首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The allergens of different grass species share similar physicochemical and immunological features that account for the high incidence of allergenic cross-reactivity. We aimed to gain more information on the correlation between Poaceae airborne pollen and allergen concentration and hence make a reliable assessment of true pollen exposure in different bioclimatic areas. The release of Lol p 1 allergen from grass pollen differs between years and areas depending on variables like meteorological factors, biological sources, and cross-reactions with homologous allergens. This study monitored airborne pollen concentrations of grasses and Lol p 1 aeroallergen in León and Ourense, two cities with different climatic conditions located in northwestern Spain. Lol p 1 content in aerosol samples was quantified using specific ELISA antibody plates. Some our results show that Lol p 1 concentration increases when the atmospheric relative humidity is below 70%. This could explain the appearance of protein peaks at times when little or no grass pollen is present, especially after a short and heavy storm.  相似文献   

2.
In the present study, the airborne concentrations of birch and oak pollen grains and birch pollen allergens have been recorded in samples from a common sampling station in Stockholm. The sampling period was between April 22nd and May 31st 2003. The objectives were to evaluate if analysis of allergen particles in parallel with pollen grains would be relevant to aid subjects suffering from pollinosis. Days with low birch pollen counts had relatively high nominal allergen concentrations in the beginning of the sampling period. The birch pollen grain concentration peaks, during the dry pollination culmination interval in the middle of the period, were associated with correspondingly lower nominal concentrations of allergens than grains. At the end of the sampling period very high nominal amounts of allergen appeared, as reflected by high concentrations of oak pollen grains. The high allergen concentrations were obtained as a result of inherent cross‐reactivity of anti‐ Bet v 1 antibodies with Que a antigens, which are immunologically analogous with Bet v 1. Allergen concentrations increased and decreased after light and heavy rain, respectively. Results obtained indicate that adding a pollen count forecast with allergen concentration data should aid pollen allergic subjects to avoid particulate allergens which might be expected to penetrate more easily than pollen grains into indoor environments.  相似文献   

3.
Intradiurnal variation of allergenic pollen in the city of Porto (Portugal)   总被引:1,自引:1,他引:0  
This study reports the hourly distribution of the allergenic airborne pollen types more abundant in the atmosphere of Porto (Portugal) during the studied period. This knowledge will allow an adequacy daily routine for allergic patients during the hours of higher airborne concentrations. The airborne pollen concentration was continuously performed from January 2003 to December 2007 in the city of Porto using a Hirst-type volumetric sampler. Urticaceae, Cupressaceae, Acer spp., and Plantago spp. airborne pollen presented higher concentrations in the morning, while Alnus spp. and Betula spp. pollen were mainly present during the afternoon. Olea europaea and Platanus spp. pollen were regularly distributed along the day, while Poaceae and Pinus spp. pollen presented two diurnal maxima.  相似文献   

4.
Summary A study to evaluate and define the atmospheric pollen concentration in Trentino was carried out through the aerobiologic sampling in three localities chosen according to their different climatic conditions.1375 patients with pollinosis living in Trentino were studied retrospectively over the period ranging from 1986 to 1988 and selected according to the area they came from.Results have proved that the most allergenic pollen types are the following: Poaceae, Urticaceae (Parietaria), Compositae (Artemisia) and the tree pollen of Betulaceae and Corylaceae (Alnus, Betula, Corylus), and that pollinosis caused by such pollen, types has different features and frequencies according to the different localities.As far as symptoms are concerned, our data shows that rhinoconjuntivitis is more frequent in those patients who are allergic toParietaria while asthma results being more frequent in patients who are allergic to tree pollen.  相似文献   

5.
Adam S. Bursa 《Grana》2013,52(1):147-165
Pollen grains of Gramineae, Urticaceae, Compositae, Oleaceae and Cupressaceae represent the etiologic factors of the most common allergic diseases in Apulia. This study describes the relative frequency of allergic sensitization to pollen from Salsola kali (Chenopodiaceae), based on results obtained with skinprick tests, specific serum IgEs evaluation and nasal provocation tests. 23 out of 240 patients suffering of pollinosis resulted positive. It is suggested that these allergens should be taken in consideration during patients investigation in the Mediterranean area.  相似文献   

