首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study provides further evidence for the toxicity of hypochlorous acid (HOCl) in mammalian cells. Using the Chinese hamster B14 cell line, a significant decrease in cell viability was demonstrated after exposure to 100-200 microM HOCl for 1 h. Loss of viability was accompanied by a slight increase in DNA damage as shown by the Comet assay and by oxidation of cellular thiols. Exposure of B14 cells, erythrocyte membranes and human serum albumin to HOCl resulted in an extensive protein carbonyl accumulation. Thus, the cytotoxicity of HOCl may be due to both protein damage (carbonyl formation and oxidation of protein thiol groups) and DNA damage. The well-known antioxidant melatonin interacted with the oxidant and significantly protected cells during HOCl exposure, diminishing its cytotoxic effects and reducing protein carbonyl generation.  相似文献   

2.
Erythrocyte damage induced by hypochlorous acid (HOCl) results in cell lysis developing with time after the oxidant is removed (post-hemolysis). The apparent rate constant of post-hemolysis depends on time of incubation in the presence of HOCl and concentration of this oxidant. HOCl-dependent damage of erythrocyte membranes is associated with uncompetitive inhibition of the membrane-bound acetylcholinesterase. Genistein-8-C-glucoside is an isoflavonoid isolated from the flowers of Lupinus luteus L.; in aqueous solution, genistein-8-C-glucoside (0.5-2 mM) efficiently inhibited HOCl-induced damage to erythrocytes similar to the known HOCl scavengers taurine and reduced glutathione. This bioflavonoid can protect the erythrocyte membrane (and to a lesser extent, intraerythrocytic components) by interacting with the reactive chlorine species including hypochlorous acid and membrane-bound chloroamines formed in the reaction of HOCl with erythrocyte membrane proteins.  相似文献   

3.
We describe a new assay for the chlorination activity of myeloperoxidase and detection of chloramines. Chloramines were detected by using iodide to catalyze the oxidation of either 3,3',5,5'-tetramethylbenzidine (TMB) or dihydrorhodamine to form strongly absorbing or fluorescent products, respectively. With TMB as little as 1 muM taurine chloramine could be detected. The sensitivity of the dihydrorhodamine assay was about 10-fold greater. The chlorination activity of myeloperoxidase was measured by trapping hypochlorous acid with taurine and subsequently using iodide to promote the oxidation reactions of the accumulated taurine chloramine. A similar approach was used to detect hypochlorous acid production by stimulated human neutrophils. Iodide-dependent catalysis distinguished N-chloramines from N-bromamines. This allows for discrimination between heme peroxidases that generate either hypochlorous acid or hypobromous acid. The assay has distinct advantages over existing assays for myeloperoxidase with regard to sensitivity, specificity, and its ease and versatility of use.  相似文献   

4.
Thiol oxidation by hypochlorous acid and chloramines is a favorable reaction and may be responsible for alterations in regulatory or signaling pathways in cells exposed to neutrophil oxidants. In order to establish the mechanism for such changes, it is necessary to appreciate whether these oxidants are selective for different thiols as compared with other scavengers. We have measured rate constants for reactions of amino acid chloramines with a range of thiols, methionine, and ascorbate, using a combination of stopped-flow and competitive kinetics. For HOCl, rate constants are too fast to measure directly by our system and values relative to reduced glutathione were determined by competition with methionine. For taurine chloramine, the rate constants for reaction with 5-thio-2-nitrobenzoic acid, GSH, methionine, and ascorbate at pH 7.4 were 970, 115, 39, and 13 M(-1) s(-1), respectively. Values for 10 thiols varied by a factor of 20 and showed an inverse relationship to the pK(a) of the thiol group. Rate constants for chloramines of glycine and N-alpha-acetyl-lysine also showed these relationships. Rates increased with decreasing pH, suggesting a mechanism involving acid catalysis. For hypochlorous acid, rates of reaction with 5-thio-2-nitrobenzoic acid, GSH, cysteine, and most of the other thiols were very similar. Relative reactivities varied by less than 5 and there was no dependence on thiol pK(a). Chloramines have the potential to be selective for different cellular thiols depending on their pK(a). For HOCl to be selective, other factors must be important, or its reactions could be secondary to chloramine formation.  相似文献   

