首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
To investigate whether plasminogen may feature in scrapie infection, we inoculated plasminogen-deficient (Plg(-/-)), heterozygous plasminogen-deficient (Plg(+/-)), and wild-type (Plg(+/+)) mice by the intracerebral or intraperitoneal (i.p.) route with the RML scrapie strain and monitored the onset of neurological signs of disease, survival time, brain, and accumulation of scrapie disease-associated forms of the prion protein (PrP(Sc)). Only after i.p. inoculation, a slight, although significant, difference in survival (P < 0.05) between Plg(-/-) and Plg(+/+) mice was observed. Neuropathological examination and Western blot analysis were carried out when the first signs of disease appeared in Plg(+/+) animals (175 days after i.p. inoculation) and when mice reached the terminal stage of illness. At the onset of symptoms, PrP(Sc) accumulation was higher in the brain and spleen of Plg(+/+) and Plg(+/-) mice than in those of Plg(-/-) mice, and these differences were paralleled by differences in the severity of spongiform changes and astrogliosis in the cerebral cortex and subcortical gray structures. Immunohistochemical analysis of the spleens before inoculation did not show any impairment of the immune system affecting follicular dendritic or lymphoid cells in Plg(-/-) mice. Once the disease progressed and mice began to die of infection, differences were no longer apparent in either brains or spleens. In conclusion, our data indicate that plasminogen has no major effect on the survival of scrapie agent-infected mice.  相似文献   

2.
Naturally occurring transmissible spongiform encephalopathy (TSE) diseases such as bovine spongiform encephalopathy in cattle are probably transmitted by oral or other peripheral routes of infection. While prion protein (PrP) is required for susceptibility, the mechanism of spread of infection to the brain is not clear. Two prominent possibilities include hematogenous spread by leukocytes and neural spread by axonal transport. In the present experiments, following oral or intraperitoneal infection of transgenic mice with hamster scrapie strain 263K, hamster PrP expression in peripheral nerves was sufficient for successful infection of the brain, and cells of the spleen were not required either as a site of amplification or as transporters of infectivity. The role of tissue-specific PrP expression of foreign PrP in interference with scrapie infection was also studied in these transgenic mice. Peripheral expression of heterologous PrP completely protected the majority of mice from clinical disease after oral or intraperitoneal scrapie infection. Such extensive protection has not been seen in earlier studies on interference, and these results suggested that gene therapy with mutant PrP may be effective in preventing TSE diseases.  相似文献   

3.
Prion diseases such as scrapie involve the accumulation of disease-specific prion protein, PrP(Sc), in the brain. Toll-like receptors (TLRs) are a family of proteins that recognize microbial constituents and are central players in host innate immune responses. The TLR9 agonist unmethylated CpG DNA was shown to prolong the scrapie incubation period in mice, suggesting that innate immune activation interferes with prion disease progression. Thus, it was predicted that ablation of TLR signaling would result in accelerated pathogenesis. C3H/HeJ (Tlr4(Lps-d)) mice, which possess a mutation in the TLR4 intracellular domain preventing TLR4 signaling, and strain-matched wild-type control (C3H/HeOuJ) mice were infected intracerebrally or intraperitoneally with various doses of scrapie inoculum. Incubation periods were significantly shortened in C3H/HeJ compared with C3H/HeOuJ mice, regardless of the route of infection or dose administered. At the clinical phase of disease, brain PrP(Sc) levels in the two strains of mice showed no significant differences by Western blotting. In addition, compared with macrophages from C3H/HeOuJ mice, those from C3H/HeJ mice were unresponsive to fibrillogenic PrP peptides (PrP residues 106 to 126 [PrP(106-126)] and PrP(118-135)) and the TLR4 agonist lipopolysaccharide but not to the TLR2 agonist zymosan, as measured by cytokine production. These data confirm that innate immune activation via TLR signaling interferes with scrapie infection. Furthermore, the results also suggest that the scrapie pathogen, or a component(s) thereof, is capable of stimulating an innate immune response that is active in the central nervous system, since C3H/HeJ mice, which lack the response, exhibit shortened incubation periods following both intraperitoneal and intracerebral infections.  相似文献   

