首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rhodococcus opacus B-4, which has recently been isolated as an organic solvent-tolerant bacterium, stabilized water-in-oil (w/o) emulsions by inhibition of droplet coalescence when the cells were dispersed in 90% (v/v) organic solvents. Confocal microscopy revealed that many bacterial cells assembled at the interface between oil and water droplets, though free cells were also detectable at the inside of water droplets. Bacterial cells in the w/o emulsion were capable of utilizing both a water-soluble (glucose) and an oil-soluble substrate (oleic acid) as an energy source. Availability of the w/o emulsion as an immobilized cell system in organic solvents was demonstrated using production of indigo from indole and production of o-cresol from toluene as model conversions. When glucose and oleic acid were simultaneously supplied as energy sources, the w/o emulsion culture of R. opacus B-4 produced indigo and o-cresol at levels of 0.217 and 2.12 mg ml−1, respectively, by 12 h.  相似文献   

2.
The naphthalene dioxygenase (NDO) genes were cloned from Comamonas sp. MQ and successfully expressed in Escherichia coli BL21 (DE3) (designated as ND_IND). The whole cells of recombinant strain ND_IND possessed relatively high transformation efficiency towards indole and most indole derivatives. According to the UV–vis and HPLC–MS analyses, the major products derived from the indoles could be indigo with different substituent groups. Furthermore, strain ND_IND was able to produce 205 mg/l indigo from 300 mg/l indole with a specific production rate of 8.4 mg/(g dry cell weight h). The effects of phenol, pyridine and quinoline on indigo production were determined, which indicated that phenol and pyridine had little inhibition on indigo production while quinoline would result in a 32% decrease in indigo yield. The present study proposed the potential application of recombinant strain ND_IND in indigoid pigments production, and offered the promise of applying strain ND_IND for the production of indigo using indole-containing wastewater as the raw materials.  相似文献   

3.
Toluene dioxygenase (Tod) enzyme activity can be measured by the conversion of indole to indigo. Indigo is measured spectrophotometrically at 600 nm. However, this method is inadequate to measure the whole-cell enzyme activity when interference by suspended biomass is present. Indoxyl is a highly fluorescent intermediate in the conversion of indole to indigo by Tod. A fluorescence-based assay was developed and applied to monitor Tod activity in whole cells of Pseudomonas putida F1 biofilm from a continuously operated biofilter. Suspended growth studies with pure cultures indicated that indoxyl, as measured by fluorescence, correlated with indigo production (r(2)=0.89) as measured by spectrophotometry. Whole-cell enzyme activity was followed during growth on a minimal medium containing toluene. The maximum normalized whole cell enzyme activity of 19+/-1.5x10(-4) mg indigo (mg protein)(-1) min(-1) was reached during early stationary phase. P. putida F1 cells from a biofilm grown on vapor phase toluene had a normalized whole-cell enzyme activity of 5.0+/-0.2x10(-4) mg indigo (mg protein)(-1) min(-1). The half-life of whole-cell enzyme activity was estimated to be between 5.5 and 8 h in both suspended and biofilm growth conditions.  相似文献   

4.
The influence of toluene concentration on the specific growth rate, cellular yield, specific CO2, and metabolite production by Pseudomonas putida F1 (PpF1) was investigated. Both cellular yield and specific CO2 production remained constant at 1.0 ± 0.1 g biomass dry weight (DW) g−1 toluene and 1.91 ± 0.31 g CO2 g−1 biomass, respectively, under the tested range of concentrations (2–250 mg toluene l−1). The specific growth rate increased up to 70 mg toluene l−1. Further increases in toluene concentration inhibited PpF1 growth, although inhibitory concentrations were far from the application range of biological treatment processes. The specific ATP content increased with toluene concentration up to toluene concentrations of 170 mg l−1. 3-Methyl catechol (3-MC) was never detected in the cultivation medium despite being an intermediary in the TOD pathway. This suggested that the transformation from toluene to 3-MC was the limiting step in the biodegradation process. On the other hand, benzyl alcohol (BA) was produced from toluene in a side chain reaction. This is, to the best of our knowledge, the first reported case of methyl monoxygenation of toluene by PpF1 not harboring the pWW0 TOL plasmid. In addition, the influence of 3-MC, BA, and o-cresol on toluene degradation was investigated respirometrically, showing that toluene-associated respiration was not significantly inhibited in the presence of 10–100 mg l−1 of the above-mentioned compounds.  相似文献   

