首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The review sums up research conducted at CIAT within a multidiscipline effort revolving around a strategy for developing improved technologies to increase and sustain cassava productivity, as well as conserving natural resources in the various eco-edaphic zones where the crop is grown, with emphasis on stressful environments. Field research has elucidated several physiological plant mechanisms underlying potentially high productivity under favourable hot-humid environments in the tropics. Most notable is cassava inherent high capacity to assimilate carbon in near optimum environments that correlates with both biological productivity and root yield across a wide range of germplasm grown in diverse environments. Cassava leaves possess elevated activities of the C4 phosphoenolpyruvate carboxylase (PEPC) that also correlate with leaf net photosynthetic rate (P N) in field-grown plants, indicating the importance of selection for high P N. Under certain conditions such leaves exhibit an interesting photosynthetic C3-C4 intermediate behaviour which may have important implications in future selection efforts. In addition to leaf P N, yield is correlated with seasonal mean leaf area index (i.e. leaf area duration, LAD). Under prolonged water shortages in seasonally dry and semiarid zones, the crop, once established, tolerates stress and produces reasonably well compared to other food crops (e.g. in semiarid environments with less than 700 mm of annual rain, improved cultivars can yield over 3 t ha−1 oven-dried storage roots). The underlying mechanisms for such tolerance include stomatal sensitivity to atmospheric and edaphic water deficits, coupled with deep rooting capacities that prevent severe leaf dehydration, i.e. stress avoidance mechanisms, and reduced leaf canopy with reasonable photosynthesis over the leaf life span. Another stress-mitigating plant trait is the capacity to recover from stress, once water is available, by forming new leaves with even higher P N, compared to those in nonstressed crops. Under extended stress, reductions are larger in shoot biomass than in storage root, resulting in higher harvest indices. Cassava conserves water by slowly depleting available water from deep soil layers, leading to higher seasonal crop water-use and nutrient-use efficiencies. In dry environments LAD and resistance to pests and diseases are critical for sustainable yields. In semiarid zones the crop survives but requires a second wet cycle to achieve high yields and high dry matter contents in storage roots. Selection and breeding for early bulking and for medium/short-stemmed cultivars is advantageous under semiarid conditions. When grown in cooler zones such as in tropical high altitudes and in low-land sub-tropics, leaf P N is greatly reduced and growth is slower. Thus, the crop requires longer period for a reasonable productivity. There is a need to select and breed for more cold-tolerant genotypes. Selection of parental materials for tolerance to water stress and infertile soils has resulted in breeding improved germplasm adapted to both favourable and stressful environments. An erratum to this article is available at .  相似文献   

2.
Guenni  Orlando  Marín  Douglas  Baruch  Zdravko 《Plant and Soil》2002,243(2):229-241
The introduction of African grasses in Neotropical savannas has been a key factor to improve pasture productivity. We compared the response of five Brachiaria species to controlled drought (DT) in terms of biomass yield and allocation, pattern of root distribution, plant water use, leaf growth, nutrient concentration and dry matter digestibility. The perennial C4 forage grasses studied were B. brizantha (CIAT 6780), B. decumbens (CIAT 606), B. dictyoneura (CIAT 6133), B. humidicola (CIAT 679) and B. mutica. Two DT periods, which mimic short dry spells frequent in the rainy season, were imposed by suspending irrigation until wilting symptoms appeared. They appeared after 14 days in B. brizantha, B. decumbens and B. mutica, and after 28 days in B. humidicola and B. dictyoneura. The impossed drought stress was mild and only the largest grass, B. brizantha, showed reduced (23%) plant yield. The other grasses were able to adjust growth and biomass allocation in response to DT leaving total plant yield relatively unaffected. Brachiaria mutica, had a homogeneous root distribution throughout the soil profile. In the other species more than 80% of root biomass was allocated within the first 30 cm of the soil profile. Brachiaria brizantha and B. decumbens had the lowest proportion of roots below 50 cm. Drought caused a general reduction in root biomass. The shoot:root ratio in B. mutica and B. humidicola increased in response to DT at the expense of a reduction in root yield down to 50 cm depth. Although the total water volume utilized under DT was similar among grasses, the rate of water use was highest (0.25 l day–1) in B. brizantha, B. decumbens and B. mutica and lowest (0.13 l day–1) in B. humidicola and B. dictyoneura. In all species leaf expansion was reduced by DT but it was rapidly reassumed after rewatering. Drought increased specific leaf mass (SLM) only in B. brizantha compensating for leaf area reduction, but leaf area ratio (LAR) was unaffected in all species. In almost all grasses DT increased leaf N and K concentration and in vitro dry matter digestibility. The results indicate that B. brizantha, B. decumbens and to a lesser extent, B. mutica are better adapted to short dry periods, whereas B. humidicola and B. dictyoneura are better adapted to longer dry periods.  相似文献   