4.
Absence of Eclipse Phase in Scrapie Mice   总被引:1,自引:0,他引:1  
Field, Joyce and Keith1 have claimed that the scrapie agent shows a viral characteristic by having an eclipse phase after being inoculated into the intracerebral region of mice. Three experiments, studying the accumulation of scrapie agent in spleen after intracerebral and intraperitoneal inoculation of mice, have not verified the conclusions of Field et al. A typical curve for the progression of scrapie activity after intracerebral inoculation (Fig. 1) shows no eclipse phase, nor was any observed in an experiment where the titre was examined every 2 days for the first 14 days after inoculation. Moreover, Field and his colleagues have not referred to similar studies with different results from theirs. Four independent groups of workers2–6 have now examined the levels of scrapie activity in brain and spleen during the early stages after infection by three different routes and in none of these studies was there any clear indication of an eclipse phase in scrapie.  相似文献   

5.
Molecular features of the proteinase K-resistant prion protein (PrP res) may discriminate among prion strains, and a specific signature could be found during infection by the infectious agent causing bovine spongiform encephalopathy (BSE). To investigate the molecular basis of BSE adaptation and selection, we established a model of coinfection of mice by both BSE and a sheep scrapie strain (C506M3). We now show that the PrP res features in these mice, characterized by glycoform ratios and electrophoretic mobilities, may be undistinguishable from those found in mice infected with scrapie only, including when mice were inoculated by both strains at the same time and by the same intracerebral inoculation route. Western blot analysis using different antibodies against sequences near the putative N-terminal end of PrP res also demonstrated differences in the main proteinase K cleavage sites between mice showing either the BSE or scrapie PrP res profile. These results, which may be linked to higher levels of PrP res associated with infection by scrapie, were similar following a challenge by a higher dose of the BSE agent during coinfection by both strains intracerebrally. Whereas PrP res extraction methods used allowed us to distinguish type 1 and type 2 PrP res, differing, like BSE and scrapie, by their electrophoretic mobilities, in the same brain region of some patients with Creutzfeldt-Jakob disease, analysis of in vitro mixtures of BSE and scrapie brain homogenates did not allow us to distinguish BSE and scrapie PrP res. These results suggest that the BSE agent, the origin of which remains unknown so far but which may have arisen from a sheep scrapie agent, may be hidden by a scrapie strain during attempts to identify it by molecular studies and following transmission of the disease in mice.  相似文献   

6.
PrP accumulation in the brains of mice infected with scrapie takes several different forms: amyloid plaques, widespread accumulation in neuropile, and perineuronal deposits. PrP is also sometimes detected within microglia and in or around astrocytes. There are dramatic and reproducible differences between scrapie strains in the relative prominence of these changes and their distribution in the brain. Depending on the scrapie strain, PrP pathology is targeted precisely to particular brain areas, often showing a clear association with identifiable groups of neurons. These results suggest that PrP changes are primarily associated with neurons, and that different scrapie strains recognize and selectively replicate in different populations of neurons. Immunostaining at the ultrastructural level demonstrates an association of PrP with neurite plasmalemma, around amyloid plaques, and in areas of widespread neuropile and perineuronal accumulation. It is probable that PrP is encoded by theSinc gene, which controls the incubation period of scrapie in mice. Studies using the intraocular infection route show that theSinc gene controls the onset rather than the rate of replication, suggesting that PrP may be involved in cell-to-cell spread of infection. The accumulation of PrP at the surface of neurons is consistent with such a role.  相似文献   

7.
Natural scrapie transmission from infected ewes to their lambs is thought to occur by the oral route around the time of birth. However the hypothesis that scrapie transmission can also occur before birth (in utero) is not currently favoured by most researchers. As scrapie is an opportunistic infection with multiple infection routes likely to be functional in sheep, definitive evidence for or against transmission from ewe to her developing fetus has been difficult to achieve. In addition the very early literature on maternal transmission of scrapie in sheep was compromised by lack of knowledge of the role of the PRNP (prion protein) gene in control of susceptibility to scrapie. In this study we experimentally infected pregnant ewes of known PRNP genotype with a distinctive scrapie strain (SSBP/1) and looked for evidence of transmission of SSBP/1 to the offspring. The sheep were from the NPU Cheviot flock, which has endemic natural scrapie from which SSBP/1 can be differentiated on the basis of histology, genetics of disease incidence and strain typing bioassay in mice. We used embryo transfer techniques to allow sheep fetuses of scrapie-susceptible PRNP genotypes to develop in a range of scrapie-resistant and susceptible recipient mothers and challenged the recipients with SSBP/1. Scrapie clinical disease, caused by both natural scrapie and SSBP/1, occurred in the progeny but evidence (including mouse strain typing) of SSBP/1 infection was found only in lambs born to fully susceptible recipient mothers. Progeny were not protected from transmission of natural scrapie or SSBP/1 by washing of embryos to International Embryo Transfer Society standards or by caesarean derivation and complete separation from their birth mothers. Our results strongly suggest that pre-natal (in utero) transmission of scrapie may have occurred in these sheep.  相似文献   