6.
We examined the effect of the wind vector analyzed into its three components (direction, speed and persistence), on the circulation of pollen from different plant taxa prominent in the Thessaloniki area for a 4-year period (1996–1999). These plant taxa were Ambrosia spp., Artemisia spp., Chenopodiaceae, Corylus spp., Cupressaceae, Olea europaea, Pinaceae, Platanus spp., Poaceae, Populus spp., Quercus spp., and Urticaceae. Airborne pollen of Cupressaceae, Urticaceae, Quercus spp. and O. europaea make up approximately 70% of the total average annual pollen counts. The set of data that we worked with represented days without precipitation and time intervals during which winds blew from the same direction for at least 4 consecutive hours. We did this in order to study the effect of the different wind components independently of precipitation, and to avoid secondary effects produced by pollen resuspension phenomena. Factorial regression analysis among the summed bi-hourly pollen counts for each taxon and the values of wind speed and persistence per wind direction gave significant results in 22 cases (combinations of plant taxa and wind directions). The pollen concentrations of all taxa correlated significantly with at least one of the three wind components. In seven out of the 22 taxon-wind direction combinations, the pollen counts correlated positively with wind persistence, whereas this was the case for only two of the taxon-wind speed combinations. In seven cases, pollen counts correlated with the interaction effect of wind speed and persistence. This shows the importance of wind persistence in pollen transport, particularly when weak winds prevail for a considerable part of the year, as is the case for Thessaloniki. Medium/long-distance pollen transport was evidenced for Olea (NW, SW directions), Corylus (NW, SW), Poaceae (SW) and Populus (NW).  相似文献   

7.
Summary. Rapid diffusion of allergenic proteins in isotonic media has been demonstrated for different pollen grains. Upon contact with stigmatic secretion or with the mucosa of sensitive individuals, pollen grains absorb water and release soluble low-molecular-weight proteins, these proteins enter in the secretory pathway in order to arrive at the cell surface. In this study we located allergenic proteins in mature and hydrated-activated pollen grains of Parietaria judaica L. (Urticaceae) and studied the diffusion of these proteins during the first 20 min of the hydration and activation processes. A combination of transmission electron microscopy and immunocytochemical methods was used to locate these proteins in mature pollen and in pollen grains after different periods of hydration and activation processes. Activated proteins reacting with antibodies in human serum from allergic patients were found in the cytoplasm, wall, and exudates from the pollen grains. The allergenic component of these pollen grains changes according to the pollen state; the presence of these proteins in the exine, the cytoplasm, and especially in the intine and in the material exuded from the pollen grains, is significant in the hydrated-activated studied times, whereas this presence is not significant in mature pollen grains. The rapid activation and release of allergenic proteins of P. judaica pollen appears to be the main cause of the allergenic activity of these pollen grains. Correspondence and reprints: Department of Plant Biology, Faculty of Biology, University of León, Campus de Vegazana, 24071 León, Spain.  相似文献   

8.
Recent studies describe interactions of pollen surfaces with aerosol particles; pollen surfaces undergo morphological changes and the release of allergens and allergenic fragments from the pollen can be enhanced. Thus allergens from pollen can be found in particle size fractions much smaller than undamaged pollen (<5 μm). This may explain allergic reactions in parts of the lungs which cannot be reached by undamaged pollen. In Switzerland the birch tree (betula verrucosa) major allergen Bet v 1 and the grass (phleum pratense) pollen major allergen Phl p 5 are of particular relevance for inducing pollinosis. In this study aerosols of different aerodynamic diameters were sampled by Andersen-Impactors over 18 months. Sampling areas are subjected to different levels of air pollution (Zürich, Switzerland, urban; Payerne, Switzerland, rural; Davos, Switzerland, alpine). Samples were scanned by electron microscopy and submitted to specific allergen assays (ELISA) for birch pollen major allergen Bet v 1 and grass pollen major allergen Phl p 5 respectively. Particle and major allergen concentrations were highest in Zürich, followed by Payerne and, significantly lower, Davos. Scanning electron microscopy investigations showed interactions of aerosols with pollen surfaces in Zürich and Payerne. The presence of Bet v 1 in smaller aerosol fractions was demonstrated in Zürich and Payerne some weeks before and after birch pollen was counted. An erratum to this article is available at .  相似文献   