5.
We are using directed evolution to extend the range of dioxygenase-catalyzed biotransformations to include substrates that are either poorly accepted or not accepted at all by the naturally occurring enzymes. Here we report on the oxidation of a heterocyclic substrate, 4-picoline, by toluene dioxygenase (TDO) and improvement of the enzyme's activity by laboratory evolution. The biotransformation of 4-picoline proceeds at only ~4.5% of the rate of the natural reaction on toluene. Random mutagenesis, saturation mutagenesis, and screening directly for product formation using a modified Gibbs assay generated mutant TDO 3-B38, in which the wild-type stop codon was replaced with a codon encoding threonine. Escherichia coli-expressed TDO 3-B38 exhibited 5.6 times higher activity toward 4-picoline and ~20% more activity towards toluene than wild-type TDO. The product of the biotransformation of 4-picoline is 3-hydroxy-4-picoline; no cis-diols of 4-picoline were observed.  相似文献   

6.
Indole, as a typical N-heteroaromatic compound existed in coking wastewater, can be used for bio-indigo production. The microbial production of indigo from indole has been widely reported during the last decades using culture-dependent methods, but few studies have been carried out by microbial communities. Herein, three activated sludge systems stimulated by different aromatics, i.e. naphthalene plus indole (G1), phenol plus indole (G2) and indole only (G3), were constructed for indigo production from indole. During the operation, G1 produced the highest indigo yield in the early stage, but it switched to G3 in the late stage. Based on LC-MS analysis, indigo was the major product in G1 and G3, while the purple product 2-(7-oxo-1H-indol-6(7H)-ylidene) indolin-3-one was dominant in G2. Illumina MiSeq sequencing of 16S rRNA gene amplicons was applied to analyze the microbial community structure and composition. Detrended correspondence analysis (DCA) and dissimilarity tests showed that the overall community structures of three groups changed significantly during the operation (P<0.05). Nevertheless, the bacteria assigned to phylum Proteobacteria, family Comamonadaceae, and genera Diaphorobacter, Comamonas and Aquamicrobium were commonly shared dominant populations. Pearson correlations were calculated to discern the relationship between microbial communities and indigo yields. The typical indigo-producing populations Comamonas and Pseudomonas showed no positive correlations with indigo yields, while there emerged many other genera that exhibited positive relationships, such as Aquamicrobium, Truepera and Pusillimonas, which had not been reported for indigo production previously. The present study should provide new insights into indigo bio-production by microbial communities from indole.  相似文献   

7.
Previously, a Saccharomyces cerevisiae strain was engineered for xylose assimilation by the constitutive overexpression of the Orpinomyces xylose isomerase, the S. cerevisiae xylulokinase, and the Pichia stipitis SUT1 sugar transporter genes. The recombinant strain exhibited growth on xylose, under aerobic conditions, with a specific growth rate of 0.025 h−1, while ethanol production from xylose was achieved anaerobically. In the present study, the developed recombinant yeast was adapted for enhanced growth on xylose by serial transfer in xylose-containing minimal medium under aerobic conditions. After repeated batch cultivations, a strain was isolated which grew with a specific growth rate of 0.133 h−1. The adapted strain could ferment 20 g l−1 of xylose to ethanol with a yield of 0.37 g g−1 and production rate of 0.026 g l−1 h−1. Raising the fermentation temperature from 30°C to 35°C resulted in a substantial increase in the ethanol yield (0.43 g g−1) and production rate (0.07 g l−1 h−1) as well as a significant reduction in the xylitol yield. By the addition of a sugar complexing agent, such as sodium tetraborate, significant improvement in ethanol production and reduction in xylitol accumulation was achieved. Furthermore, ethanol production from xylose and a mixture of glucose and xylose was also demonstrated in complex medium containing yeast extract, peptone, and borate with a considerably high yield of 0.48 g g−1.  相似文献   

