首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
龙血树果实的甾体皂甙成分   总被引:5,自引:1,他引:4  
从龙血树(Dracaena cambodiana Pierre et Gagn.)的新鲜果实中分离到四个甾体皂甙,分别鉴定为薯蓣皂甙(dioscin)、22-甲基原薯蓣皂甙(22-methy proto-dioscin),纤细薯蓣皂甙(gracillin)和22-甲基原纤细薯蓣皂甙(22-methy proto-gracillin),龙血树中富含薯蓣皂甙元(diosgenin)的配糖体表明龙血树科作为天门冬目的一个成员,在亲缘关系上与龙舌兰科和天门冬科最为接近,与玉簪科、菝葜科以及薯蓣目亦有密切的联系。  相似文献   

2.
纤细薯蓣甾体皂甙的分离鉴定   总被引:1,自引:0,他引:1  
从江西庐山采集的纤细薯蓣根茎中分到两个三糖皂甙(A,B),通过乙酰化、酸水解、红外、质谱和碳谱等鉴定,皂甙 A 是薯蓣皂甙(dioscin),皂甙 B 是纤细皂甙(gracillin),二者得率之比约为3:1。  相似文献   

3.
鲜盾叶薯蓣中原始皂甙的分离与鉴定   总被引:4,自引:0,他引:4  
从盾叶薯蓣(Dioscorea zingiberensis Wright)新鲜根茎的甲醇提取物分离到薯蓣皂甙元棕榈酸酯(diosgenin palmitate)、β-谷甾醇(β-sitosterol)、纤细皂甙(gracillin)、原纤细皂甙(protogracillin)和原盾叶皂甙(protozingiberemissaponin),后者为一新甾体皂甙,结构推定为3-O-{α-L-鼠李吡喃糖(1→3)-[β-D-葡萄吡喃糖(1→2)]-β-D-葡萄吡喃糖}-26-O-{β-D-葡萄吡喃糖}-薯蓣皂甙元(3-O-{α-L-rhamnopyran0syl(1→3)-[β-D-glucopyranosyl(1→2)]-β-D-glucopyranosyl}-26-O-{β-D-glucopyranosyl}-diosgenin)。  相似文献   

4.
以薯蓣皂甙元为原料,经过与氨基酸缩合,合成了6个新化合物,甘氨酸薯蓣皂甙元酯(1),DL-组氨酸薯蓣皂甙元酯醋酸盐(2),L-赖氨酸薯蓣皂甙元酯(3),N-L-赖氨酰基甘氨酸薯蓣皂甙元酯醋酸盐(4),N-L-精氨酰基甘氨酸薯蓣皂甙元酯醋酸盐(5),N-DL-组氨酰基甘氨酸薯蓣皂甙元酯醋酸盐(6),并对结构进行了鉴定。同时发现这6个化合物具有抗大鼠实验性心肌梗死作用。  相似文献   

5.
以薯蓣皂甙元丁二酸单酯为原料,经过与氨基酸缩合,合成了5个新化合物,4—L—(N—丁二酸—2—基)胺基—4—氧代丁酸薯蓣皂甙元酯二钠盐(1),4—(N—乙酸—2—基)胺基—4—氧代丁酸薯蓣皂甙元酯钠盐(2),4—L(N—(5—胍基)戊酸—2—基)胺基—4—氧代丁酸薯蓣皂甙元酯醋酸盐(3),4—(N—(3—咪唑-4—基)丙酸—2—基)胺基—4—氧代丁酸薯蓣皂甙元酯醋酸盐(4),4—(N—戊二酸—2—基)胺基—4—氧代丁酸薯蓣皂甙元酯二钠盐(5),并对其进行了结构鉴定,同时发现这5个化合物对大鼠都具有抗心肌梗死活性。  相似文献   

6.
建立薯蓣皂甙元的ELISA定量分析方法必须先合成薯蓣皂甙元的全抗原。试验利用薯蓣皂甙元3位上的-OH,在DMAP的催化下,薯蓣皂甙元与丁二酸酐反应,生成薯蓣皂甙元丁二酸单酯,用MSI、R1、H NMR1、3CNMR等方法对产物结构进行了表征。用混合酸酐法制备薯蓣皂甙元与牛血清白蛋白的结合物(DG-HS-BSA),碳二亚胺法制备薯蓣皂甙元与卵清蛋白的结合物(DG-HS-OVA),经TNBS测定,每分子结合物连接的薯蓣皂甙元分子数分别为28.0和8.8。  相似文献   