9.
The use of bioclimatic indices could be a major step forward in the methodology of pollen forecasting. The basis for this proposal is that simple meteorological parameters do not reflect the global status of the atmosphere, but merely some static measurements. However, pollen dispersal is, above all, a dynamic phenomenon, and this fact should be reflected in the variables we used to explain it. Here, we test the two methodologies for routine pollen forecasting by comparing correlation coefficients using the same daily Poaceae airborne pollen data base from León (6 years, from 1994 to 1999) as the dependent variable and either simple daily meteorological variables or compound daily bioclimatic indices as independent variables. Both simple and compound indices reproduced the same profile of evolution of plant eco-physiological requirements, as the length of the study period during the pollen season increased. However, for time frames larger than the main pollen period, bioclimatic indices gave superior coefficients, which seems to indicate that these could be more valuable for pre-season pollen forecasting. The continentality index produced the highest mean coefficient, higher than those generated by any meteorological variable. Furthermore, at least for a Mediterranean climate, site location and evapotranspiration in relation to precipitation seem to be the most promising factors for increasing success when forecasting Poaceae airborne pollen concentration.  相似文献   

10.
Recent studies describe interactions of pollen surfaces with aerosol particles; pollen surfaces undergo morphological changes and the release of allergens and allergenic fragments from the pollen can be enhanced. Thus allergens from pollen can be found in particle size fractions much smaller than undamaged pollen (<5m). This may explain allergic reactions in parts of the lungs which cannot be reached by undamaged pollen. In Switzerland the birch tree (betula verrucosa) major allergen Bet v 1 and the grass (phleum pratense) pollen major allergen Phl p 5 are of particular relevance for inducing pollinosis. In this study aerosols of different aerodynamic diameters were sampled by Andersen-Impactors over 18 months. Sampling areas are subjected to different levels of air pollution (Zürich, Switzerland, urban; Payerne, Switzerland, rural: Davos, Switzerland, alpine). Samples were scanned by electron microscopy and submitted to specific allergen assays (ELISA) for birch pollen major allergen Bet v 1 and grass pollen major allergen Phl p 5 respectively. Particle and major allergen concentrations were highest in Zürich, followed by Payerne and, significantly lower, Davos. Scanning electron microscopy investigations showed interactions of aerosols with pollen surfaces in Zürich and Payerne. The presence of Bet v 1 in smaller aerosol fractions was demonstrated in Zürich and Payerne some weeks before and after birch pollen was counted.  相似文献   

11.
Pollen data from the atmosphere of Vigo, NW Spain was collected using a Hirst type pollen trap over a seven-year period (1995–2001). A total of 56 different pollen types were identified, among which Urticaceae, Poaceae, Betula and Quercus represent the greatest risk for people suffering from allergic rhinitis (hay fever) or other allergic diseases. Although in the atmosphere of Vigo the presence of allergenic pollen is constant throughout the year, the months of March and April account for 40% of the annual total pollen count. Two main risk periods have been identified for asthma and allergies: (1) March – April, and (2) June – July, the latter is of greater importance due to high concentrations of Poaceae pollen. Correlation analysis with meteorological parameters demonstrates that rainfall, relative humidity, maximum temperature, sun hours and north-easterly winds are the main factors influencing the average daily pollen concentrations in the atmosphere.  相似文献   

12.
Two of the most frequently used methods of pollen counting on slides from Hirst type traps are evaluated in this paper: the transverse traverse method and the longitudinal traverse method. The study was carried out during June–July 1996 and 1997 on slides from a trap at Worcester, UK. Three pollen types were selected for this purpose: Poaceae, Urticaceae and Quercus. The statistical results show that the daily concentrations followed similar trends (p < 0.01, R-values between 0.78–0.96) with both methods during the two years, although the counts were slightly higher using the longitudinal traverses method. Significant differences were observed, however, when the distribution of the concentrations during 24 hour sampling periods was considered. For more detailed analysis, the daily counts obtained with both methods were correlated with the total number of pollen grains for the taxon over the whole slide, in two different situations: high and low concentrations of pollen in the atmosphere. In the case of high concentrations, the counts for all three taxa with both methods are significantly correlated with the total pollen count. In the samples with low concentrations, the Poaceae and Urticaceae counts with both methods are significantly correlated with the total counts, but none of Quercus counts are. Consideration of the results indicates that both methods give a reasonable approximation to the count derived from the slide as a whole. More studies need be done to explore the comparability of counting methods in order to work towards a Universal Methodology in Aeropalynology. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
This paper reviews the terms and major criteria used to define and limit the pollen season. Pollen data from Cordoba (Spain), Ourense (Spain) and Bologna (Italy) were used to ascertain the extent to which aerobiological results and pollen curves are modified by the criteria selected. Results were analysed using Spearmanȁ9s correlation test. Phenological observations were also used to determine synchronization between pollen curves and plant phenology. The criteria for limiting the shortest and longest pollen season periods, as well as the earliest and latest start and end dates, varied according to the city and the taxon under study; in many cases, results for a given taxon also depended on the year. The smallest differences were obtained for Platanus and the greatest for Poaceae.  相似文献   