8.
The specific growth rate is a key control parameter in the industrial production of baker’s yeast. Nevertheless, quantitative data describing its effect on fermentative capacity are not available from the literature. In this study, the effect of the specific growth rate on the physiology and fermentative capacity of an industrial Saccharomyces cerevisiae strain in aerobic, glucose-limited chemostat cultures was investigated. At specific growth rates (dilution rates, D) below 0.28 h−1, glucose metabolism was fully respiratory. Above this dilution rate, respirofermentative metabolism set in, with ethanol production rates of up to 14 mmol of ethanol · g of biomass−1 · h−1 at D = 0.40 h−1. A substantial fermentative capacity (assayed offline as ethanol production rate under anaerobic conditions) was found in cultures in which no ethanol was detectable (D < 0.28 h−1). This fermentative capacity increased with increasing dilution rates, from 10.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.025 h−1 to 20.5 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.28 h−1. At even higher dilution rates, the fermentative capacity showed only a small further increase, up to 22.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.40 h−1. The activities of all glycolytic enzymes, pyruvate decarboxylase, and alcohol dehydrogenase were determined in cell extracts. Only the in vitro activities of pyruvate decarboxylase and phosphofructokinase showed a clear positive correlation with fermentative capacity. These enzymes are interesting targets for overexpression in attempts to improve the fermentative capacity of aerobic cultures grown at low specific growth rates.  相似文献   

9.
Qu Y  Zhang X  Ma Q  Ma F  Zhang Q  Li X  Zhou H  Zhou J 《Biotechnology letters》2012,34(2):353-357
An indigo-producing strain was isolated from activated sludge and identified as Comamonas sp. based on 16S rRNA analysis. It produced indigo at 26.5 mg/l with a conversion of indole to indigo of 47%. Indole at 50 mg/l plus 200 mg naphthalene/l gave 32.2 mg indigo/l with a 58% conversion. A pathway for indigo formation is proposed. This is the first study of indigo biosynthesis by Comamonas sp.  相似文献   

10.
The assessment of biodegradation activity in contaminated aquifers is critical to demonstrate the performance of bioremediation and natural attenuation and to parameterize models of contaminant plume dynamics. Real time quantitative PCR (qPCR) was used to target the catabolic bssA gene (coding for benzylsuccinate synthase) and a 16S rDNA phylogenetic gene (for total Bacteria) as potential biomarkers to infer on anaerobic toluene degradation rates. A significant correlation (P = 0.0003) was found over a wide range of initial toluene concentrations (1–100 mg/l) between toluene degradation rates and bssA concentrations in anaerobic microcosms prepared with aquifer material from a hydrocarbon contaminated site. In contrast, the correlation between toluene degradation activity and total Bacteria concentrations was not significant (P = 0.1125). This suggests that qPCR targeting of functional genes might offer a simple approach to estimate in situ biodegradation activity, which would enhance site investigation and modeling of natural attenuation at hydrocarbon-contaminated sites.  相似文献   