5.
Exposure of human erythrocyte membranes to ozone (5 mumol/10 min) resulted in the inhibition of erythrocyte membrane Na+(-)K+ ATPase (EC.3.6.1.39). It was determined that, the degree of enzyme inhibition in the directly ozone exposed membranes was greater than that of membranes obtained from ozone exposed intact erythrocytes. In the presence of varying concentrations (0-1.0 mM) of dithiotrethiol or mercaptoethanol Na+(-)K+ ATPase activities of both types of ozone exposed membranes were increased almost proportionally with the concentration of dithiotrethiol or mercaptoethanol however, the activities were still lower than the normal Na+(-)K+ ATPase value. The results indicate that, dithiotrethiol or mercaptoethanol prevent the enzyme inhibition by ozone in vitro. This suggests that the membrane thiol groups are primary targets for ozone and thereby preventing the oxidation of essential functional groups of enzyme protein.  相似文献   

6.
A significant specific increase in the actin carbonyl content has been recently demonstrated in human brain regions severely affected by the Alzheimer's disease pathology, in postischemic isolated rat hearts, and in human intestinal cell monolayers following incubation with hypochlorous acid (HOCl). We have very recently shown that exposure of actin to HOCl results in the immediate loss of Cys-374 thiol, oxidation of some methionine residues, and, at higher molar ratios of oxidant to protein, increase in protein carbonyl groups, associated with filament disruption and inhibition of filament formation. In the present work, we have studied the effect of methionine oxidation induced by chloramine-T (CT), which at neutral or slightly alkaline pH oxidizes preferentially Met and Cys residues, on actin filament formation and stability utilizing actin blocked at Cys-374. Methionines at positions 44, 47, and 355, which are the most solvent-exposed methionyl residues in the actin molecule, were found to be the most susceptible to oxidation to the sulfoxide derivative. Met-176, Met-190, Met-227, and Met-269 are the other sites of the oxidative modification. The increase in fluorescence associated with the binding of 8-anilino-1-naphtalene sulfonic acid to hydrophobic regions of the protein reveals that actin surface hydrophobicity increases with oxidation, indicating changes in protein conformation. Structural alterations were confirmed by the decreased susceptibility to proteolysis and by urea denaturation curves. Oxidation of some critical methionines (those at positions 176, 190, and 269) causes a complete inhibition of actin polymerization and severely affects the stability of actin filaments, which rapidly depolymerize. The present results would indicate that the oxidation of some critical methionines disrupts specific noncovalent interactions that normally stabilize the structure of actin filaments. We suggest that the process involving formation of actin carbonyl derivatives would occur at an extent of oxidative insult higher than that causing the oxidation of some critical methionine residues. Therefore, methionine oxidation could be a damaging event preceding the appearance of carbonyl groups on actin and a major cause for the functional impairment of the carbonylated protein recently observed both in vivo and in vitro.  相似文献   

7.
Monobromobimane labels red cell membrane protein thiol groups; bands exhibit fluorescence after sodium dodecyl sulfate acrylamide gel electrophoresis and correspond to almost all of those staining with Coomassie blue. The response of membrane protein thiol groups to oxidative challenge and the dynamics of recovery of the thiol groups may be followed. Diminished labeling is found after oxidation with diamide, with both intrachain and interchain disulfide bond formation demonstrated by sodium dodecyl sulfate acrylamide gel electrophoresis. Regeneration of thiol groups under physiological conditions (incubation with glucose) after a moderate degree of diamide oxidation is shown to be complete (with respect to thiol group content and degree and distribution of bimane label) in normal human red blood cell membranes. Even after oxidation of almost half of the membrane protein thiol groups (maximum degree of oxidation achieved), regeneration of thiol groups is almost complete; a minor fraction resides in the form of disulfide-linked high molecular weight proteins (demonstrated by the electrophoretic profile) which may be reduced completely with dithiothreitol.Bimane fluorescent labeling provides a convenient and sensitive method for following membrane thiol group status under physiological conditions.  相似文献   