8.
Transmissible spongiform encephalopathies (TSEs) may be acquired peripherally, in which case infectivity usually accumulates in lymphoid tissues before dissemination to the nervous system. Studies of mouse scrapie models have shown that mature follicular dendritic cells (FDCs), expressing the host prion protein (PrP(c)), are critical for replication of infection in lymphoid tissues and subsequent neuroinvasion. Since FDCs require lymphotoxin signals from B lymphocytes to maintain their differentiated state, blockade of this stimulation with a lymphotoxin beta receptor-immunoglobulin fusion protein (LT beta R-Ig) leads to their temporary dedifferentiation. Here, a single treatment with LT beta R-Ig before intraperitoneal scrapie inoculation blocked the early accumulation of infectivity and disease-specific PrP (PrP(Sc)) within the spleen and substantially reduced disease susceptibility. These effects coincided with an absence of FDCs in the spleen for ca. 28 days after treatment. Although the period of FDC dedifferentiation was extended to at least 49 days by consecutive LT beta R-Ig treatments, this had little added protective benefit after injection with a moderate dose of scrapie. We also demonstrate that mature FDCs are critical for the transmission of scrapie from the gastrointestinal tract. Treatment with LT beta R-Ig before oral scrapie inoculation blocked PrP(Sc) accumulation in Peyer's patches and mesenteric lymph nodes and prevented neuroinvasion. However, treatment 14 days after oral inoculation did not affect survival time or susceptibility, suggesting that infectivity may have already spread to the peripheral nervous system. Although manipulation of FDCs may offer a potential approach for early intervention in peripherally acquired TSEs, these data suggest that the duration of the treatment window may vary widely depending on the route of exposure.  相似文献   

9.
The process by which transmissible spongiform encephalopathy agents, or prions, infect cells is unknown. We employed a new differentiable cell line (SN56) susceptible to infection with three mouse-adapted scrapie strains to gain insight into the cellular infection process. The effect of disease-associated PrP (PrP-res) association with microsomal membranes on infection efficiency was examined by comparing sustained PrP-res production in cells treated with either scrapie brain microsomes or purified, detergent-extracted PrP-res. When normalized for quantity of input PrP-res, scrapie brain microsomes induced dramatically enhanced persistent PrP-res formation compared to purified PrP-res. Infected SN56 cells released low levels of PrP-res into the culture supernatant, which also efficiently initiated infection in recipient cells. Interestingly, microsomes labeled with a fluorescent marker were internalized by SN56 cells in small vesicles, which were subsequently found in neuritic processes. When bound to culture wells to reduce internalization during the infection process, scrapie microsomes induced less long-term PrP-res production than suspended microsomes. Long-term differentiation of infected SN56 cells was accompanied by a decrease in PrP-res formation. Our observations provide evidence that infection of cells is aided by the association of PrP-res with membranes and/or other microsomal constituents.  相似文献   

10.
Alteration of free radical metabolism in the mouse brain by scrapie infection was evaluated. The infection of mice with scrapie agent, 87V strain, slightly increased the activities of catalase and glutathione-S-transferase, while it had no effect on glutathione peroxidase, glutathione reductase, and Cu, Zn-superoxide dismutase. Results show that the scrapie infection decreased the activity of mitochondrial Mn-superoxide dismutase by 50% but increased that of monoamine oxidase (p < 0.05). Scrapie infection also increased the rate of mitochondrial superoxide generation (p < 0.05). Following scrapie infection, the level of free-sulfhydryl compounds in brain homogenates slightly decreased, but the content of thiobarbituric-acid-reactive substances and malondialdehyde increased significantly. Electron microscopy indicated that the ultrastructure of mitochondria was destroyed in the brain of scrapie-infected mice. These results suggest that elevated oxygen free radical generation and lowered scavenging activity in mitochondria might cause the free radical damage to the brain. Such deleterious changes in mitochondria may contribute to the development of prion disease.  相似文献   

