首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation of methionine residues during periods of oxidative stress can lead to loss of protein function. Organisms have developed defense strategies to minimize such damage. The PilB protein, which is involved in pilus formation in the pathogen Neisseria gonorrhoeae, is composed of three functional protein domains (I-III) with putative roles in oxidative stress defense. These domains are evolutionarily conserved and homologs have been discovered in diverse prokaryotes and eukaryotes. Domain III shows similarities to selenoproteins which contain selenium instead of sulfur in a conserved cysteine residue. The substitution of selenium for sulfur alters the redox properties of such proteins. Knock-out mutants were used to elucidate the function of these novel selenoprotein-like domains in yeast and in Arabidopsis thaliana. We show that organisms with non-functional genes for selenoprotein-like polypeptides accumulate higher levels of oxidized methionine residues on exposure to oxidative stress. The behavior of the mutants suggests that these novel selenoprotein-like gene products are part of a ubiquitous detoxification system that interacts with other redox-related proteins such as the thioredoxin-related protein and methionine sulfoxide reductase which are encoded by domains I and II of PilB. These proteins may be encoded by one gene as in the case of several prokaryotes, or by separate genes as in the eukaryotes examined here.  相似文献   

2.
Methionine sulfoxide reductases (Msrs) are able to reduce methionine sulfoxide to methionine both in proteins and free amino acids. By their action it is possible to regulate the function of specific proteins and the cellular antioxidant defense against oxidative damage. Similarly, cysteine deoxygenase (CDO) may be involved in the regulation of protein function and antioxidant defense mechanisms by its ability to oxidized cysteine residues. The two enzymes' involvement in sulfur amino-acids metabolism seems to be connected. Lack of methionine sulfoxide reductase A (MsrA) in liver of MsrA-/- led to a significant drop in the cellular level of thiol groups and lowered the CDO level of expression. Moreover, following selenium deficient diet (applied to decrease the expression levels of selenoproteins like MsrB), the latter effect was maintained while the basal levels of thiol decreased in both mouse strains. We suggest that both enzymes are working in coordination to balance cellular antioxidant defense.  相似文献   

3.
The mammalian methionine sulfoxide reductase B (MsrB) has been found to be a selenoprotein which can reduce R form of both free and protein-incorporated methionine sulfoxide to methionine. Together with MsrA, which reduces specifically the S form of methionine sulfoxide, the living cell can repair methionine-damaged proteins and salvage free methionine under oxidative stress conditions. Here, we report about the pivotal role of the selenocysteine residue in the protein putative active site by site-directed mutagenesis directed to the selenocysteine codon. Using the Escherichia coli SECIS (selenocysteine insertion sequence) element, needed for the recognition of the UGA codon as a selenocysteine codon in E. coli, we expressed the seleno-MsrB as a recombinant selenoprotein in E. coli. The recombinant seleno-MsrB has been shown to be much more active than the cysteine mutant, whereas the mutations to alanine and serine rendered the protein inactive. Although the yields of expression of the full-length N-terminus and C-terminus His-tagged seleno-MsrB were only 3% (of the total MsrB expressed), the C-terminus His-tagged protein enabled us to get a pure preparation of the seleno-MsrB. Using both recombinant selenoproteins, the N-terminus His-tagged and the C-terminus His-tagged proteins, we were able to determine the specific activities of the recombinant seleno-MsrB, which were found to be much higher than the cysteine mutant homologue. This finding confirmed our suggestion that the selenocysteine is essential for maintaining high reducing activity of MsrB. In addition, using radioactive selenium we were able to determine the in vivo presence of MsrB as a selenoprotein in mammalian cell cultures.  相似文献   

4.
Selenoproteins are essential in vertebrates because of their crucial role in cellular redox homeostasis, but some invertebrates that lack selenoproteins have recently been identified. Genetic disruption of selenoprotein biosynthesis had no effect on lifespan and oxidative stress resistance of Drosophila melanogaster. In the current study, fruit flies with knock-out of the selenocysteine-specific elongation factor were metabolically labeled with (75)Se; they did not incorporate selenium into proteins and had the same lifespan on a chemically defined diet with or without selenium supplementation. These flies were, however, more susceptible to starvation than controls, and this effect could be ascribed to the function of selenoprotein K. We further expressed mouse methionine sulfoxide reductase B1 (MsrB1), a selenoenzyme that catalyzes the reduction of oxidized methionine residues and has protein repair function, in the whole body or the nervous system of fruit flies. This exogenous selenoprotein could only be expressed when the Drosophila selenocysteine insertion sequence element was used, whereas the corresponding mouse element did not support selenoprotein synthesis. Ectopic expression of MsrB1 in the nervous system led to an increase in the resistance against oxidative stress and starvation, but did not affect lifespan and reproduction, whereas ubiquitous MsrB1 expression had no effect. Dietary selenium did not influence lifespan of MsrB1-expressing flies. Thus, in contrast to vertebrates, fruit flies preserve only three selenoproteins, which are not essential and play a role only under certain stress conditions, thereby limiting the use of the micronutrient selenium by these organisms.  相似文献   