8.
Histamine is stored in granules of mast cells and basophils and released by inflammatory mediators. It has the potential to intercept some of the HOCl generated by the neutrophil enzyme, myeloperoxidase, to produce histamine chloramine. We have measured rate constants for reactions of histamine chloramine with methionine, ascorbate, and GSH at pH 7.4, of 91 M(-1)s(-1), 195 M(-1)s(-1), and 721 M(-1)s(-1), respectively. With low molecular weight thiols, the reaction was with the thiolate and rates increased exponentially with decreasing thiol group pK(a). Comparing rate constants for different chloramines reacting with ascorbate or a particular thiol anion, these were higher when there was less negative charge in the vicinity of the chloramine group. Histamine chloramine was the most reactive among biologically relevant chloramines. Consumption of histamine chloramine and oxidation of intracellular GSH were examined for human fibroblasts. At nontoxic doses, GSH loss over 10 min was slightly greater than that with HOCl, but the cellular uptake of histamine chloramine was 5-10-fold less. With histamine chloramine, GSSG was a minor product and most of the GSH was converted to mixed disulfides with proteins. HOCl gave a different profile of GSH oxidation products, with significantly less GSSG and mixed disulfide formation. There was irreversible oxidation and losses to the medium, as observed with HOCl and other cell types. Thus, histamine chloramine shows high preference for thiols both in isolation and in cells, and in this respect is more selective than HOCl.  相似文献   

9.
Human erythrocytes were exposed to oxidative stress by iodate and periodate. Oxidation causes a time- and concentration-dependent increase in membrane permeability for hydrophilic molecules and ions. The induced leak discriminates nonelectrolytes on the basis of molecular size and exhibits a very low activation energy (Ea = 1-4 kcal.mol-1). These results are reconcilable with the formation of aqueous pores. The pore size was approximated to be between 0.45 and 0.6 nm. This increase in permeability is reversible upon treatment with dithioerythritol. Blocking of membrane thiol groups with N-ethylmaleimide protects the membranes against leak formation. The oxidation causes dithioerythritol-reversible modification of membrane proteins as indicated by the gel electrophoretic behavior. These modifications can also be suppressed by blocking the membrane thiol groups with N-ethylmaleimide. About half of the membrane methionine is oxidized to acid hydrolysis-stable derivatives. A fast saturating increase in diene conjugation was observed in whole cells but not in isolated membranes, with only minor degradation of fatty acid chains. The oxidation of cell membrane lipids as well as oxidation of cell surface carbohydrates are not involved in leak formation. Taken together with earlier data (Deuticke, B., Poser, B., Lütkemeier, P. and Haest, C.W.M. (1983) Biochim. Biophys. Acta 731, 196-210), these findings indicate that formation of disulfide bonds by different oxidative mechanisms results in leaks with similar properties.  相似文献   

10.
Thiol redox chemical reactions play a key role in a variety of physiological processes, mainly due to the presence of low-molecular-weight thiols and cysteine residues in proteins involved in catalysis and regulation. Specifically, the subtle sensitivity of thiol reactivity to the environment makes the use of simulation techniques extremely valuable for obtaining microscopic insights. In this work we review the application of classical and quantum–mechanical atomistic simulation tools to the investigation of selected relevant issues in thiol redox biochemistry, such as investigations on (1) the protonation state of cysteine in protein, (2) two-electron oxidation of thiols by hydroperoxides, chloramines, and hypochlorous acid, (3) mechanistic and kinetics aspects of the de novo formation of disulfide bonds and thiol−disulfide exchange, (4) formation of sulfenamides, (5) formation of nitrosothiols and transnitrosation reactions, and (6) one-electron oxidation pathways.  相似文献   

11.
It was found that the hypochlorous acid (HOCl) inhibits the active efflux of glutathione S-conjugates, 2,4-dinitrophenyl-S-glutathione (DNP-SG, c(50%)=258+/-24 microM HOCl) and bimane-S-glutathione (B-SG, c(50%)=125+/-16 microM HOCl) from human erythrocytes, oxidises intracellular reduced glutathione (the ratio [HOCl]/[GSH](oxidized)=4) and inhibits basal as well as 2,4-dinitrophenol- (DNP) and 2,4-dinitrophenyl-S-glutathione (DNP-SG)-stimulated Mg(2+)-ATPase activities of erythrocyte membranes. Multidrug resistance-associated protein (MRP1) mediates the active export of glutathione S-conjugates in mammalian cells, including human erythrocytes. A direct impairment of erythrocyte membrane MRP by hypochlorous acid was shown by electrophoresis and immunoblotting (c(50%)=478+/-36 microM HOCl). The stoichiometry of the MRP/HOCl reaction was 1:1. These results demonstrate that MRP can be one of the cellular targets for the inflammatory mediator hypochlorous acid.  相似文献   