7.
以薯蓣皂甙元丁二酸单酯为原料,经过与氨基酸缩合,合成了5个新化合物,4-L-(N-丁二酸-2-基)胺基-4-氧代丁酸薯蓣皂甙元酯二钠盐(1),4-(N-乙酸-2-基)胺基-4-氧代丁酸薯蓣皂甙元酯钠盐(2),4-L-(N-(5-胍基)戊酸-2-基)胺基-4-氧代丁酸薯蓣皂甙元酯醋酸盐(3),4-(N-(3-咪唑-4-基)丙酸-2-基)胺基-4-氧代丁酸薯蓣皂甙元酯醋酸盐(4),4-(N-戊二酸-2-基)胺基-4-氧代丁酸薯蓣皂甙元酯二钠盐(5),并对其进行了结构鉴定,同时发现这5个化合物对大鼠都具有抗心肌梗死活性.  相似文献   

8.
盾叶薯蓣灭钉螺活性成分的研究   总被引:11,自引:0,他引:11  
盾叶薯蓣根茎正丁醇提取物呈现显著的灭钉螺活性。由生物活性引导法分离得到两种具有灭钉螺活性的甾体皂甙,经化学和光谱方法分析,确定它们为纤细皂甙和盾叶皂甙A。其中,纤细皂甙72h灭钉螺率为98%(5mg/L),盾叶皂甙A72h灭钉螺率为96%(5mg/L)。首次报道了灭钉螺活性。  相似文献   

9.
棕粑叶中甾体皂甙和皂甙元的分离鉴定   总被引:4,自引:0,他引:4  
从棕粑叶(Aspidistra zongbayi K.Y.Lang et Z.Y.Zhu)根茎正丁醇提取物中分离得到两个甾体皂甙。通过物理和化学方法鉴定为蜘蛛抱蛋皂甙(3-0-{β-D-吡喃葡萄糖(1→2)-[β-D-吡喃木糖-(1→3)]-β-D-吡喃葡萄糖-(1→4)-β-D-吡喃半乳糖}-薯蓣皂甙元)和原蜘蛛抱蛋皂甙。从正丁醇部分酸水解物中分到△~(3,5)-脱氧替告皂甙元、薯蓣皂甙元、静特诺皂甙元。从根茎中还得到β-谷甾醇。  相似文献   

10.
薯蓣皂甙元的研究进展   总被引:9,自引:0,他引:9  
我国是薯蓣资源大国,其有效成分薯蓣皂甙元是甾体激素的主要合成原料.对薯蓣皂甙元的鉴定、生物合成、提取、分离以及利用等研究进行综述.  相似文献   

11.
Recombinant yeast ubiquitin C-terminal hydrolase (YUH1), which has an N-terminal (His)(6) tag, and an autolysis-resistant mutant of the human immunodeficiency virus-1 protease (HIV-1 Pr) have been used as specific proteases to yield peptides from a ubiquitin conjugate. In the present example, connective tissue-activating peptide (CTAPIII) and neutrophil-activating peptide 2 (NAP/2) were generated by digestion of a ubiquitin-CTAPIII conjugate with YUH1 and HIV Pr, respectively, as indicated below: [see text] YUH1 cleaved at the peptide bond formed by the C-terminal Gly(76) of ubiquitin (Ub) and the N-terminal Asn(1) of the 85-residue peptide CTAPIII. The HIV-1 Pr cleaved between Tyr(15) and Ala(16), the N-terminal Ala of the 70-residue peptide NAP/2. Both enzymes produced authentic peptides from the Ub fusion protein, with a nearly 100% yield. The liberated CTAPIII and NAP/2 were separated from (His)(6)-Ub, the trace amounts of unreacted (His)(6)-Ub-CTAPIII, HIV-1 Pr, and the (His)(6)-YUH1 by passage over a nickel-chelate column; the final yield was about 10 mg of peptide/liter of cell culture. (His)(6)-YUH1, the HIV Pr mutant, and the (His)(6)-Ub-CTAPIII substrate were all expressed individually in Escherichia coli. (His)(6)-YUH1 and (His)(6)-Ub-CTAPIII were highly expressed in a soluble form, but about 75% of the total (His)(6)-YUH1 was also found in inclusion bodies. Both proteins from the soluble fractions were easily purified in a single step by immobilized metal ion affinity chromatography with a yield of about 27 mg of (His)(6)-Ub-CTAPIII and 13.6 mg of (His)(6)-YUH1 protein/liter of cell culture. Chemotactic factor activity, as assessed by the neutrophil shape change assay, was observed for NAP/2, but not for CTAPIII. This strategy, which employs YUH1 and the HIV-1 Pr as tools for the highly selective cleavage of the chimeric substrate, should be applicable to the large-scale production of a variety of peptides.  相似文献   