14.
The influence of meteorological factors on daily Urticaceae pollen counts were studied in Córdoba (southwest Spain) in 1996 and 1997. The daily Urticaceae pollen concentrations were obtained by using a Hirst-type volumetric sampler, and meteorological data were obtained from the Córdoba airport, located near the sampling site. The highest correlation between pollen concentration and meteorological parameters was obtained during non-rainy seasons. Temperature was found to be the most important meteorological parameter influencing pollen counts in spring, as temperature is the main reason for the increase of pollen concentration in the atmosphere. In autumn, humidity was another important parameter influencing pollen counts. Rain, however, did not appear to be significant. The influence of the pollen concentration of the 2 previous days and the pollen concentration of the previous day has been studied. During periods with low precipitation, the pollen concentration of the previous day was a useful predictor of Urticaceae pollen concentrations for the following day. Received: 4 January 1999 / Revised: 26 July 1999 / Accepted: 6 September 1999  相似文献   

15.
The author has found that 42% of patients with pollinosis had positive skin reactions with mugwort (Artemisia vulgaris) pollen allergens. The majority of tested patients (139 out of 187) were also allergic to grass pollens. However, hypersensitivity to mugwort pollen allergens was isolated and did not accompany grass pollen allergy. The symptoms of pollinosis appeared in this group later than in patients sensitive to grass pollen allergens only (over 21 years of age in 71%). Bronchial asthma was diagnosed in 40% of these patients and allergic skin reactions in 25%. Sensitivity to mugwort pollen allergens was accompanied by the sensitivity to pollen allergens of Graminae family of plants in 80% of cases. The author suggests that sensitivity to mugwort pollen allergens is the second most frequent cause of the pollinosis and is diagnosed too rarely. Failures of desensitization in patients sensitive to pollen allergens of Graminae family of plants may often result from coexisting sensitivity to mugwort pollen allergens as this sensitivity produces not only season but perennial clinical symptoms in nearly 50% of patients. The author discusses also botanical relations and cross-reactions in allergy to mugwort and ragweed pollen allergens.  相似文献   

16.

Respiratory allergies triggered by pollen allergens represent a significant health concern to the Irish public. Up to now, Ireland has largely refrained from participating in long-term aerobiological studies. Recently, pollen monitoring has commenced in several sampling locations around Ireland. The first results of the pollen monitoring campaigns for Dublin (urban) and Carlow (rural) concerning the period 2017–2019 and 2018–2019, respectively, are presented herein. Additional unpublished pollen data from 1978–1980 and, 2010–2011 were also incorporated in creating the first pollen calendar for Dublin. During the monitoring period over 60 pollen types were identified with an average Annual Pollen Integral (APIn) of 32,217 Pollen × day/m3 for Dublin and 78,411 Pollen × day/m3 for Carlow. The most prevalent pollen types in Dublin were: Poaceae (32%), Urticaceae (29%), Cupressaceae/Taxaceae (11%), Betula (10%), Quercus (4%), Pinus (3%), Fraxinus (2%), Alnus (2%) and Platanus (1%). The predominant pollen types in Carlow were identified as Poaceae (70%), Urticaceae (12%), Betula (10%), Quercus (2%), Fraxinus (1%) and Pinus (1%). These prevalent pollen types increased in annual pollen concentration in both locations from 2018 to 2019 except for Fraxinus. Although higher pollen concentrations were observed for the Carlow (rural) site a greater variety of pollen types were identified for the Dublin (urban) site. The general annual trend in the pollen season began with the release of tree pollen in early spring, followed by the release of grass and herbaceous pollen which dominated the summer months with the annual pollen season coming to an end in October. This behaviour was illustrated for 21 different pollen types in the Dublin pollen calendar. The correlation between ambient pollen concentration and meteorological parameters was also examined and differed greatly depending on the location and study year. A striking feature was a substantial fraction of the recorded pollen sampled in Dublin did not correlate with the prevailing wind directions. However, using non-parametric wind regression, specific source regions could be determined such as Alnus originating from the Southeast, Betula originating from the East and Poaceae originating from the Southwest.