12.
The organic hydroperoxide, tert-butyl hydroperoxide (t-BHP), is a useful model compound to study mechanisms of oxidative cell injury. In the present work, we examined the features of the interactions of this oxidant with Chinese hamster B14 cells. The aim of our study was to reveal a possible role of structural modifications in membranes and loss of DNA integrity in t-BHP-induced cell injury and death. The tert-butyl hydroperoxide treatment (100-1000 microM, 37 degrees C for 1h) did not decrease cell viability (as measured by cell-specific functional activity with an MTT test), but completely prevented cell growth. We observed intracellular reduced glutathione (GSH) oxidation and total glutathione (GSH+GSSG) depletion, a slight increase in the level of lipid-peroxidation products, an enhancement of membrane fluidity, intracellular potassium leakage and a significant decrease of membrane potential. At oxidant concentrations of 100-1500 microM, a significant damage to DNA integrity was observed as revealed by the Comet assay. The inhibition of cell proliferation (cell-growth arrest) may be explained by genotoxicity of t-BHP, by disturbance of the cellular redox-equilibrium (GSH oxidation) and by structural membrane modifications, which result in ion-non-selective pore formation. The disturbance in passive membrane permeability and the DNA damage may be the most dramatic cell impairments induced by t-BHP treatment. The presence of another oxidant, hypochlorous acid (HOCl), completely prevented t-BHP-induced DNA strand breaks, perhaps due to extracellular oxidation of t-BHP by HOCl.  相似文献   

13.
Errata     
Human erythrocytes were exposed to oxidative stress by iodate and periodate. Oxidation causes a time- and concentration-dependent increase in membrane permeability for hydrophilic molecules and ions. The induced leak discriminates nonelectrolytes on the basis of molecular size and exhibits a very low activation energy (Ea = 1–4 kcal · mol?1). These results are reconcilable with the formation of aqeous pores. The pore size was approximated to be between 0.45 and 0.6 nm. This increase in permeability is reversible upon treatment with dithioerythritol. Blocking of membrane thiol groups with N-ethylmaleimide protects the membranes against leak formation. The oxidation causes dithioerythritol-reversible modification of membrane proteins as indicated by the gel electrophoretic behavior. These modifications can also be suppressed by blocking the membrane thiol groups with N-ethylmaleimide. About half of the membrane methionine is oxidized to acid hydrolysis-stable derivatives. A fast saturating increase in diene conjugation was observed in whole cells but not in isolated membranes, with only minor degradation of fatty acid chains. The oxidation of cell membrane lipids as well as oxidation of cell surface carbohydrates are not involved in leak formation. Taken together with earlier data (Deuticke, B., Poster, B., Lütkemeier, P., and Haest, C.W.M. (1983) Biochim. Biophys. Acta 731, 196–210), these findings indicate that formation of disulfide bonds by different oxidative mechanisms results in leaks with similar properties.  相似文献   

14.
Myeloperoxidase, released by activated phagocytes, forms reactive oxidants by catalysing the reaction of halide and pseudo-halide ions with H(2)O(2). These oxidants have been linked to tissue damage in a range of inflammatory diseases. With physiological levels of halide and pseudo-halide ions, similar amounts of HOCl (hypochlorous acid) and HOSCN (hypothiocyanous acid) are produced by myeloperoxidase. Although the importance of HOSCN in initiating cellular damage via thiol oxidation is becoming increasingly recognized, there are limited data on the reactions of HOSCN with other targets. In the present study, the products of the reaction of HOSCN with proteins has been studied. With albumin, thiols are oxidized preferentially forming unstable sulfenyl thiocyanate derivatives, as evidenced by the reversible incorporation of (14)C from HOS(14)CN. On consumption of the HSA (human serum albumin) free thiol group, the formation of stable (14)C-containing products and oxidation of tryptophan residues are observed. Oxidation of tryptophan residues is observed on reaction of HOSCN with other proteins (including myoglobin, lysozyme and trypsin inhibitor), but not free tryptophan, or tryptophan-containing peptides. Peptide mass mapping studies with HOSCN-treated myoglobin, showed the addition of two oxygen atoms on either Trp(7) or Trp(14) with equimolar or less oxidant, and the addition of a further two oxygen atoms to the other tryptophan with higher oxidant concentrations (> or = 2-fold). Tryptophan oxidation was observed on treating myoglobin with HOSCN in the presence of glutathione and ascorbate. Thus tryptophan residues are likely to be favourable targets for the reaction in biological systems, and the oxidation products formed may be useful biomarkers of HOSCN-mediated protein oxidation.  相似文献   