11.
This study was undertaken to isolate indigenous plant growth‐promoting (PGP) bacteria from solarized soil effective in the biocontrol of Monosporascus cannonballus, the cause of root rot and vine decline of melon, which is one of the most destructive soilborne diseases of this crop worldwide. The screening strategy resulted in the selection of two interesting PGP bacteria as biocontrol candidates against M. cannonballus belonging to the same microbial community. The two bacterial species, identified according to phenotypic, physiological tests and analysis of the 16S rDNA sequence as Bacillus subtilis/amyloliquefaciens (BsCR) and Pseudomonas putida (PpF4), showed PGP traits and in vitro antagonistic activity towards M. cannonballus. Antagonism by BsCR was characterized by a consistent inhibition of the pathogen in vitro growth; PpF4 strongly inhibited the development of perithecia of the pathogen. Under greenhouse conditions, the selected bacteria were tested for their biocontrol activity in the pathosystem melon‐M. cannonballus. BsCR alone and in combination with PpF4 determined a consistent decrease in the disease symptoms. BsCR and the combination of the bacterial strains significantly increased root biomass in both inoculated and un‐inoculated plant. Upon seed treatment with BsCR, the accumulation and isoenzyme induction of peroxidase in roots as biochemical marker for induction of resistance were found, thus indicating that BsCR may reduce the disease severity also by the activation of the plant defence responses. The study highlights the synergistic biocontrol potential of B. subtilis BsCR and P. putida PpF4 in the integrated management of root rot and vine decline of melon caused by M. cannonballus.  相似文献   

12.
Rhodococcus opacus strain B-4, which has recently been isolated as an organic solvent-tolerant bacterium, has a high hydrophobicity and exhibits a high affinity for hydrocarbons. This bacterium was able to survive for at least 5 days in organic solvents, including n-tetradecane, oleyl alcohol, and bis(2-ethylhexyl) phthalate (BEHP), which contained water less than 1% (w/v). The biocatalytic ability of R. opacus B-4 was demonstrated in the essentially nonaqueous BEHP using indigo production from indole as a model conversion. By the catabolism of oleic acid for NADH regeneration, indigo production increased up to 71.6 μg ml−1 by 24 h.  相似文献   

13.
Cassava is a starch-containing root crop that is widely used as a raw material in a variety of industrial applications, most recently in the production of fuel ethanol. In the present study, ethanol production from raw (uncooked) cassava flour by simultaneous saccharification and fermentation (SSF) using a preparation consisting of multiple enzyme activities from Aspergillus kawachii FS005 was investigated. The multi-activity preparation was obtained from a novel submerged fermentation broth of A. kawachii FS005 grown on unmilled crude barley as a carbon source. The preparation was found to consist of glucoamylase, acid-stable α-amylase, acid carboxypeptidase, acid protease, cellulase and xylanase activities, and exhibited glucose and free amino nitrogen (FAN) production rates of 37.7 and 118.7 mg/l/h, respectively, during A. kawachii FS005-mediated saccharification of uncooked raw cassava flour. Ethanol production from 18.2% (w/v) dry uncooked solids of raw cassava flour by SSF with the multi-activity enzyme preparation yielded 9.0% (v/v) of ethanol and 92.3% fermentation efficiency. A feasibility study for ethanol production by SSF with a two-step mash using raw cassava flour and the multi-activity enzyme preparation manufactured on-site was verified on a pilot plant scale. The enzyme preparation obtained from the A. kawachii FS005 culture broth exhibited glucose and FAN production rates of 41.1 and 135.5 mg/l/h, respectively. SSF performed in a mash volume of about 1,612 l containing 20.6% (w/v) dry raw cassava solids and 106 l of on-site manufactured A. kawachii FS005 culture broth yielded 10.3% (v/v) ethanol and a fermentation efficiency of 92.7%.  相似文献   