3.
Extensive areas of Acacia harpophylla (brigalow) woodlands have been cleared for pasture production in Queensland. The woody regrowth of A. harpophylla influences pasture production and composition following initial development of these woodlands. Biomass component regressions were developed using tree basal area as the predictor variable and used to estimate component yields of regrowing A. harpophylla communities. Leaf biomass of A. harpophylla reached a maximum of 12 t ha-1 with a leaf area index of 2.5 when regrowing plants were 2.5 m high and about 10 years old. Pasture production, pasture basal area and the proportion of sown pasture species were lower at higher tree basal area of A. harpophylla. The greatest decrease was seen between 0 and 2 m2ha-2tree basal area. Annual grasses and broadleaf herbaceous species represented a greater proportion of pasture biomass at high tree basal area. The poor control achieved by herbicide sprays on A. harpophylla plants that are 2–2.5 m tall would be partly due to poor coverage of the herbicide spray, as leaf area index is at a maximum at this stage. A density of 1000 plants ha-1is a threshold value above which regrowth control would be necessary at some stage to maintain acceptable pasture production and composition. The non-linear regression relationship between pasture production and tree basal area was similar to that observed in Eucalyptus spp. However, in the equation that relates pasture yield (Y) to tree basal area (X), Y = A + B*e(-kX)the value of k for A. harpophylla communities was generally higher than observed in Eucalyptus spp. communities with the same potential pasture production in the absence of trees. Within even-aged stands, the use of tree leaf biomass to predict pasture production showed no advantage over the use of tree basal area as the predictor. However, there are advantages in using tree leaf biomass as a predictor when comparing communities with different size- or age-class structures.  相似文献   

4.
Abstract Intensive pastoralism with goats transforms semiarid thicket in the Eastern Cape, South Africa from a dense vegetation of tall shrubs to an open landscape dominated by ephemeral grasses and forbs. Approx. 800 000 ha of thicket (which prior to the introduction of goats had a closed canopy and a Portulacaria afra Jacq. component) have been transformed in this manner. Ecosystem C storage in intact thicket and loss of C due to transformation were quantified. Carbon storage in intact thicket was surprisingly high for a semiarid region, with an average of 76 t C ha?1 in living biomass and surface litter and 133 t C ha?1 in soils to a depth of 30 cm. Exceptional C accumulation in thicket may be a result of P. afra dominance. This succulent shrub switches between C3 and CAM photosynthesis, produces large quantities of leaf litter (approx. 450 g m?2 year?1) and shades the soil densely. Transformed thicket had approx. 35% less soil C to a depth of 10 cm and approx. 75% less biomass C than intact thicket. Restoration of transformed thicket landscapes could consequently recoup more than 80 t C ha?1.  相似文献   

5.
Responses to drought and flooding in tropical forage grasses   总被引:5,自引:0,他引:5  
Seasonal drought and flooding severely limit pasture growth in tropical savannas. The objective of this study is to analyze and compare yield, biomass allocation, leaf growth rate and nutrient concentration of four important perennial C4 forage grasses to short term flooding and moderate drought under controlled conditions. The grasses studied were the tufted Andropogon gayanus (CIAT 621) and Hyparrhenia rufa and the stoloniferous Echinochloa polystachya and Brachiaria mutica. All grasses were able to adjust their growth and development in response to flooding and drought: leaf growth and total biomass decreased under both treatments but the specific responses to these treatments differed markedly. Considering only total yield and leaf area, A. gayanus and H. rufa were relatively more tolerant to and less affected by drought whereas B. mutica and E. polystachya were more flood tolerant. In A. gayanus and H. rufa, both treatments reduced the proportion of assimilates devoted to roots and culms while increasing that of leaves decreasing the root/shoot ratio. In contrast, in B. mutica and E. polystachya only the proportion devoted to culms or stolons increased under flooding but the root/shoot ratio remained relatively stable under both treatments. All grasses produced adventitious rootlets except A. gayanus which was the most affected by flooding. Waterlogging decreased leaf nutrient concentration in all grasses which contributed to growth reduction. All species were relatively tolerant to both stresses. The results confirm the empirical observation that stoloniferous species B. mutica and E. polystachya are more tolerant to flooding thanks to adaptations typical of wetland plants such as hollow stolons which enhance oxygen diffusion to the roots and the development of adventitious rootlets that promotes water and nutrient absorption.  相似文献   

