首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
A large fraction of the Ca-2plus- and Mg-2plus-dependent ATPase (EC 3.6.1.3) in sarcoplasmic reticulum membranes solubilized with Triton X-100 was phosphorylated with Pi. The phosphorylation required Mg-2plus but was strongly inhibited by low concentrations of Ca-2plus. A Ca-2plus ion concentration of 30 muM caused half-maximum inhibition in the presence of 50 mM MgCl2. The phosphorylated enzyme showed a rapid turnover and was in dynamic equilibrium with Pi in the medium. At equilibrium the amount of the phosphorylated enzyme increased markedly with increased in the reaction temperature. The apparent standard free energy change, the apparent standard enthalpy change, and the apparent standard entropy change in the formation of the phosphorylated enzyme from the enzyme-phosphate complex in the presence of excess Mg-2plus at 37 degrees and pH 7.0 were, respectively, 0.35 Cal per mol, 15.9 Cal per mol, and 50.2 e.u. per mol. The susceptibility of the acid-denatured phosphorylated enzyme to hydroxylamine showed that the phosphorylated enzyme is of an acyl phosphate type. The present results are consistent with the probability that the phosphorylation results from reversal of late steps in the Ca-2plus transport process. The results clearly show that the phosphorylated enzyme is stabilized by a great increase in entropy upon its formation from the enzyme-phosphate complex.  相似文献   

4.
We propose an overview of the mechanism of Ca2+ transport through the sarcoplasmic reticulum membrane via the Ca2+-ATPase. We describe cytoplasmic calcium binding, calcium occlusion in the membrane and lumenal calcium dissociation. A channel-like structure is discussed and related to structural data on the membranous domain of the Ca2+-ATPase.Abbreviations SR Sarcoplasmic Reticulum - AMPPNP adenylyl-imidodiphosphate - AMPPCP adenylyl (,-methylene)-diphosphonate - FITC fluorescein 5-isothiocyanate - NBD 4-nitrobenzo-2-oxa-1,3-diazole - DCCD dicyclohexylcarbodiimide  相似文献   

5.
Summary In the presence of added orthophosphate (Pi) there is a period during which sarcoplasmic reticulum vesicles (SR) accumulate calcium at a constant rate. This constant rate is increased and is reached sooner when the added Pi concentration is increased. A double reciprocal plot of rate and Pi concentration gives a straight line.The Pi concentration required for half-maximum rate of calcium accumulation is the same for SR preparations from red and white rabbit muscles, although the maximum rates are widely different. During the ageing of SR preparations the Pi concentration required for half-maximum rate increases, but the maximum rate remains the same.  相似文献   

6.
Aluminum (Al3+) is involved in the pathophysiology of neurodegenerative disorders. The mechanisms that have been proposed to explain the action of Al3+ toxicity are linked to changes in the cellular calcium homeostasis, placing the transporting calcium pumps as potential targets.The aim of this work was to study the molecular inhibitory mechanism of Al3+ on Ca2+-ATPases such as the plasma membrane and the sarcoplasmic reticulum calcium pumps (PMCA and SERCA, respectively). These P-ATPases transport Ca2+ actively from the cytoplasm towards the extracellular medium and to the sarcoplasmic reticulum, respectively. For this purpose, we performed enzymatic measurements of the effect of Al3+ on purified preparations of PMCA and SERCA.Our results show that Al3+ is an irreversible inhibitor of PMCA and a slowly-reversible inhibitor of SERCA. The binding of Al3+ is affected by Ca2+ in SERCA, though not in PMCA. Al3+ prevents the phosphorylation of SERCA and, conversely, the dephosphorylation of PMCA. The dephosphorylation time courses of the complex formed by PMCA and Al3+ (EPAl) in the presence of ADP or ATP show that EPAl is composed mainly by the conformer E2P.This work shows for the first time a distinct mechanism of Al3+ inhibition that involves different intermediates of the reaction cycle of these two Ca2+-ATPases.  相似文献   