11.
To clarify the mechanisms leading to the development of Creutzfeldt-Jakob disease in some recipients of pituitary-derived human growth hormone (hGH), we investigated the effects of repeated injections of low prion doses in mice. The injections were performed, as in hGH-treated children, by a peripheral route at short intervals and for an extended period. Twelve groups of 24 mice were intraperitoneally inoculated one, two, or five times per week for 200 days with 2 x 10(-5) to 2 x 10(-8) dilutions of brain homogenate containing the mouse-adapted C506M3 scrapie strain. Sixteen control mice were injected once a week for 200 days with a 2 x 10(-4) dilution of normal brain homogenate. Of mice injected in a single challenge with a scrapie inoculum of a 2 x 10(-4), 2 x 10(-5), or 2 x 10(-6) dilution, 2/10, 1/10, and 0/10 animals developed scrapie, respectively. Control mice remained healthy. One hundred thirty-five of 135 mice injected with repeated prion doses of a 2 x 10(-5) or 2 x 10(-6) dilution succumbed to scrapie. Of mice injected with repeated scrapie doses of a 2 x 10(-7) or 2 x 10(-8) dilution, 52/59 and 38/67 animals died of scrapie, respectively. A high incidence of scrapie was observed in mice receiving repeated doses at low infectivity, whereas there was no disease in mice that were injected once with the same doses. Repeated injections of low prion doses thus constitute a risk for development of prion disease even if the same total dose inoculated in a single challenge does not induce the disease.  相似文献   

12.
Complement facilitates early prion pathogenesis   总被引:16,自引:0,他引:16  
New-variant Creutzfeldt-Jakob disease and scrapie are typically initiated by extracerebral exposure to the causative agent, and exhibit early prion replication in lymphoid organs. In mouse scrapie, depletion of B-lymphocytes prevents neuropathogenesis after intraperitoneal inoculation, probably due to impaired lymphotoxin-dependent maturation of follicular dendritic cells (FDCs), which are a major extracerebral prion reservoir. FDCs trap immune complexes with Fc-gamma receptors and C3d/C4b-opsonized antigens with CD21/CD35 complement receptors. We examined whether these mechanisms participate in peripheral prion pathogenesis. Depletion of circulating immunoglobulins or of individual Fc-gamma receptors had no effect on scrapie pathogenesis if B-cell maturation was unaffected. However, mice deficient in C3, C1q, Bf/C2, combinations thereof or complement receptors were partially or fully protected against spongiform encephalopathy upon intraperitoneal exposure to limiting amounts of prions. Splenic accumulation of prion infectivity and PrPSc was delayed, indicating that activation of specific complement components is involved in the initial trapping of prions in lymphoreticular organs early after infection.  相似文献   

13.
Transmissible spongiform encephalopathy or prion diseases are fatal neurodegenerative disorders of humans and animals often initiated by oral intake of an infectious agent. Current evidence suggests that infection occurs initially in the lymphoid tissues and subsequently in the central nervous system (CNS). The identity of infected lymphoid cells remains controversial, but recent studies point to the involvement of both follicular dendritic cells (FDC) and CD11c(+) lymphoid dendritic cells. FDC generation and maintenance in germinal centers is dependent on lymphotoxin alpha (LT-alpha) and LT-beta signaling components. We report here that by the oral route, LT-alpha -/- mice developed scrapie while LT-beta -/- mice did not. Furthermore, LT-alpha -/- mice had a higher incidence and shorter incubation period for developing disease following inoculation than did LT-beta -/- mice. Transplantation of lymphoid tissues from LT-beta -/- mice, which have cervical and mesenteric lymph nodes, into LT-alpha -/- mice, which do not, did not alter the incidence of CNS scrapie. In other studies, a virus that is tropic for and alters functions of CD11c(+) cells did not alter the kinetics of neuroinvasion of scrapie. Our results suggest that neither FDC nor CD11c(+) cells are essential for neuroinvasion after high doses of RML scrapie. Further, it is possible that an as yet unidentified cell found more abundantly in LT-alpha -/- than in LT-beta -/- mice may assist in the amplification of scrapie infection in the periphery and favor susceptibility to CNS disease following peripheral routes of infection.  相似文献   

