首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Diphtheria toxin that was bound to receptors on BS-C-1 cells was able to bind approximately 1 molar equiv of adenylyl-(3',5')-uridine 3'-monophosphate (ApUp). In contrast, receptor-bound CRM197, a mutant form of toxin with greatly diminished affinity for dinucleotides, did not bind ApUp. Affinity of the dinucleotide for receptor-bound toxin differed from that for free toxin by less than an order of magnitude. These results indicate that the receptor site and the ApUp site on the toxin do not significantly overlap.  相似文献   

5.
6.
A simple synthesis of adenylyl-(2'----5')-adenylyl (2'----5')-adenosine (2-5A core) has been achieved on the basis of selective 3'-O-silylation of 5'-O-p-monomethoxytrityladenosine and chemo-selective formation of the 2'-5' internucleotide linkage using N-unprotected nucleosides.  相似文献   

7.
8.
9.
Diphtheria toxin (DT) binds NAD with a KD of about 10 microM and adenylyl-(3',5')-uridine 3'-monophosphate (ApUp) with KD values ranging from 9 pM to 1.8 nM, depending on temperature (Collins, C. M., Barbieri, J. T., and Collier, R. J. (1984) J. Biol. Chem. 259, 15154-15158). Here we report experiments to explore relationships between ApUp binding and NAD binding to DT and to identify structural features of ApUp that determine its high affinity for DT. NAD, adenine, and nicotinamide competitively inhibited ApUp binding to DT, and we confirmed that ApUp blocked the binding and hydrolysis of NAD. Binding of P-site ligands to the toxin blocked interactions with ApUp. CRM197, a mutant form of DT defective in NAD binding and hydrolysis, bound ApUp 5,000-fold less tightly than did DT. These results are consistent with models in which the ApUp- and NAD-binding sites on DT overlap or are identical. Various mono-, di-, and oligonucleotides were studied as competitors of ApUp binding or the NAD-glycohydrolase reaction. The results imply that the high affinity of ApUp for DT depends on the presence of the 3'-terminal phosphate and a 3'-5' internucleoside linkage. There was strong specificity for adenine as the 5' base, but only weak specificity for uracil as the 3' base. Oligoribonucleotides containing additional nucleotides at either or both ends of ApUp sequences bound to the toxin 1-3 orders of magnitude less avidly than ApUp. Oligodeoxyribonucleotides containing dApdT sequences bound with still lower affinities. In contrast to the case with whole toxin, ApUp bound to fragment A less avidly than did NAD, and elimination of the 3'-terminal phosphate of ApUp resulted in increased affinity for the protein. These differences may reflect the absence in free fragment A of interactions with the cationic P-site, located on the toxin's B moiety.  相似文献   

10.
A detailed 220-MHz NMR study has been made of the conformational properties for the homodinucleotide adenylyl-3' leads to 5'-adenosine, ApA, in D2O. Unambiguous signal assignments of all proton signals were made with the aid of selectively deuterated nucleotidyl units, ApA, ApA, and D-8ApA, and complete, accurate sets of NMR parameters were derived by simulation-iteration methods. Sets of limiting chemical shifts and coupling values were also obtained for ApA and constituent monomers 3'-AMP and 5'-AMP at infinite dilution and at identical ionization states for assessment of dimerization effects. Conformational properties were evaluated quantitatively for most of the conformational bonds of ApA and these are consistent with two compact folded dynamically averaged structures, a base-stacked right helical structure, I, characterized as anti, C3'-endo, g-, w,w' (320,330 degrees), g'g', gg, C3'-endo, anti, and a more loosely base-stacked loop structure, II, with anti, C3'-endo, g-, w,w' (80 degrees, 50 degrees), g'g', gg, C3'-endo, anti orientations. Dimerization produces a number of nucleotidyl conformational changes including a shift in ribose equilibrium C2'-endo (S) in equilibrium C3'-endo (N) in favor of C3'-endo in both Ap- and -pA (60:40 vs. 35:65 in monomers), a change in glycosidic torsion angle chiCN toward 0 degrees, and a greater locking-in of rotamers along bonds involved in the phosphodiester backbone. Moreover, there is clear evidence that the transitions from S leads to N forms and chiCN leads to 0 degrees are directly related to base stacking in ApA. Finally, ApA exists in solution as an equilibrium between I, II and an unstacked form(s) with as yet undetermined conformational features. Since C4'-C5', C5'-O5', and C3'-O3' bonds possess exceptional conformational stabilities, it is proposed that destacking occurs primarily by rotation about P-O5' and/or O3'-P. Predominant factors influencing the overall ApA conformation are thus base-base interaction and flexibility about P-O5' and O3'-P, with change of ribose conformation occurring in consequence of an alteration of chiCN, the latter in turn being governed by the need for maximum eta overlap of stacked adenine rings.  相似文献   