12.
During cationic bed adsorption (EBA), with cutinase with varying length tryptophan tags (WP)(2)and (WP)(4), 33% and 10% of adsorption capacity and 80% and 32% eluted specific activity were observed in relation to wild type (wt)-cutinase in the conventional process. Therefore, as the hydrophobicity of the protein increases, it is important to integrate the EBA step with a hydrophobic interaction chromatography (HIC) process. As the length of the hydrophobic tag-(WP) increases from n = 2 to n = 4, the purification factor obtained by HIC was 1.8 and 2.2-fold higher than wt-cutinase. However, the recovery yield obtained in HIC decreases substantially as the length of hydrophobic tag increases (97%, 84% and 70% for wt-cutinase, cutinase-(WP)(2) and cutinase-(WP)(4)). The integration of two purification steps, EBA followed by HIC, resulted in the highest overall purity level for cutinase-(WP)(2), and the highest overall recovery yield for wt-cutinase. When optimizing the design of a hydrophobic tag fused to a protein secreted by Saccharomyces cerevisiae it must be considered that the cultivation parameters could impair the downstream process, and consequently the optimum tag is not necessarily the one that presents the highest purification factor in HIC.  相似文献   

13.
The performance of a mesophilic two-stage system generating hydrogen and methane continuously from sucrose (10-30 g/L) was investigated. A hydrogen-generating CSTR followed by an upflow anaerobic filter were both inoculated with anaerobically digested sewage sludge, and ORP, pH, gas output, %H(2), %CH(4) and %CO(2) monitored. pH was controlled with NaOH, KOH or Ca(OH)(2). Using NaOH as alkali with 10 g/L sucrose, yields of 1.62 +/- 0.2 mol H(2)/mol hexose added and 323 mL CH(4)/gCOD added to the hydrogen and methane reactors respectively were achieved. The overall chemical oxygen demand (COD) reduction was 92.6% with 0.90 +/- 0.1 g/L sodium and 316 +/- 40 mg/L residual acetate in the methane reactor. Operation at 20 g/L sucrose and NaOH as alkali led to impaired volatile fatty acid (VFA) degradation in the methane reactor with 2.23 +/- 0.2 g/L sodium, 1,885 mg/L residual acetate, a hydrogen yield of 1.47 +/- 0.1 mol/mol hexose added, a methane yield of 294 mL/gCOD added and an overall COD reduction of 83%. Using Ca(OH)(2) as alkali with 20 g/L sucrose gave a hydrogen yield of 1.29 +/- 0.3 mol/mol hexose added, a methane yield of 337 mL/gCOD added and improved the overall COD reduction to 91% with residual acetate concentrations of 522 +/- 87 mg/L. Operation at 30 g/L sucrose with Ca(OH)(2) gave poorer overall COD reduction (68%), a hydrogen yield of 1.47 +/- 0.2 mol/mol hexose added, a methane yield of 138 mL/gCOD added and residual acetate 7,343 +/- 715 mg/L. It was shown that sodium toxicity and overloading are important issues for successful anaerobic digestion of effluent from biohydrogen reactors in high rate systems.  相似文献   

14.
Human LECT2 is a 16-kDa chemotactic protein that consists of 133 amino acids and three intramolecular disulfide bonds. Here, we present the oxidative refolding of (His)(6)-LECT2, an N-terminally (His)(6)-tagged recombinant protein of human LECT2. (His)(6)-LECT2 was overproduced in Escherichia coli in the form of insoluble aggregates, solubilized with 8 M urea in the presence of 10 mM DTT, and purified and refolded on Ni-NTA agarose by lowering the urea concentration before the elution. This process, however, gave a mixture of oligomers of (His)(6)-LECT2 as well as the monomer, whose composition was as low as 36%. The oligomers formed as a result of incorrect intermolecular disulfide bonds. After the refolding on Ni-NTA agarose (step 1), the disulfide bonds were shuffled using a glutathione redox buffer (step 2) and the remaining thiols were completely oxidized (step 3) to improve the yield of correctly folded, monomeric (His)(6)-LECT2. The monomer composition was significantly improved to 81% by the three-step refolding method and the monomer thus obtained was shown to have the same conformation as the authentic LECT2 produced in CHO cells by CD and NMR spectroscopies. The yield of (His)(6)-LECT2 was 1.0 mg/L E. coli culture and was 16 times as high as that in our previous report, in which (His)(6)-LECT2 was purified from the soluble fractions of E. coli cell lysates.  相似文献   