6.
Quantitative studies of the translocation of radiocarbon from a young expanded leaf of two tall varieties (Improved Pilot and Thomas Laxton) and two dwarf varieties (Little Marvel and Meteor) of Pisum sativum showed that 40 to 45 per cent of the radiocarbon was exported from the 14CO2 treated leaf after 24 hours in all four varieties. Although substantial export to the upper shoot always occurred it was more marked in the two tall varieties. Pre-treatment with GA did not affect total fixation but increased total export from the 14CO2 treated leaf in cv. Meteor and decreased it in cv. Improved Pilot. GA had no effect on the translocation pattern in the tall plants but modified that of the dwarf plants to correspond to that found in the tall varieties.  相似文献   

7.
Greenhouse nutrient solution studies demonstrated that diniconazole will decrease peanut (Arachis hypogaea L.) shoot growth when either root or shoot applied. Root growth and development were decreased by root and, to a lesser extent, by shoot uptake of diniconazole. Diniconazole is apparently xylem translocated, but not phloem translocated. Concentrations of 200 ppb ES isomer of diniconazole in nutrient solution (root uptake) increased specific leaf weight and starch deposits in the leaf. Field applications of 193 g ES isomer ha–1 of diniconazole reduced main stem height by 33%, leaf area index by 16%, and total vegetative dry weight by 19%, but had no effect on average leaf size. Decreased germination of seeds from plants treated with 1435 g ha–1 diaminozide was associated with increased seed dormancy. Seed dormancy was counteracted by either ethylene gas or storage for 150 days after harvest. Soil applications of diniconazole were more effective than foliar appliations in reducing vine growth. Diniconazole's ER isomer is a broad spectrum fungicide that reduced damage (when compared to the control) bySclerotium rolfsii andRhizoctonia solani. The reduced damage by these diseases was thought to be the primary reason for the significant pod yield increase (when compared to the control) observed with the diniconazole treatments. In drought-stressed plots, populations of the two-spotted spider mite (Tetranychus urticae) were increased by diniconazole.Mention of a trademark, proprietary product, or vendor does not constitute a guarantee by the University of Georgia or the U.S. Department of Agriculture and does not imply UGA or USDA approval to the exclusion of other products or vendors that also may be suitable.  相似文献   

8.
Summary Artemisia tridentata seedlings were grown under carbon dioxide concentrations of 350 and 650 l l–1 and two levels of soil nutrition. In the high nutrient treatment, increasing CO2 led to a doubling of shoot mass, whereas nutrient limitation completely constrained the response to elevated CO2. Root biomass was unaffected by any treatment. Plant root/shoot ratios declined under carbon dioxide enrichment but increased under low nutrient availability, thus the ratio was apparently controlled by changes in carbon allocation to shoot mass alone. Growth under CO2 enrichment increased the starch concentrations of leaves grown under both nutrient regimes, while increased CO2 and low nutrient availability acted in concert to reduce leaf nitrogen concentration and water content. Carbon dioxide enrichment and soil nutrient limitation both acted to increase the balance of leaf storage carbohydrate versus nitrogen (C/N). The two treatment effects were significantly interactive in that nutrient limitation slightly reduced the C/N balance among the high-CO2 plants. Leaf volatile terpene concentration increased only in the nutrient limited plants and did not follow the overall increase in leaf C/N ratio. Grasshopper consumption was significantly greater on host leaves grown under CO2 enrichment but was reduced on leaves grown under low nutrient availability. An overall negative relationship of consumption versus leaf volatile concentration suggests that terpenes may have been one of several important leaf characteristics limiting consumption of the low nutrient hosts. Digestibility of host leaves grown under the high CO2 treatment was significantly increased and was related to high leaf starch content. Grasshopper growth efficiency (ECI) was significantly reduced by the nutrient limitation treatment but co-varied with leaf water content.  相似文献   