15.
An NADH oxidase activity of animal and plant plasma membrane is described that is stimulated by hormones and growth factors. In plasma membranes of cancer cells and tissues, the activity appears to be constitutively activated and no longer hormone responsive. With drugs that inhibit the activity, cells are unable to grow although growth inhibition may be more related to a failure of the cells to enlarge than to a direct inhibition of mitosis. The hormone-stimulated activity in plasma membranes of plants and the constitutively activated NADH oxidase in tumor cell plasma membranes is inhibited by thiol reagents whereas the basal activity is not. These findings point to a thiol involvement in the action of the activated form of the oxidase. NADH oxidase oxidation by Golgi apparatus of rat liver is inhibited by brefeldin A plus GDP. Brefeldin A is a macrolide antibiotic inhibitor of membrane trafficking. A model is presented where the NADH oxidase functions as a thiol-disulfide oxidoreductase activity involved in the formation and breakage of disulfide bonds. The thiol-disulfide interchange is postulated as being associated with physical membrane displacement as encountered in cell enlargement or in vesicle budding. The model, although speculative, does provide a basis for further experimentation to probe a potential function for this enzyme system which, under certain conditions, exhibits a hormone- and growth factor-stimulated oxidation of NADH.  相似文献   

16.
Plasma membrane vesicles of HeLa cells are characterized by a drug-responsive oxidation of NADH. The NADH oxidation takes place in an argon or nitrogen atmosphere and in samples purged of oxygen. Direct assay of protein thiols by reaction with 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB; Ellman's reagent), suggests that protein disulfides may be the natural electron acceptors for NADH oxidation by the plasma membrane vesicles. In the presence of NADH, protein disulfides of the membranes were reduced with a concomitant stoichiometric increase in protein thiols. The increase in protein thiols was inhibited in parallel to the inhibition of NADH oxidation by the antitumor sulfonylurea LY181984 with an EC50 of ca. 30 nM. LY181984, with an EC50 of 30 nM, also inhibited a protein disulfide–thiol interchange activity based on the restoration of activity to inactive (scrambled) RNase and thiol oxidation. The findings suggest that thiol oxidation, NADH-dependent disulfide reduction (NADH oxidation), and protein disulfide–thiol interchange in the absence of NADH all may be manifestations of the same sulfonylurea binding protein of the HeLa plasma membrane. A surface location of the thiols involved was demonstrated using detergents and the impermeant thiol reagent p-chloromercuriphenylsulfonic acid (PCMPS). The surface location precludes a physiological role of the protein in NADH oxidation. Rather, it may carry out some other role more closely related to a function in growth, such as protein disulfide–thiol interchange coupled to cell enlargement.  相似文献   

17.
Human neutrophils incubated with phorbol myristate acetate oxidized hemoglobin within the intact erythrocyte by a mechanism dependent on cell-cell contact but independent of phagocytosis. Spectrophotometric examination of the erythrocyte lysates revealed that the major component formed was methemoglobin along with small amounts of a species with spectral characteristics similar to choleglobin. Methemoglobin formation was directly related to the neutrophil concentration and the time of incubation. The addition of superoxide dismutase or catalase modestly inhibited the formation of methemoglobin, while a combination of the enzymes provided the most dramatic protection. Methemoglobin of hydroxyl radical or hypochlorous acid scavengers. Apparently, either O2.- or H2O2 alone was capable of mediating methemoglobin formation in the intact erythrocyte. Maintenance of the intraerythrocytic hemoglobin in its oxygenated state or its derivatization to carbon monoxyhemoglobin markedly inhibited methemoglobin formation. Blockade of the anion channels in the intact erythrocyte with sulfonated stilbenes inhibited O2.- but not H2O2 from oxidizing intracellular hemoglobin. It appears that neutrophil-derived O2.- and H2O2 can cross the erythrocyte membrane through the anion channel or diffuse directly into the intracellular space and react with oxyhemoglobin or deoxyhemoglobin to form a mixture of hemoglobin oxidation products within the intact cell.  相似文献   