14.
《朊病毒》2013,7(2):61-63
Co-inoculation of prion strains into the same host can result in interference, where replication of one strain hinders the ability of another strain to cause disease. The drowsy (DY) strain of hamster-adapted transmissible mink encephalopathy (TME) extends the incubation period or completely blocks the hyper (HY) strain of TME following intracerebral, intraperitoneal or sciatic nerve routes of inoculation. However, it is not known if the interfering effect of the DY TME agent is exclusive to the HY TME agent by these experimental routes of infection. To address this issue, we show that the DY TME agent can block hamster-adapted chronic wasting disease (HaCWD) and the 263K scrapie agent from causing disease following sciatic nerve inoculation. Additionally, per os inoculation of DY TME agent slightly extends the incubation period of per os superinfected HY TME agent. These studies suggest that prion strain interference can occur by a natural route of infection and may be a more generalized phenomenon of prion strains.  相似文献   

15.
The infections of prion agents may cause progressive and fatal neurodegenerative diseases in humans and a serial of animal species. Previous studies have proposed that the levels of nitric oxide (NO) and nitric oxide synthase (NOS) in the brains of some neurodegeneration diseases changed, while S-nitrosylation (SNO) of many brain proteins altered in prion diseases. To elucidate the potential changes of brain NO levels during prion infection, the NO levels and NOS activities in the brain tissues of three scrapie experimental rodents were measured, including scrapie agent 263 K-infected hamsters and 139A- and ME7-infected mice. Both NO levels and NOS activities, including total NOS (TNOS) and inducible NOS (iNOS), were increased at the terminal stages of scrapie-infected animals. Assays of the brain samples collected at different time points during scrapie infection showed that the NO levels and NOS activities started to increase at early stage, reached to the peak in the middle stage, and dropped down at late stage. Western blots for brain iNOS revealed increased firstly and decreased late, especially in the brains of 139A- and ME7-infected mice. In line with those alterations, the levels of the SNO forms of several selected brain proteins such as aquaporin-1 (AQP1), calcium/calmodulin-dependent protein kinase II (CaMKII), neurogranin, and opalin, underwent similar changing trends, while their total protein levels did not change obviously during scrapie infection. Our data here for the first time illustrate the changing profile of brain NO and NOS during prion infection. Time-dependent alterations of brain NO level and the associated protein S-nitrosylation process may contribute greatly to the neuropathological damage in prion diseases.  相似文献   

16.
Previous studies demonstrated that neonatal mice up to about a week old are less susceptible than adult mice to infection by intraperitoneal inoculation with mouse-passaged scrapie. In peripherally inoculated adult mice, scrapie replicates in lymphoid tissues such as the spleen before invading the central nervous system. Here, we investigated scrapie susceptibility in neonatal mice in more detail, concentrating on spleen involvement. First, we demonstrated that neonatal mice are about 10 times less susceptible than adults to intraperitoneal scrapie inoculation. Then we injected mice intraperitoneally with a scrapie dose that produced disease in all mice inoculated at 10 days or older but in only about a third of neonatally inoculated mice. In this experiment, spleens collected 70 days after scrapie injection of mice 10 days old or older almost all contained pathological prion protein, PrPSc, and those that were bioassayed all contained high infectivity levels. In contrast, at this early stage, only two of six spleens from neonatally inoculated mice had detectable, low infectivity levels; no PrPSc was detected, even in the two spleens. Therefore, neonatal mice have an impaired ability to replicate scrapie in their spleens, suggesting that replication sites are absent or sparse at birth but mature within 10 days. The increase in susceptibility with age correlated with the first immunocytochemical detection of the normal cellular form of prion protein, PrPc, on maturing follicular dendritic cell networks. As lymphoid tissues are more mature at birth in sheep, cattle, and humans than in mice, our results suggest that in utero infection with scrapie-like agents is theoretically possible in these species.  相似文献   

17.
A five-month-pregnant Suffolk sheep histologically diagnosed as spontaneous scrapie was studied. Western blot analysis was performed with rabbit serum against the sheep scrapie-associated fibrils (SAF). In the proteinase K (pk)-treated parental brain and spleen samples, three major bands (15 K, 18 K, and 23 K) were detected. These major bands were not detected from the placenta. Infectious agents were isolated in mice from the brain samples but not from the placental homogenates. In another case of a three-month-pregnant Corriedale sheep without any clinical sign of, but histologically diagnosed as scrapie, was also studied in a similar approach. In the parental brain samples, three major bands (15 K, 18 K and 23 K) were detected. SAF protein was not detected in the parental spleen and placenta. No bands reactive with the antiserum were detected in any other samples from the fetal brain and spleen in both cases. However, infectious agents were isolated in mice from both brain and placental homogenates. Since the placenta is an important site of natural infection, it is worthwhile to study these tissues for the epidemiological study of scrapie infection.  相似文献   