9.
In dryland environments 3–5 year rotations of tree crops and agriculture represent a major potential bioenergy feedstock and a means to restore landscape hydrologic balances and phytoremediate sites, while maintaining food production. In soils with low natural fertility, the long‐term viability of these systems will be critically affected by site nutrient status and subsequent cycling of nutrients. A nutrient assimilation index (NAI) was developed to allow comparison of species and tree component nutrient assimilation and to optimize nutrient management, by quantifying different strategies to manage site nutrients. Biomass, nutrient export and nutrient use efficiency were assessed for three short rotation tree crop species. Nutrient exports following harvest at 3 years of high density (4000 trees ha?1) were consistently higher in Pinus radiata, with values of 85 kg ha?1 of N, 11kg ha?1 of P, and 62 kg ha?1 of K, than Eucalyptus globulus and Eucalyptus occidentalis. Component NAI was generally in the order of leaf?1 for N in leaves of P. radiata to 4.7 Mg kg?1 for P in stem‐wood of E. occidentalis, indicating higher sustainability of wood biomass compared with leaf biomass. The leaves for each species contained between 40 and 60% of the total nutrient contents while comprising around 25–30% of the total biomass. These nutrient exports via biomass removal are similar to those that follow 3 years of wheat production in the same region, indicating there is no additional drawdown of nutrient reserves during the tree cropping phase of the rotation.  相似文献   

10.
The first replicated productivity trials of the C4 perennial grass Miscanthus × giganteus in the United States showed this emerging ligno‐cellulosic bioenergy feedstock to provide remarkably high annual yields. This covered the 5 years after planting, leaving it uncertain if this high productivity could be maintained in the absence of N fertilization. An expected, but until now unsubstantiated, benefit of both species was investment in roots and perennating rhizomes. This study examines for years 5–7 yields, biomass, C and N in shoots, roots, and rhizomes. The mean peak shoot biomass for M. × giganteus in years 5–7 was 46.5 t ha?1 in October, declining to 38.1 t ha?1 on completion of senescence and at harvest in December, and 20.7 t ha?1 declining to 11.3 t ha?1 for Panicum virgatum. There was no evidence of decline in annual yield with age. Mean rhizome biomass was significantly higher in M. × giganteus at 21.5 t ha?1 compared to 7.2 t ha?1 for P. virgatum, whereas root biomass was similar at 5.6–5.9 t ha?1. M. × giganteus shoots contained 339 kg ha?1 N in August, declining to 193 kg ha?1 in December, compared to 168 and 58 kg ha?1 for P. virgatum. The results suggest substantial remobilization of N to roots and rhizomes, yet still a substantial loss with December harvests. The shoot and rhizome biomass increase of 33.6 t ha?1 during the 2‐month period between June and August for M. × giganteus corresponds to a solar energy conversion of 4.4% of solar energy into biomass, one of the highest recorded and confirming the remarkable productivity potential of this plant.  相似文献   

11.
Ecosystem restoration by rewetting of degraded fens led to the new formation of large-scale shallow lakes in the catchment of the River Peene in NE Germany. We analyzed the biomass and the nutrient stock of the submersed (Ceratophyllum demersum) and the floating macrophytes (Lemna minor and Spirodela polyrhiza) in order to assess their influence on temporal nutrient storage in water bodies compared to other freshwater systems. Ceratophyllum demersum displayed a significantly higher biomass production (0.86–1.19 t DM = dry matter ha−1) than the Lemnaceae (0.64–0.71 t DM ha−1). The nutrient stock of submersed macrophytes ranged between 28–44 kg N ha−1 and 8–12 kg P ha−1 and that of floating macrophytes between 14–19 kg N ha−1 and 4–5 kg P ha−1 which is in the range of waste water treatment plants. We found the N and P stock in the biomass of aquatic macrophytes being 20–900 times and up to eight times higher compared to the nutrient amount of the open water body in the shallow lakes of rewetted fens (average depth: 0.5 m). Thereafter, submersed and floating macrophytes accumulate substantial amounts of dissolved nutrients released from highly decomposed surface peat layers, moderating the nutrient load of the shallow lakes during the growing season from April to October. In addition, the risk of nutrient loss to adjacent surface waters becomes reduced during this period. The removal of submersed macrophytes in rewetted fens to accelerate the restoration of the low nutrient status is discussed.  相似文献   