14.
Biosynthesis of the popular dyestuff indigo from indole has been comprehensively studied using pure cultures, but less has been done to characterize the indigo production by microbial communities. In our previous studies, a wild strain Comamonas sp. MQ was isolated from activated sludge and the recombinant Escherichia coli nagAc carrying the naphthalene dioxygenase gene (nag) from strain MQ was constructed, both of which were capable of producing indigo from indole. Herein, three activated sludge systems, G1 (non-augmented control), G2 (augmented with Comamonas sp. MQ), and G3 (augmented with recombinant E. coli nagAc), were constructed to investigate indigo production. After 132-day operation, G3 produced the highest yields of indigo (99.5 ± 3.0 mg/l), followed by G2 (27.3 ± 1.3 mg/l) and G1 (19.2 ± 1.2 mg/l). The microbial community dynamics and activities associated with indigo production were analyzed by Illumina Miseq sequencing of 16S rRNA gene amplicons. The inoculated strain MQ survived for at least 30 days, whereas E. coli nagAc was undetectable shortly after inoculation. Quantitative real-time PCR analysis suggested the abundance of naphthalene dioxygenase gene (nagAc) from both inoculated strains was strongly correlated with indigo yields in early stages (0–30 days) (P < 0.001) but not in later stages (30–132 days) (P > 0.10) of operation. Based on detrended correspondence analysis (DCA) and dissimilarity test results, the communities underwent a noticeable shift during the operation. Among the four major genera (> 1% on average), the commonly reported indigo-producing populations Comamonas and Pseudomonas showed no positive relationship with indigo yields (P > 0.05) based on Pearson correlation test, while Alcaligenes and Aquamicrobium, rarely reported for indigo production, were positively correlated with indigo yields (P < 0.05). This study should provide new insights into our understanding of indigo bio-production by microbial communities.  相似文献   

15.
Self-sufficient CYP102As possess outstanding hydroxylating activity to fatty acids such as myristic acid. Other CYP102 subfamily members share substrate specificity of CYP102As, but, occasionally, unusual characteristics of its own subfamily have been found. In this study, only one self-sufficient cytochrome P450 from Streptomyces cattleya was renamed from CYP102A_scat to CYP102G4, purified and characterized. UV–Vis spectrometry pattern, FAD/FMN analysis, and protein sequence comparison among CYP102s have shown that CYP102 from Streptomyces cattleya belongs to CYP102G subfamily. It showed hydroxylation activity toward fatty acids generating ω-1, ω-2, and ω-3-hydroxyfatty acids, which is similar to the general substrate specificity of CYP102 family. Unexpectedly, however, expression of CYP102G4 showed indigo production in LB medium batch flask culture, and high catalytic activity (kcat/Km) for indole was measured as 6.14 ± 0.10 min 1 mM 1. Besides indole, CYP102G4 was able to hydroxylate aromatic compounds such as flavone, benzophenone, and chloroindoles. Homology model has shown such ability to accept aromatic compounds is due to its bigger active site cavity. Unlike other CYP102s, CYP102G4 did not have biased cofactor dependency, which was possibly determined by difference in NAD(P)H binding residues (Ala984, Val990, and Tyr1064) compared to CYP102A1 (Arg966, Lys972 and Trp1046). Overall, a self-sufficient CYP within CYP102G subfamily was characterized using purified enzymes, which appears to possess unique properties such as an only prokaryotic CYP naturally producing indigo.  相似文献   

16.

Objective

To examine the role of a gene encoding flavin-containing monooxygenase (cFMO) from Corynebacterium glutamicum ATCC13032 when cloned and expressed in Escherichia coli for the production of indigo pigments.

Results

The blue pigments produced by recombinant E. coli were identified as indigo and indirubin. The cFMO was purified as a fused form with maltose-binding protein (MBP). The enzyme was optimal at 25 °C and pH 8. From absorption spectrum analysis, the cFMO was classified as a flavoprotein. FMO activity was strongly inhibited by 1 mM Cu2+ and recovered by adding 1–10 mM EDTA. The enzyme catalyzed the oxidation of TMA, thiourea, and cysteamine, but not glutathione or cysteine. MBP-cFMO had an indole oxygenase activity through oxygenation of indole to indoxyl. The recombinant E. coli produced 685 mg indigo l?1 and 103 mg indirubin l?1 from 2.5 g l-tryptophan l?1.