18.
Retinol stimulates the formation of transition vesicles in situ and in all free systems based on rat liver. The stimulation is on vesicle formation from transitional endoplasmic reticulum and not on vesicle fusion with donor membranes. Vesicle budding in the cell free system requires a nucleoside triphosphate and is sensitive to inhibition by thiol reagents. In this report we develop and test a model whereby a retinol-modulated NADH:protein disulfide reductase (NADH oxidase) with protein disulfide-thiol interchange activity is implicated in the vesicle budding mechanism. The protein has the ability to restore activity to scrambled, inactive RNase A and is stimulated or inhibited by retinol depending on the redox environment. Under reducing conditions and in the presence of a chemical reductant such as GSH, the partial reaction stimulated by retinol appears to be the oxidation of membrane disulfides. This is the first report of an enzymatic mechanism to explain specific retinol effects both in vivo and in vitro on membrane trafficking not given by retinoic acid.  相似文献   

19.
Hypochlorous acid (HOCl), the major strong oxidant produced by the phagocyte enzyme myeloperoxidase, reacts readily with free amino groups to form N-chloramines. Since different N-chloramines have different stabilities and reactivities depending on their structures, we investigated the relative reactivities of three model N-chloramines and HOCl with human plasma constituents. TheN-chloramines studied were N(alpha)-acetyl-lysine chloramine (LysCA, a model of protein-associated N-chloramines), taurine chloramine (TaurCA, the primary N-chloramine produced by activated neutrophils), and monochloramine (MonoCA, a lipophilic N-chloramine). Addition of these chlorine species (100--1000 microM each) to plasma resulted in rapid loss of thiols, with the extent of thiol oxidation decreasing in the order TaurCA = LysCA > MonoCA = HOCl. The single reduced thiol of albumin was the major target. Loss of plasma ascorbate also occurred, with the extent decreasing in the order HOCl > LysCA > TaurCA > MonoCA. Experiments comparing equimolar albumin thiols and ascorbate showed that while HOCl caused equivalent loss of thiols and ascorbate, theN-chloramines reacted preferentially with thiols. The chlorine species also inactivated alpha(1)-antiproteinase, implicating oxidation of methionine residues, and ascorbate provided variable protection depending on the chlorine species involved. Together, our data indicate that in biological fluids N-chloramines react more readily with protein thiols than with methionine residues or ascorbate, and thus may cause biologically relevant, selective loss of thiol groups.  相似文献   

20.
1. The dynamic properties of erythrocyte membranes in diabetic children and of control erythrocyte membranes subjected to in vitro glycation have been investigated by means of fluorescence quenching of membrane tryptophan residues and ESR spectroscopy. 2. The apparent distance separating the membrane protein tryptophan and the bound 1-anilino-8-naphthalenesulphonate (ANS) molecules was decreased in erythrocyte membranes from children with diabetes. This resulted in a significant increase of the maximum energy transfer efficiency in diabetic membranes. 3. The relevant alterations occurred in the above parameters due to the in vitro nonenzymatic glycosylation of control membranes. 4. These changes were accompanied by the decreased hw/hs parameter of MSL and the increased relative rotational correlation time (tau c) of ISL in diabetic membranes and in the membranes subjected to in vitro glycation. 5. The results suggest that the conformational changes in membrane proteins may occur at both the intrinsic and exposed thiol groups. 6. Both the in vivo and the in vitro data indicate that nonenzymatic glycosylation of membrane proteins may be the major factor attributable to the alterations in the dynamic properties of erythrocyte membrane in diabetic state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号