12.
Willow (Salix spp.) short‐rotation coppice is commercially grown to produce lignocellulosic biomass to meet renewable bioenergy demands. Most commercial willow coppices are grown in stands of a single genotype, but biomass productivity may be greater in mixed communities, and the productivity in mixed communities may depend on the specific genotypes involved. We assessed the biomass production of four different Salix genotypes (“Björn,” “Jorr,” “Loden,” “Tora”) grown without additional nutrient fertilization during one cutting cycle at three locations in Europe (Uppsala in Sweden, Rostock and Freiburg in Germany) in plots of pure and mixed communities. We evaluated (i) the effect of genotype diversity on shoot biomass productivity, including the evidence for complementarity and selection effects; (ii) the influence of individual genotypes on mixed community productivity; and (iii) the productivity of individual genotypes in response to pure vs. mixed culture. Mean shoot biomass production after the first cutting cycle decreased in the order Rostock (8.7 Mg ha?1) > Freiburg (6.9 Mg ha?1) > Uppsala (5.7 Mg ha?1), with values similar to those for other nonfertilized willow stands after the first growth cycle. Consistently across all three locations, increasing genotype diversity did not significantly affect shoot biomass production. Using Bayesian statistics, the addition of the genotypes “Jorr” and “Loden” was predicted to enhance shoot biomass production, while “Tora” and “Björn” are more likely to reduce shoot biomass production in mixed communities. In addition, we found evidence for a negative selection effect due to the genotype “Tora” performing better in mixed than in pure communities in two of the sites (Freiburg, Uppsala). In conclusion, our results imply that increasing genetic richness has no negative effect on productivity and that there is a potential to design site‐specific genotype mixtures of short‐rotation coppice promoting both high genetic diversity and high biomass production.  相似文献   

13.
Sustainable bioenergy cropping systems require not only high yields but also efficient use of inputs. Management practices optimizing production of sweet sorghum [Sorghum bicolor (L.) Moench] for bioenergy use are needed. The effects of N rate (45, 90, 135, and 180?kg N?ha?1) and top removal (at boot stage, anthesis, and none) on biomass, brix, estimated sugar yield, and N and P recovery of sweet sorghum cv. M-81E were investigated in Florida at two sites differing in soil type. Across all data, dry biomass yields averaged 17.7 Mg?ha?1 and were not affected by N fertilization rate at either site (P?>?0.10). Mean brix values ranged from 131 to 151?mg?g?1 and were negatively related to N rate. Top removal, either at boot stage or anthesis, resulted in greater brix values and 13% greater sugar yields at both locations. Whole plant N recovery was positively and linearly related to N rate and ranged from 78 to 166?kg N?ha?1, approximately two thirds of which was in leaf and grain tissues. Based on yield and nutrient recovery responses, optimal nutrient requirements were 90 to 110?kg N?ha?1 and 15 to 20?kg P?ha?1. Higher N fertilization led to greater N recovery, but little to modest gain in sugar yield. Thus, proper nutrient and harvest management will be needed to optimize sugar yields of sweet sorghum for production of biofuels and bio-based products. Further research is needed to refine management practices of sweet sorghum for bioenergy production, especially with regard to the use of leaf and grain tissues.  相似文献   

14.
High annual productivity of certain agaves and cacti under cultivation   总被引:4,自引:2,他引:2  
To help ascertain the maximal productivity of plants with Crassulacean acid metabolism, measurements were undertaken on four potentially highly productive CAM species at optimal leaf or stem area indices of 4 to 6. Shoot area and shoot biomass were based on regression equations for material harvested from adjacent plants at 3-month intervals; in addition, the monitored platyopuntias were harvested to determine their dry weight at the end of the observation period. Agave mapisaga and A. salmiana near Mexico City had a productivity averaging 40Mg ha?1 year?1 and exhibited higher maximal rates of net CO2 uptake than previously reported for CAM plants (29–34 μmol m ?2 s?1). When irrigated and fertilized daily, Opuntia amyclea and O. ficus-indica in Saltillo, Coahuila, Mexico, had an average productivity of 46Mg ha?1 year?1. These are among the highest productivities ever reported for any plant species.  相似文献   