15.
Qiu L  Wang Q  Lin L  Liu X  Jiang X  Zhao Q  Hu G  Wang R 《Chirality》2009,21(2):316-323
A new catalytic system, generated from the readily available and inexpensive beta-sulfonamide alcohol L*, Ti(O(i)Pr)(4), Et(2)Zn, and tertiary amine base (R(3)N), effectively catalyzes the enantioselective addition of various terminal alkynes including some quite challenging alkynes to aldehydes in good yields and excellent enantioselectivities. Up to 96% yield and >99% enantioselectivity were achieved with the use of N,N-diisoproylethylamine (DIPEA) as an additive in this asymmetric addition.  相似文献   

16.
In the native purple bacterial reaction center (RC), light-driven charge separation utilizes only the A-side cofactors, with the symmetry related B-side inactive. The process is initiated by electron transfer from the excited primary donor (P*) to the A-side bacteriopheophytin (P* --> P+ H(A)-) in approximately 3 ps. This is followed by electron transfer to the A-side quinone (P+ H(A)- --> P+ Q(A)-) in approximately 200 ps, with an overall quantum yield of approximately 100%. Using nanosecond flash photolysis and RCs from the Rhodobacter capsulatus F(L181)Y/Y(M208)F/L(M212)H mutant (designated YFH), we have probed the decay pathways of the analogous B-side state P+ H(B)-. The rate of the P+ H(B)- --> ground-state charge-recombination process is found to be (3.0 +/- 0.8 ns)(-1), which is much faster than the analogous (10-20 ns)(-1) rate of P+ H(A)- --> ground state. The rate of P+ H(B)- --> P+ Q(B)- electron transfer is determined to be (3.9 +/- 0.9 ns)(-1), which is about a factor of 20 slower than the analogous A-side process P+ H(A)- --> P+ Q(A)-. The yield of P+ H(B)- --> P+ Q(B)- electron-transfer calculated from these rate constants is 44%. This value, when combined with the known 30% yield of P+ H(B)- from P in YFH RCs, gives an overall yield of 13% for B-side charge separation P* --> P+ H(B)- --> P+ Q(B)- in this mutant. We determine essentially the same value (15%) by comparing the P-bleaching amplitude at approximately 1 ms in YFH and wild-type RCs.  相似文献   

17.
The tripeptide Bz-Arg-Gly-Asp(-OMe)-OH was synthesized by enzymatic method. Bz-Arg-Gly-OEt was synthesized by trypsin in ethanol containing 0.1 M Tris/HCl buffer (pH 8.0), and then H-Asp(-OMe)(2) was incorporated into the Bz-Arg-Gly-OEt using chymopapain in 0.25M CHES/NaOH buffer (pH = 9.0, EDTA 10 mM). The yield of Bz-Arg-Gly-OEt and Bz-Arg-Gly-Asp(-OMe)-OH were 80% and 70% using 1M Bz-Arg-OEt and 0.5M Bz-Arg-Gly-OEt, respectively. For Bz-Arg-Gly-OEt synthesis reaction at high concentrations of the substrates, the buffer content in ethanol was a key factor to determine the optimal reaction condition. In Bz-Arg-Gly-Asp(-OMe)-OH synthesis reaction, the yield was low in organic solvent due to various side products such as Bz-Arg-OH, Bz-Arg-Gly-OH, and Bz-Arg-Gly-Asp(-OMe)-Asp(-OMe)-OH, suggesting that chymopapain has a very broad substrate specificity of the S(1) site. The Bz-Arg-Gly-Asp(-OMe)-OH synthesis rate and its yield were dramatically elevated and the side reactions were reduced using only the CHES/NaOH buffer (pH = 9.0, EDTA 10 mM) as a reaction media. The final product Bz-Arg-Gly-Asp(-OMe)-OH was identified to be formed via C-terminal hydrolysis of Bz-Arg-Gly-Asp(-OMe)(2) after the nucleophile, H-Asp(-OMe)(2), was added.  相似文献   