7.
Cardiac sarcoplasmic reticulum is phosphorylated by a cytosolic Ca2+-activated, phospholipid-dependent protein kinase. This phosphorylation is independent of cyclic nucleotides and enhanced by unsaturated diacylglycerols; saturated diacylglycerols, mono- and tri-glycerides are ineffective. Diacylglycerol stimulation is due to increased Ca2+ sensitivity of the kinase reaction. Protein kinase catalyzed phosphorylation results in enhanced Ca2+-transport ATPase activity and may be an important determinant of cardiac sarcoplasmic reticulum function.  相似文献   

8.
H Kutchai  K P Campbell 《Biochemistry》1989,28(11):4830-4839
The effects of an antiserum against the 53-kDa glycoprotein (GP-53) of the sarcoplasmic reticulum (SR) and of monoclonal antibodies against GP-53 on Ca2+ transport and ATP hydrolysis by SR of rabbit skeletal muscle have been investigated. Preincubation of SR with an antiserum against GP-53 resulted in decreased ATP-driven Ca2+ transport by the SR but had no effect on Ca2+-stimulated ATP hydrolysis. Preincubation of SR with preimmune serum had no significant effect on either Ca2+ transport or Ca2+-ATPase activity. The effect of anti-GP-53 serum was time and concentration dependent. Preincubation of SR with two monoclonal antibodies against GP-53 had no effect on Ca2+ transport or on Ca2+-stimulated ATP hydrolysis. However, preincubation of SR with either monoclonal antibody against GP-53 together with a monoclonal antibody against the Ca2+-ATPase (at levels which had little effect alone) resulted in markedly decreased rates of Ca2+ uptake and ATP hydrolysis. Preincubation of SR with anti-GP-53-serum or with monoclonal antibodies, under the same conditions that inhibited Ca2+ uptake, did not increase the passive permeability of the SR membrane to Ca2+, did not decrease the permeability of the SR to oxalate, and did not cause significant proteolysis of the Ca2+-ATPase. Our results are consistent with the interpretation that GP-53 may modulate the function of the Ca2+-ATPase of the SR membrane.  相似文献   

9.
10.
Phospholipid asymmetry in the isolated sarcoplasmic reticulum membrane   总被引:1,自引:0,他引:1  
The total phospholipid content and distribution of phospholipid species between the outer and inner monolayers of the isolated sarcoplasmic reticulum membrane was measured by phospholipase A2 activities and neutron diffraction. Phospholipase measurements showed that specific phospholipid species were asymmetric in their distribution between the outer and inner monolayers of the sarcoplasmic reticulum lipid bilayer; phosphatidylcholine (PC) was distributed 48/52 +/- 2% between the outer and inner monolayer of the sarcoplasmic reticulum bilayer, 69% of the phosphatidyl-ethanolamine (PE) resided mainly in the outer monolayer of the bilayer, 85% of the phosphatidylserine (PS) and 88% of the phosphatidylinositol (PI) were localized predominantly in the inner monolayer. The total phospholipid distribution determined by these measurements was 48/52 +/- 2% for the outer/inner monolayer of the sarcoplasmic reticulum lipid bilayer. Sarcoplasmic reticulum phospholipids were biosynthetically deuterated and exchanged into isolated vesicles with both a specific lecithin and a general exchange protein. Neutron diffraction measurements directly provided lipid distribution profiles for both PC and the total lipid content in the intact sarcoplasmic reticulum membrane. The outer/inner monolayer distribution for PC was 47/53 +/- 1%, in agreement with phospholipase measurements, while that for the total lipid was 46/54 +/- 1%, similar to the phospholipase measurements. These neutron diffraction results regarding the sarcoplasmic reticulum membrane bilayer were used in model calculations for decomposing the electron-density profile structure (10 A resolution) of isolated sarcoplasmic reticulum previously determined by X-ray diffraction into structures for the separate membrane components. These structure studies showed that the protein profile structure within the membrane lipid bilayer was asymmetric, complementary to the asymmetric lipid structure. Thus, the total phospholipid asymmetry obtained by two independent methods was small but consistent with a complementary asymmetric protein structure, and may be related to the highly vectorial functional properties of the calcium pump ATPase protein in the sarcoplasmic reticulum membrane.  相似文献   