  相似文献   

17.
The composition and seasonal distribution of airborne pollen grains in the atmosphere of Bahía Blanca, Argentina, has been studied between June 2001 and December 2003 using the Rotorod sampler (model 40). The results show that the main pollen types during this period were Cupressaceae, Fraxinus, Myrtaceae, Poaceae, Amaranthus/Chenopodiaceae, Pinus, Urticaceae, Ulmus, Olea and Styphnolobium. The highest concentrations occurred from August to December (end of winter and spring), accounting for 80% of the total annual pollen count. The greatest diversity was found in the spring, with the major of pollen coming from short-flowering plant types, such as Populus, Acer, Platanus, Juglans, Tamarix, Ailanthus and Typha. The potential sources of pollen from woody ornamental species are Cupressus sempervirens, Eucalyptus camaldulensis and Fraxinus pennsylvanica. whereas those from herbaceous species are the Chenopodiaceae and Poaceae, which are found within the city and also in the surrounding natural vegetation, and the Urticaceae, which are only present in the city. Marked annual differences were noted during the study period. The increase in 2002 may have been due to the abundant rainfall that occurred prior to the spring season, which would have favored the vegetative stage and flower development of plants. The decrease in pollen concentration in 2003 was mainly due to low rainfall throughout the year.  相似文献   

18.
This is the first data from a pollen survey in Vigo, an Atlantic city in northwest Spain. The pollen calendar for Vigo is presented, as well as the pollination period for the nine most important allergenic plants. Through 1995, 30 083 pollen grains belonging to 52 taxa, were recorded using the Lanzoni VPPS 2000 volumetric spore-trap. The most relevant taxa found were: Urticaceae,Pinus, Poaceae andQuercus (75% of the total pollen),Betula, Castanea, Cupressaceae, Chenopodiaceae, Ericaceae, Myrtaceae,Olea, Plantago, Platanus andRumex (21%), and the final 4% was distributed mainly among pollen types, such as:Corylus, Alnus, Fabaceae, Compositae,Artemisia andCedrus. Of the total annual pollen count, 56% was found in March and April. Another, secondary peak was recorded in June corresponding to the flowering period of herbaceous species. The high pollen total of Urticaceae (7625 grains, 25% of the total) should be highlighted. The percentages ofOlea europaea (565 grains) should be noted as well, taking into account its geographical distribution.  相似文献   

19.
The present study describes the airborne pollen grain concentrations at two different heights (1.5 m and 15 m, respectively). The survey was carried out in 1991 and 1992, using two Burkard spore-traps, both set up at the University of Córdoba, Faculty of Sciences. Generally, and for all herbaceous plants, pollen detection started and ended around the same date on both samplers. However, in the case ofOlea europaea, the pollen was detected in advance by the sampler located at 1.5 m compared with the one located at 15 m, probably due to the fact that olives growing close to the low sampler flower before the great olive plantations located some 60 km south of the city. No significant differences between the counts of both samplers have been observed, except in the case of Urticaceae, where the sampler situated on top of the building recorded higher pollen concentrations in both years. Similar annual peaks of Urticaceae are probably due to the buoyancy of their small, light grains and the explosive pollination mechanism which liberates pollen grains from the anthers of the Urticaceae family, includingUrtica andParietaria.  相似文献   

20.
Grasses (Poaceae) are very common plants, which are widespread in all environments and urban areas. Despite their economical importance, they can represent a problem to humans due to their abundant production of allergenic pollen. Detailed information about the pollen season for these species is needed in order to plan adequate therapies and to warn allergic people about the risks they take in certain areas at certain moments. Moreover, precise identification of the causative species and their allergens is necessary when the patient is treated with allergen‐specific immunotherapy. The intrafamily morphological similarity of grass pollen grains makes it impossible to distinguish which particular species is present in the atmosphere at a given moment. This study aimed at developing new biomolecular tools to analyze aerobiological samples and identifying major allergenic Poaceae taxa at subfamily or species level, exploiting fast real‐time PCR. Protocols were tested for DNA extraction from pollen sampled with volumetric and gravimetric methods. A fragment of the matK plastidial gene was amplified and sequenced in Poaceae species known to have high allergological impact. Species‐ and subfamily‐specific primer–probe systems were designed and tested in fast real‐time PCRs to evaluate the presence of these taxa in aerobiological pollen samples. Species‐specific systems were obtained for four of five studied species. A primer–probe set was also proposed for the detection of Pooideae (a grass subfamily that includes also major cereal grains) in aerobiological samples, as this subfamily includes species carrying both grass allergens from groups 1 and 5. These, among the 11 groups in which grass pollen allergens are classified, are considered responsible for the most frequent and severe symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号