the accessibility of the BiP-binding site in the non-native protein seems to influence the kinetics of complex formation.  相似文献   

13.
Following endoplasmic reticulum (ER) stress that prevents correct folding or assembly of ER proteins, at least three responses occur to maintain cell homeostasis: induction of chaperones, attenuation of protein synthesis, and enhancement of lipid synthesis. Transducers that transmit ER stress to the nucleus have already been identified in yeast and mammals. We report here isolation of a cDNA, OsIre1, from rice encoding a putative homolog of Ire1p, a yeast transducer of ER stress. OsIre1 encodes a polypeptide consisting of 893 amino acids, in which two hydrophobic stretches are present in the amino-terminal (N-terminal) and middle regions, possibly serving as a signal peptide and a transmembrane domain, respectively. The carboxyl-terminal (C-terminal) domain was found to possess serine/threonine protein kinase and ribonuclease-like domains showing high similarities with regions in Ire1 homologs from other organisms. A fusion protein of OsIre1 and green fluorescent protein (GFP) expressed in tobacco BY2 cells could be demonstrated to localize to the ER and the N-terminal domain of OsIre1 could substitute for yeast Ire1p in yeast cells. When produced in bacteria as a fusion protein, the C-terminal region of OsIre1 showed autophosphorylation activity. These results thus indicate that OsIre1 encodes a putative plant transducer of ER stress.  相似文献   

14.
15.
ATF6, a member of the leucine zipper protein family, can constitutively induce the promoter of glucose-regulated protein (grp) genes through activation of the endoplasmic reticulum (ER) stress element (ERSE). To understand the mechanism of grp78 induction by ATF6 in cells subjected to ER calcium depletion stress mediated by thapsigargin (Tg) treatment, we discovered that ATF6 itself undergoes Tg stress-induced changes. In nonstressed cells, ATF6, which contains a putative short transmembrane domain, is primarily associated with the perinuclear region. Upon Tg stress, the ATF6 protein level dropped initially but quickly recovered with the additional appearance of a faster-migrating form. This new form of ATF6 was recovered as soluble nuclear protein by biochemical fractionation, correlating with enhanced nuclear localization of ATF6 as revealed by immunofluorescence. Optimal ATF6 stimulation requires at least two copies of the ERSE and the integrity of the tripartite structure of the ERSE. Of primary importance is a functional NF-Y complex and a high-affinity NF-Y binding site that confers selectivity among different ERSEs for ATF6 inducibility. In addition, we showed that YY1 interacts with ATF6 and in Tg-treated cells can enhance ATF6 activity. The ERSE stimulatory activity of ATF6 exhibits properties distinct from those of human Ire1p, an upstream regulator of the mammalian unfolded protein response. The requirement for a high-affinity NF-Y site for ATF6 but not human Ire1p activity suggests that they stimulate the ERSE through diverse pathways.  相似文献   

16.
The mechanism of how fluoride causes fluorosis remains unknown. Exposure to fluoride can inhibit protein synthesis, and this may also occur by agents that cause endoplasmic reticulum (ER) stress. When translated proteins fail to fold properly or become misfolded, ER stress response genes are induced that together comprise the unfolded protein response. Because ameloblasts are responsible for dental enamel formation, we used an ameloblast-derived cell line (LS8) to characterize specific responses to fluoride treatment. LS8 cells were growth-inhibited by as little as 1.9-3.8 ppm fluoride, whereas higher doses induced ER stress and caspase-mediated DNA fragmentation. Growth arrest and DNA damage-inducible proteins (GADD153/CHOP, GADD45alpha), binding protein (BiP/glucose-responsive protein 78 (GRP78), the non-secreted form of carbonic anhydrase VI (CA-VI), and active X-box-binding protein-1 (Xbp-1) were all induced significantly after exposure to 38 ppm fluoride. Unexpectedly, DNA fragmentation increased when GADD153 expression was inhibited by short interfering RNA treatment but remained unaffected by transient GADD153 overexpression. Analysis of control and GADD153(-/-) embryonic fibroblasts demonstrated that caspase-3 mediated the increased DNA fragmentation observed in the GADD153 null cells. We also demonstrate that mouse incisor ameloblasts are sensitive to the toxic effects of high dose fluoride in drinking water. Activated Ire1 initiates an ER stress response pathway, and mouse ameloblasts were shown to express activated Ire1. Ire1 levels appeared induced by fluoride treatment, indicating that ER stress may play a role in dental fluorosis. Low dose fluoride, such as that present in fluoridated drinking water, did not induce ER stress.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号