11.
Calcium fluxes across the membrane of sarcoplasmic reticulum vesicles   总被引:3,自引:0,他引:3  
The relationship between calcium exchange across the membrane of sarcoplasmic reticulum vesicles and phosphoenzyme (EP) was examined in calcium transport reactions using a limited amount of ATP as substrate. Rapid calcium influx and efflux (approximately 385 nmol.(mg.min)-1), measured in reactions in which ATP concentration fell from 20 microM, was accompanied by a shift in the equilibrium between an ADP-sensitive EP and an ADP-insensitive EP toward the former. Rapid exchange between ATP and ADP (approximately 1500 nmol.(mg.min)-1) was also observed under conditions where no significant incorporation of Pi into ATP took place, suggesting that ATP in equilibrium ADP exchange can occur without Cao in equilibrium Cai exchange. Ca2+ permeability during the calcium transport reaction was estimated in reactions carried out with acetylphosphate, which produces a hydrolytic product that does not participate in the backward reaction of the calcium pump. Under conditions where the calcium content exceeded 43 nmol.mg-1, a level that may reflect the binding of calcium ions to sites inside the sarcoplasmic reticulum, the rate constant for Ca2+ efflux was 0.33 min-1. These data allow the rate of passive Ca2+ efflux to be estimated as approximately 17 nmol.(mg.min)-1 at the time when calcium content was maximal and a rapid Cao in equilibrium Cai was observed. It is concluded that the majority of the rapid Ca2+ efflux is mediated by partial backward reactions of the calcium pump ATPase.  相似文献   

12.
13.
Polymyxin B, a cyclic peptide antibiotic, inhibits Ca2+-ATPase, p-nitrophenyl phosphatase and phosphorylase kinase activities associated with rabbit skeletal muscle sarcoplasmic reticulum membranes; 50% inhibition is induced by 100 M, 130M and 550 M of polymyxin respectively. The fluorescence intensity of fluorescein isothiocyanate-labeled Ca2+-ATPase, decreases in the presence of polymyxin (50% of the total decrease at 70 M polymyxin). On the other hand, the polypeptide inhibits calmodulin-dependent endogenous phosphorylation of 60 kDa, 20 kDa and 14 kDa membrane proteins, while an increase of calmodulin-dependent phosphorylation is observed in 132 kDa and 86 kDa proteins.  相似文献   

14.
The effect of trifluoroperazine on the sarcoplasmic reticulum membrane   总被引:1,自引:0,他引:1  
The inhibitory effect of trifluoroperazine (25-200 microM) on the sarcoplasmic reticulum calcium pump was studied in sarcoplasmic reticulum vesicles isolated from skeletal muscle. It was found that the lowest effective concentrations of trifluoroperazine (10 microM) displaces the Ca2+ dependence of sarcoplasmic reticulum ATPase to higher Ca2+ concentrations. Higher trifluoroperazine concentrations (100 microM) inhibit the enzyme even at saturating Ca2+. If trifluoroperazine is added to vesicles filled with calcium in the presence of ATP, inhibition of the catalytic cycle is accompanied by rapid release of accumulated calcium. ATPase inhibition and calcium release are produced by identical concentrations of trifluoroperazine and, most likely, by the same enzyme perturbation. These effects are related to partition of trifluoroperazine ino the sarcoplasmic reticulum membrane, and consequent alteration of the enzyme assembly within the membrane structure, and of the bilayer surface properties. The effect of trifluoroperazine was also studied on dissociated ('chemically skinned') cardiac cells undergoing phasic contractile activity which is totally dependent on calcium uptake and release by sarcoplasmic reticulum, and is not influenced by inhibitors of slow calcium channels. It was found that trifluoroperazine interferes with calcium transport by sarcoplasmic reticulum in situ, as well as with the role of sarcoplasmic reticulum in contractile activation.  相似文献   