11.
2('),3(')-Didehydro-2('),3(')-dideoxynucleosides are clinically relevant antiviral agents. These nucleosides could be degraded under acidic conditions. Acidic stability studies showed the D4N had the following increasing stability order: D4G相似文献   

12.
As a first step towards a viable prodrug strategy for short oligoribonucleotides, such as 2–5A and its congeners, adenylyl‐2′,5′‐adenosines bearing a 3‐(acetyloxy)‐2,2‐bis(ethoxycarbonyl)propyl group at the phosphate moiety, and an (acetyloxy)methyl‐ or a (pivaloyloxy)methyl‐protected 3′‐OH group of the 2′‐linked nucleoside have been prepared. The enzyme‐triggered removal of these protecting groups by hog liver carboxyesterase at pH 7.5 and 37° has been studied. The (acetyloxy)methyl group turned out to be too labile for the 3′‐O‐protection, being removed faster than the phosphate‐protecting group, which results in 2′,5′‐ to 3′,5′‐isomerization of the internucleosidic phosphoester linkage. In addition, the starting material was unexpectedly converted to the 5′‐O‐acetylated derivative. (Pivaloyloxy)methyl group appears more appropriate for the purpose. The fully deprotected 2′,5′‐ApA was accumulated as a main product, although, even in this case, the isomerization of the starting material takes place.  相似文献   

13.
14.
Synthetic methods leading to 5'(3')-O-amino nucleosides have been developed in an effort to prepare derivatives that may have antitumor or antiviral activities. They are based on ring opening of O2,5'-cyclonucleosides with the N-protected hydroxylamines and dehydrative coupling of 5'(3')-O-unprotected nucleosides with N-hydroxyphthalimide.  相似文献   

15.
1. Phosphorolytic cleavage of Ap(4),A was demonstrated in cell-free extracts from two protozoan organisms, Euglena gracilis and Acanthamoeba castellanii. 2. A specific dinucleoside oligophosphate (DNOP) alpha, beta-phosphorylase which degrades substrates with formation of corresponding nucleoside 5'-diphosphate (NDP) as one of the reaction products was purified 625-fold from Euglena gracilis cells. 3. In addition to Ap(4)A, the phosphorylase degrades AP(3)A, Ap(5)A, Gp(4)G and one of phosphonate analogs, ApppCH(2)pA. The K(m) values for Ap(4), A and Ap(3) A are 27 and 25 micron, and relative velocities 100 and 14, respectively. The K(m) for phosphate is 0.5 mM. 4. Some anions (arsenate, chromate, molybdate and vanadate) can substitute for phosphate in the catalyzed reactions and in their presence the DNOPs yield corresponding nucleoside 5'-monophosphate as one of the reactions' product. The enzyme supports also an anion-dependent dephosphorylation of NDPs. 5. Molecular weight of the native Euglena phosphorylase is 30,000. Optimum pH for its activity is at 8.0 Divalent metal cations are essential for the phosphorolysis of DNOPs but are not for the NDP dephosphorylation mentioned.  相似文献   

16.
X Zhao  S Nadji  J L Kao    J S Taylor 《Nucleic acids research》1996,24(8):1554-1560
Irradiation of the dinucleotide TpdA and TA-containing oligonucleotides and DNA produces the TA* photoproduct which was proposed to be the [2+2] cyclo-addition adduct between the C5-C6 double bonds of the T and the A [Bose,S.N., Kumar,S., Davies,R.J.H., Sethi,S.K. and McCloskey,J.A. (1984) Nucleic Acids Res. 12, 7929-7947]. The proposed structure was based on a variety of spectroscopic and chemical degradation studies, and the assignment of a trans-syn-I stereochemistry was based on an extensive 1H-NMR and molecular modeling study of the dinucleotide adduct [Koning,T.M.G., Davies,R.J.H. and Kaptein,R. (1990) Nucleic Acids Res. 18, 277-284]. However, a number of properties of TA* are not in accord with the originally proposed structure, and prompted a re-evaluation of the structure. To assign the 13C spectrum and establish the bond connectivities of the TA* photoproduct of TpdA [d(TpA)*], 1H-13C heteronuclear multiple-quantum coherence (HMQC) and heteronuclear multiple bond correlation (HMBC) spectra were obtained. The 13C shifts and connectivities were found to be inconsistent with the originally proposed cyclobutane ring fusion between the thymine and adenine, but could be explained by a subsequent ring-expansion reaction to give an eight-membered ring valence isomer. The new structure for the d(TpA)* resolves the inconsistencies with the originally proposed structure, and could have a stereochemistry that arises from the anti, anti glycosyl conformation found in B form DNA.  相似文献   

17.
18.
The synthesis of O-beta-D-ribofuranosyl-(1"-2')-adenosine-5"-O-phosphate and its suitably protected derivative for oligonucleotide synthesis have been developed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号