18.
The mechanism of charge recombination was studied in Photosystem II by using flash induced chlorophyll fluorescence and thermoluminescence measurements. The experiments were performed in intact cells of the cyanobacterium Synechocystis 6803 in which the redox properties of the primary pheophytin electron acceptor, Phe, the primary electron donor, P(680), and the first quinone electron acceptor, Q(A), were modified. In the D1Gln130Glu or D1His198Ala mutants, which shift the free energy of the primary radical pair to more positive values, charge recombination from the S(2)Q(A)(-) and S(2)Q(B)(-) states was accelerated relative to the wild type as shown by the faster decay of chlorophyll fluorescence yield, and the downshifted peak temperature of the thermoluminescence Q and B bands. The opposite effect, i.e. strong stabilization of charge recombination from both the S(2)Q(A)(-) and S(2)Q(B)(-) states was observed in the D1Gln130Leu or D1His198Lys mutants, which shift the free energy level of the primary radical pair to more negative values, as shown by the retarded decay of flash induced chlorophyll fluorescence and upshifted thermoluminescence peak temperatures. Importantly, these mutations caused a drastic change in the intensity of thermoluminescence, manifested by 8- and 22-fold increase in the D1Gln130Leu and D1His198Lys mutants, respectively, as well as by a 4- and 2.5-fold decrease in the D1Gln130Glu and D1His198Ala mutants, relative to the wild type, respectively. In the presence of the electron transport inhibitor bromoxynil, which decreases the redox potential of Q(A)/Q(A)(-) relative to that observed in the presence of DCMU, charge recombination from the S(2)Q(A)(-) state was accelerated in the wild type and all mutant strains. Our data confirm that in PSII the dominant pathway of charge recombination goes through the P(680)(+)Phe(-) radical pair. This indirect recombination is branched into radiative and non-radiative pathways, which proceed via repopulation of P(680)(*) from (1)[P(680)(+)Ph(-)] and direct recombination of the (3)[P(680)(+)Ph(-)] and (1)[P(680)(+)Ph(-)] radical states, respectively. An additional non-radiative pathway involves direct recombination of P(680)(+)Q(A)(-). The yield of these charge recombination pathways is affected by the free energy gaps between the Photosystem II electron transfer components in a complex way: Increase of DeltaG(P(680)(*)<-->P(680)(+)Phe(-)) decreases the yield of the indirect radiative pathway (in the 22-0.2% range). On the other hand, increase of DeltaG(P(680)(+)Phe(-)<-->P(680)(+)Q(A)(-)) increases the yield of the direct pathway (in the 2-50% range) and decreases the yield of the indirect non-radiative pathway (in the 97-37% range).  相似文献   

19.
Water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate has been utilized as a substrate for ethanol production using Pichia stipitis NRRL Y-7124. Hydrolysate fermentability was considerable improved by boiling, and overliming up to pH 10.0 with solid Ca(OH)(2) in combination with sodium sulfite. The percent total sugar utilized and ethanol yield (Y(p/s)) for the untreated hydrolysate were 20.15+/-0.17% and 0.19+/-0.003 g(p) g(s)(-1), respectively, compared with 76.0+/-0.32% and 0.35 g(p) g(s)(-1), respectively for the treated material. The fermentation was very effective at an aeration rate of 0.02 v/v/m, temperature 30+/-0.2 degrees C and pH 6.0+/-0.2. However, the volumetric productivity (Q(p)) was still considerably less than observed in a simulated synthetic hydrolysate medium with a sugar composition similar to the hemicellulose acid hydrolysate. L-Arabinose was not fermented but assimilated. The presence of acetic acid in the hydrolysate decreased the ethanol yield and productivity considerably.  相似文献   

20.
The facilitated downstream processing of an intracellular, polyhistidine-tagged protein, glutathione S-transferase [GST-(His)(6)], direct from unclarified E. coli homogenates using expanded beds of STREAMLINE chelating, has been investigated. A series of pilot experiments were used to develop preparative-scale separations of GST-(His)(6), initially in packed and then in expanded beds. Packed beds of Ni(2+)-loaded STREAMLINE chelating proved to have the highest 5% dynamic capacity for GST-(His)(6), of 357 U mL(-1) (36 mg mL(-1)). When using immobilized Cu(2+) or Zn(2+), metal ion transfer was observed from the iminodiacetate ligands to the high-affinity chelator, GST-(His)(6). The subsequent metal affinity precipitation of this homodimer resulted in operational problems. An equilibrium adsorption isotherm demonstrated the high affinity of GST-(His)(6) for immobilized Ni(2+), with a q(m) of 695 U mL(-1) (70 mg mL(-1)) and a K(d) of 0.089 U mL(-1) (0.0089 mg mL(-1)). Ni(2+)-loaded STREAMLINE chelating was therefore selected to purify GST-(His)(6) from unclarified E. coli homogenate, resulting in an eluted yield of 80% and a 3.34-fold purification. The high dynamic capacity in the expanded mode of 357 U mL(-1) (36 mg mL(-1)) demonstrates that this specific interaction was not affected by the presence of E. coli cell debris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号