15.
The kinetics of a chemical model of Ca2+ transport and coupled ATPase activity in sarcoplasmic reticulum membranes were solved for the transient-state of simulated reactions, using a numerical integration procedure. The simulation conditions reproduced in vitro experiments using either fragmented membranes or vesicles with Ca2+ accumulating ability. The results yielded the concentrations of all the ligands and intermediates of the enzymatic cycle as a function of the reaction time. These results were applied to calculations of several thermodynamic variables: (1) the step by step profile of the standard free energy change of the cycle. (2) The step by profile of the actual free energy change of the cycle, and its evolution with the reaction time. (3) The separate contributions of ATP hydrolysis and Ca2+ transport to the overall free energy change with the reaction. (4) The dependence of the velocity of the free energy change with the reaction time. (5) The efficiency of the transport system, and its change with the reaction time. (6) The separate contributions of the Ca2+ gradient and some enzymatic intermediates as free energy stores. The main findings are: (1) the step by step diagrams of the free energy change calculated from the results of the kinetic analysis better describe the thermodynamic profile of the cycle than previously reported diagrams of the standard free energy and basic free energy changes. The relative contribution of each partial step to the driving force of the whole reactions, as well as their changes upon the advancement of the reactions, are derived from the diagrams. (2) Free energy yielded by ATP hydrolysis is stored by the system, not only as a Ca2+ gradient, but also as enzymatic intermediates of the reaction. The progressive increase of both free energy pools upon the advancement of the reaction is quantitated.  相似文献   

16.
(Ca2+ + Mg2+)-ATPase from sarcoplasmic reticulum has been reconstituted with dipalmitoylphosphatidylcholine, and the activating effect of ATP and Ca2+ on this enzyme has been studied at different temperatures. It has been found that two kinetic forms of the enzyme are interconverted at about 31°C, and this is possibly related to a phase change in the phospholipid which is more directly associated with the protein. Above 31°C the enzyme is less dependent on ATP activation at high ATP concentrations but shows positive cooperativity for Ca2+ activation. On the other hand, below 31°C, the reconstituted enzyme is more dependent on ATP for activation at high ATP concentrations than the purified ATPase and does not show cooperativity for Ca2+ activation.  相似文献   

17.
Phosphorylation of the calcium-transport ATPase of skeletal muscle sarcoplasmic reticulum by inorganic phosphate was investigated in the presence or absence of a calcium gradient. The maximum phosphoprotein formation in the presence of a calcium gradient at 20 degrees C and pH 7.0 is approximately 4 nmol/mg sarcoplasmic reticulum protein, but only between 2.4 and 2.8 nmol/mg protein in the absence of a calcium gradient, using Ionophore X-537 A or phospholipase-A-treated sarcoplasmic reticulum vesicles. Maximum phosphoprotein formation independent of calcium gradient at 20 degrees C and pH 6.2 is in the range of 3.6--4 nmol/mg protein. Half-maximum phosphoprotein formation dependent on calcium gradient was achieved with 0.1--0.2 mM free orthophosphate at 10 mM free magnesium or at 0.1--0.2 mM free magnesium at 10 mM free orthophosphate. Phosphoprotein formation independent of calcium gradient is in accordance with a model which assumes, firstly, the formation of a ternary complex of the ATPase protein with orthophosphate and magnesium (E . Pi . Mg) in equilibrium with the phosphoprotein (E-Pi . Mg) and, secondly, an interdependence of both ions in the formation of the ternary complex. The apparent equilibrium constant was 0.6 and the apparent dissociation constants KMg, KMg', KPi and KPi' were 8.8, 1.9, 7.2 and 1.5 mM respectively, assuming a total concentration of the phosphorylation site per enzyme of 7 nmol/mg protein.  相似文献   

18.
19.
20.
Localization of calsequestrin in chicken ventricular muscle cells was determined by indirect immunofluorescence and immuno-Protein A-colloidal gold labeling of cryostat and ultracryotomy sections, respectively. Calsequestrin was localized in the lumen of peripheral junctional sarcoplasmic reticulum, as well as in the lumen of membrane-bound structures present in the central region of the I-band, while being absent from the lumen of the sarcoplasmic reticulum in the A-band region of the cardiac muscle cells. Since chicken ventricular muscle cells lack transverse tubules, the presence of calsequestrin in membrane bound structures in the central region of the I-band suggests that these cells contain nonjunctional regions of sarcoplasmic reticulum that are involved in Ca2+ storage and possibly Ca2+ release. It is likely that the calsequestrin containing structures present throughout the I-band region of the muscle cells correspond to specialized regions of the free sarcoplasmic reticulum in the I-band called corbular sarcoplasmic reticulum. It will be of interest to determine whether Ca2+ storage and possibly Ca2+ release from junctional and nonjunctional regions of the sarcoplasmic reticulum in chicken ventricular muscle cells are regulated by the same or different physiological signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号