15.
Two field trials with two groups of cassava (Manihot esculenta Crantz) cultivars were conducted under rainfed conditions in seasonally dry and semiarid environments at the northern coast of Colombia, South America, to evaluate the genetic diversity in photosynthesis and productivity, and to determine their interrelationship. There were significant differences among cultivars in both environments, in average net photosynthetic rates (P N ) of upper canopy leaves and in final dry root yields. Both P N and dry root yields were much higher in the seasonally dry environment than in the semiarid one. Highly significant correlation (r 2 = 0.90, p < 0.001) between leaf P N and dry root yield was observed across environments, suggesting that selection in parental plants for high photosynthesis might lead to high yields if combined with other yield determinants, such as leaf area duration, high harvest index and strong root sink. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
The root system of plants is subject to fast cycles of renewal and decay within the growing season. In water and/or nutrient stress conditions, this turnover may become strategic for plant survival and productivity, but knowledge about its mechanisms is still insufficient. In order to investigate the effects of nitrogen fertilization on growth and turnover of sugar beet roots, an experiment was carried out over two growing seasons in northern Italy with two levels of N supply (0, 100 kg ha–1). Biomass production and partitioning were followed during growth, and fibrous root dynamics were inspected by means of computer-aided procedures applied to minirhizotron images.In conditions of N shortage, lower yields (storage roots) were associated with greater allocation of biomass to tap roots (final tap-root/shoot ratio = 5.6 vs. 4.1) and shallower distribution of fibrous root length density. The maximum depth of roots was not affected by N, but unfertilized plants reached it more slowly.The ratio of cumulative root dead length to produced length at the end of the growing period (TDL max/TPL max) was used as the most suitable approach for assessing overall root turnover. This ratio was greater in controls (0.73 vs. 0.50), which showed lower root longevity (–34% life-span on average), indicating that a greater proportion of root growth was renewed by unfertilized plants over the season.  相似文献   

17.
Increasing desire for renewable energy sources has increased research on biomass energy crops in marginal areas with low potential for food and fiber crop production. In this study, experiments were established on low phosphorus (P) soils in southern Oklahoma, USA to determine switchgrass biomass yield, nutrient concentrations, and nutrient removal responses to P and nitrogen (N) fertilizer application. Four P rates (0, 15, 30, and 45?kg?P?ha?1) and two N fertilizer rates (0 and 135?kg?N?ha?1) were evaluated at two locations (Ardmore and Waurika) for 3?years. While P fertilization had no effect on yield at Ardmore, application of 45?kg?P?ha?1 increased yield at Waurika by 17% from 10.5 to 12.3?Mg?ha?1. Across P fertilizer rates, N fertilizer application increased yields every year at both locations. In Ardmore, non-N-fertilized switchgrass produced 3.9, 6.7, and 8.8?Mg?ha?1, and N-fertilized produced 6.6, 15.7, and 16.6?Mg?ha?1 in 2008, 2009, and 2010, respectively. At Waurika, corresponding yields were 7.9, 8.4, and 12.2?Mg?ha?1 and 10.0, 12.1, and 15.9?Mg?ha?1. Applying 45?kg?P?ha?1 increased biomass N, and P concentration and N, P, potassium, and magnesium removal at both locations. Increased removal of nutrients with N fertilization was due to both increased biomass and biomass nutrient concentrations. In soils of generally low fertility and low plant available P, application of P fertilizer at 45?kg?P?ha?1 was beneficial for increasing biomass yields. Addition of N fertilizer improves stand establishment and biomass production on low P sites.  相似文献   