Conclusion

The results suggest the cFMO can be used for the microbial production of both indigo and indirubin.
  相似文献   

17.
Acinetobacter sp. strain ST-550 produces indigo from indole in the presence of a large volume of diphenylmethane and a high level of indole. Particular proteins increased remarkably in strain ST-550 grown in the two-phase culture system for indigo production. One of the proteins showed a N-terminal amino acid sequence that was identical to that of the largest subunit of phenol hydroxylase (MopN) from A. calcoaceticus NCBI8250. The indigo-producing activity was strongly induced when ST-550 was grown with phenol as a sole carbon source. Genes coding for the multicomponent phenol hydroxylase were cloned, based on the homology with mopKLMOP from A. calcoaceticus NCBI8250. Escherichia coli carrying the genes produced indigo from indole. E. coli JA300 and its cyclohexane-resistant mutant, OST3410, carrying the hydroxylase genes and the NADH regeneration system were grown in the two-phase culture system for indigo production. The OST3410 recombinant produced 52 microg indigo ml(-1) of medium in the presence of diphenylmethane. This productivity was 4.3-fold higher than that of the JA300 recombinant.  相似文献   

18.
Bagasse of Agave tequilana (BAT) is the residual lignocellulosic waste that remains from tequila production. In this study we characterized the chemical composition of BAT, which was further saccharified and fermented to produce ethanol. BAT was constituted by cellulose (42%), hemicellulose (20%), lignin (15%), and other (23%). Saccharification of BAT was carried out at 147°C with 2% sulfuric acid for 15 min, yielding 25.8 g/l of fermentable sugars, corresponding to 36.1% of saccharificable material (cellulose and hemicellulose contents, w/w). The remaining lignocellulosic material was further hydrolyzed by commercial enzymes, ~8.2% of BAT load was incubated for 72 h at 40°C rendering 41 g/l of fermentable sugars corresponding to 73.6% of the saccharificable material (w/w). Mathematic surface response analysis of the acid and enzymatic BAT hydrolysis was used for process optimization. The results showed a satisfactory correlation (R 2 = 0.90) between the obtained and predicted responses. The native yeast Pichia caribbica UM-5 was used to ferment sugar liquors from both acid and enzymatic hydrolysis to ethanol yielding 50 and 87%, respectively. The final optimized process generated 8.99 g ethanol/50 g of BAT, corresponding to an overall 56.75% of theoretical ethanol (w/w). Thus, BAT may be employed as a lignocellulosic raw material for bioethanol production and can contribute to BAT residue elimination from environment.  相似文献   

19.
Yu Z  Zhao H  Li H  Zhang Q  Lei H  Zhao M 《Biotechnology letters》2012,34(2):365-370
Saccharomyces pastorianus FBY0095 was mutated and variants were selected for efficient very high gravity brewing using 15% (w/v) maltose and 15% (w/v) ethanol. Two useful variants were obtained of which one (L6) had growth, wort consumption and ethanol production rates of 0.036, 1.13 and 0.49 g l−1 h−1, respectively. The corresponding results for the wild type were 0.028, 0.98 and 0.4 g l−1 h−1, respectively. The vitality of the variant (expressed as acidification power) was 2.5 while that of the wild type was 2.3. There was also an obvious improvement on flavor of resulting beer when using L6 and the other variant.  相似文献   

20.
We are using directed evolution to extend the range of dioxygenase-catalyzed biotransformations to include substrates that are either poorly accepted or not accepted at all by the naturally occurring enzymes. Here we report on the oxidation of a heterocyclic substrate, 4-picoline, by toluene dioxygenase (TDO) and improvement of the enzyme's activity by laboratory evolution. The biotransformation of 4-picoline proceeds at only approximately 4.5% of the rate of the natural reaction on toluene. Random mutagenesis, saturation mutagenesis, and screening directly for product formation using a modified Gibbs assay generated mutant TDO 3-B38, in which the wild-type stop codon was replaced with a codon encoding threonine. Escherichia coli-expressed TDO 3-B38 exhibited 5.6 times higher activity toward 4-picoline and approximately 20% more activity towards toluene than wild-type TDO. The product of the biotransformation of 4-picoline is 3-hydroxy-4-picoline; no cis-diols of 4-picoline were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号