18.
Scrapie is a prion disease affecting sheep and goats. Susceptibility to this neurodegenerative disease shows polygenic variance. The involvement of the laminin receptor (LRP/LR) in the metabolism and propagation of prions has previously been demonstrated. In the present work, the ovine laminin receptor gene (RPSA) was isolated, characterized, and mapped to ovine chromosome OAR19q13. Real-time RT-PCR revealed a significant decrease in RPSA mRNA in cerebellum after scrapie infection. Conversely, no differences were detected in other brain regions such as diencephalon and medulla oblongata. Association analysis showed that a polymorphism reflecting the presence of a RPSA pseudogene was overrepresented in a group of sheep resistant to scrapie infection. No amino acid change in the LRP/LR protein was found in the 126 sheep analyzed. However, interesting amino acid positions (241, 272, and 290), which could participate in the species barrier to scrapie and maybe to other transmissible spongiform encephalopathies, were identified by comparing LRP/LR sequences from various mammals with variable levels of resistance to scrapie.  相似文献   

19.
Senescence-accelerated mice (SAMP8) have a short life span, whereas SAMR1 mice are resistant to accelerated senescence. Previously it has been reported that the Akv strain of ecotropic murine leukemia virus (E-MuLV) was detected in brains of SAMP8 mice but not in brains of SAMR1 mice. In order to determine the change of MuLV levels following scrapie infection, we analyzed the E-MuLV titer and the RNA expression levels of E-MuLV, xenotropic MuLV, and polytropic MuLV in brains and spinal cords of scrapie-infected SAM mice. The expression levels of the 3 types of MuLV were increased in scrapie-infected mice compared to control mice; E-MuLV expression was detected in infected SAMR1 mice, but only in the terminal stage of scrapie disease. We also examined incubation periods and the levels of PrPSc in scrapie-infected SAMR1 (sR1) and SAMP8 (sP8) mice. We confirmed that the incubation period was shorter in sP8 (210+/-5 days) compared to sR1 (235+/-10 days) after intraperitoneal injection. The levels of PrPSc in sP8 were significantly greater than sR1 at 210+/-5 days, but levels of PrPSc at the terminal stage of scrapie in both SAM strains were virtually identical. These results show the activation of MuLV expression by scrapie infection and suggest acceleration of the progression of scrapie pathogenesis by MuLV.  相似文献   

20.
In natural or experimental oral scrapie infection of sheep, disease associated prion protein (PrP(d)) often first accumulates in Peyer's patch (PP) follicles. The route by which infectivity reaches the follicles is unknown, however, intestinal epithelial cells may participate in intestinal antigenic presentation by delivering exosomes as vehicles of luminal antigens. In a previous study using an intestinal loop model, following inoculation of scrapie brain homogenate, inoculum associated PrP(d) was detected by light microscopy shortly (15 minutes to 3.5 hours) after inoculation in the villous lacteals and sub-mucosal lymphatics. No PrP(d) was located within the follicle-associated epithelium (FAE), sub-FAE domes or the PP follicles. To evaluate this gut loop model and the transportation routes in more detail, we used electron microscopy (EM) to study intestinal tissues exposed to scrapie or control homogenates for 15 minutes to 10 days. In addition, immuno-EM was used to investigate whether exosomes produced in the FAE may possess small amounts of PrP(d) that were not detectable by light microscopy. This study showed that the integrity of the intestinal epithelium was sustained in the intestinal loop model. Despite prominent transcytotic activity and exosome release from the FAE of the ileal PP in sheep, these structures were not associated with transportation of PrP(d) across the mucosa. The study did not determine how infectivity reaches the follicles of PPs. The possibility that the infectious agent is transported across the FAE remains a possibility if it occurs in a form that is undetectable by the methods used in this study. Infectivity may also be transported via lymph to the blood and further to all other lymphoid tissues including the PP follicles, but the early presence of PrP(d) in the PP follicles during scrapie infection argues against such a mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号