18.
Field response of wheat to arbuscular mycorrhizal fungi and drought stress   总被引:3,自引:0,他引:3  
Al-Karaki G  McMichael B  Zak J 《Mycorrhiza》2004,14(4):263-269
Mycorrhizal plants often have greater tolerance to drought than nonmycorrhizal plants. This study was conducted to determine the effects of arbuscular mycorrhizal (AM) fungi inoculation on growth, grain yield and mineral acquisition of two winter wheat (Triticum aestivum L.) cultivars grown in the field under well-watered and water-stressed conditions. Wheat seeds were planted in furrows after treatment with or without the AM fungi Glomus mosseae or G. etunicatum. Roots were sampled at four growth stages (leaf, tillering, heading and grain-filling) to quantify AM fungi. There was negligible AM fungi colonization during winter months following seeding (leaf sampling in February), when soil temperature was low. During the spring, AM fungi colonization increased gradually. Mycorrhizal colonization was higher in well-watered plants colonized with AM fungi isolates than water-stressed plants. Plants inoculated with G. etunicatum generally had higher colonization than plants colonized with G. mosseae under both soil moisture conditions. Biomass and grain yields were higher in mycorrhizal than nonmycorrhizal plots irrespective of soil moisture, and G. etunicatum inoculated plants generally had higher biomass and grain yields than those colonized by G. mosseae under either soil moisture condition. The mycorrhizal plants had higher shoot P and Fe concentrations than nonmycorrhizal plants at all samplings regardless of soil moisture conditions. The improved growth, yield and nutrient uptake in wheat plants reported here demonstrate the potential of mycorrhizal inoculation to reduce the effects of drought stress on wheat grown under field conditions in semiarid areas of the world.  相似文献   

19.
Plant mineral nutrients such as phosphorus may exert major control on crop responses to the rising atmospheric carbon dioxide (CO2) concentrations. To evaluate the growth, nutrient dynamics, and efficiency responses to CO2 and phosphorus nutrition, soybean (Glycine max (L.) Merr.) was grown in controlled environment growth chambers with sufficient (0.50 mM) and deficient (0.10 and 0.01 mM) phosphate (Pi) supply under ambient and elevated CO2 (aCO2, 400 and eCO2, 800 µmol mol?1, respectively). The CO2 × Pi interaction was detected for leaf area, leaf and stem dry weight, and total plant biomass. The severe decrease in plant biomass in Pi-deficient plants (10–76%) was associated with reduced leaf area and photosynthesis (Pnet). The degree of growth stimulation (0–55% total biomass) by eCO2 was dependent upon the severity of Pi deficiency and was closely associated with the increased phosphorus utilization efficiency. With the exception of leaf and root biomass, Pi deficiency decreased the biomass partitioning to other plant organs with the maximum decrease observed in seed weight (8–42%) across CO2 levels. The increased tissue nitrogen (N) concentration in Pi-deficient plants was accredited to the lower biomass and increased nutrient uptake due to the larger root to shoot ratio. The tissue P and N concentration tended to be lower at eCO2 versus aCO2 and did not appear to be the main cause of the lack of CO2 response of growth and Pnet under severe Pi deficiency. The leaf N/P ratio of >16 was detrimental to soybean growth. The tissue P concentration needed to attain the maximum productivity for biomass and seed yield tended to be higher at eCO2 versus aCO2. Therefore, the eCO2 is likely to increase the leaf critical P concentration for maximum biomass productivity and yield in soybean.  相似文献   

20.
《Aquatic Botany》2007,86(1):62-68
This glasshouse study examined the effect of three damage types on plant growth and nutrient allocation of the invasive aquatic plant, alligator weed (Alternanthera philoxeroides). The damage included: repeated leaf removal, a single application of herbicide, and one-time shoot removal. Damage types were meant to simulate the effects of insect herbivory, chemical, and mowing/grazing, respectively. Response variables included plant biomass and both the concentration and abundance of nutrients. Complete shoot removal and herbicide treatments caused an initial decline in growth rate, followed by several weeks of increasing rates and finally a second decline during the fourth week. Plants from control and repeated leaf removal treatments showed a steady increase in growth rate from the treatment application to the final harvest, but control plants were accumulating biomass three times faster than repeated defoliation plants by the fifth week (9.7 and 3.5 g week−1, respectively). Not surprisingly, all treatments led to lower total cumulative biomass 5 weeks after treatment application (mean 30.8 g) when compared with controls (49.0 g). However, despite the repeated leaf removal and complete shoot removal treatments removing similar quantities of biomass (mean 8.0 and 7.5 g respectively), repeated removal of leaves produced less total biomass (26.2 g) and led to less cumulative above ground biomass (20.1 g) than the other treatments (mean total = 33.1 g, mean above ground = 25.7 g). Repeated leaf removal also produced less below ground biomass (6.1 g) than the shoot removal treatment (8.5 g) and had the greatest negative effect on nitrogen and potassium abundance in plant tissues after 5 weeks. In addition, it reduced the amount of phosphorous to a lower level than herbicide treated or control plants. These results indicate that repeated leaf removal was the treatment most effective in reducing biomass and depleting nutrients in A. philoxeroides plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号