5.
Selenium and selenoproteins in the brain and brain diseases   总被引:11,自引:0,他引:11  
Over the past three decades, selenium has been intensively investigated as an antioxidant trace element. It is widely distributed throughout the body, but is particularly well maintained in the brain, even upon prolonged dietary selenium deficiency. Changes in selenium concentration in blood and brain have been reported in Alzheimer's disease and brain tumors. The functions of selenium are believed to be carried out by selenoproteins, in which selenium is specifically incorporated as the amino acid, selenocysteine. Several selenoproteins are expressed in brain, but many questions remain about their roles in neuronal function. Glutathione peroxidase has been localized in glial cells, and its expression is increased surrounding the damaged area in Parkinson's disease and occlusive cerebrovascular disease, consistent with its protective role against oxidative damage. Selenoprotein P has been reported to possess antioxidant activities and the ability to promote neuronal cell survival. Recent studies in cell culture and gene knockout models support a function for selenoprotein P in delivery of selenium to the brain. mRNAs for other selenoproteins, including selenoprotein W, thioredoxin reductases, 15-kDa selenoprotein and type 2 iodothyronine deiodinase, are also detected in the brain. Future research directions will surely unravel the important functions of this class of proteins in the brain.  相似文献   

6.
A novel eukaryotic selenoprotein in the haptophyte alga Emiliania huxleyi   总被引:1,自引:0,他引:1  
The diversity of selenoproteins raises the question of why many life forms require selenium. Especially in photosynthetic organisms, the biochemical basis for the requirement for selenium is unclear because there is little information on selenoproteins. We found six selenium-containing proteins in a haptophyte alga, Emiliania huxleyi, which requires selenium for growth. The 27-kDa protein EhSEP2 was isolated, and its cDNA was cloned. The deduced amino acid sequence revealed that EhSEP2 is homologous to protein disulfide isomerase (PDI) and contains a highly conserved thioredoxin domain. The nucleotide sequence contains an in-frame TGA codon encoding selenocysteine at the position corresponding to the cysteine residue in the reaction center of known PDIs. However, no typical selenocysteine insertion sequence was found in the EhSEP2 cDNA. The EhSEP2 mRNA level was related to the abundance of selenium. E. huxleyi possesses a novel PDI-like selenoprotein and may have a novel type of selenocysteine insertion machinery.  相似文献   

7.
Methionine sulfoxide reductases are conserved enzymes that reduce oxidized methionines in proteins and play a pivotal role in cellular redox signaling. We have unraveled the redox relay mechanisms of methionine sulfoxide reductase A of the pathogen Corynebacterium diphtheriae (Cd-MsrA) and shown that this enzyme is coupled to two independent redox relay pathways. Steady-state kinetics combined with mass spectrometry of Cd-MsrA mutants give a view of the essential cysteine residues for catalysis. Cd-MsrA combines a nucleophilic cysteine sulfenylation reaction with an intramolecular disulfide bond cascade linked to the thioredoxin pathway. Within this cascade, the oxidative equivalents are transferred to the surface of the protein while releasing the reduced substrate. Alternatively, MsrA catalyzes methionine sulfoxide reduction linked to the mycothiol/mycoredoxin-1 pathway. After the nucleophilic cysteine sulfenylation reaction, MsrA forms a mixed disulfide with mycothiol, which is transferred via a thiol disulfide relay mechanism to a second cysteine for reduction by mycoredoxin-1. With x-ray crystallography, we visualize two essential intermediates of the thioredoxin relay mechanism and a cacodylate molecule mimicking the substrate interactions in the active site. The interplay of both redox pathways in redox signaling regulation forms the basis for further research into the oxidative stress response of this pathogen.  相似文献   

8.
Selenocysteine is inserted into selenoproteins via the translational recoding of a UGA codon, normally used as a stop signal. This process depends on the nature of the selenocysteine insertion sequence element located in the 3′ UTR of selenoprotein mRNAs, selenium bioavailability, and, possibly, exogenous stimuli. To further understand the function and regulation of selenoproteins in antioxidant defense and redox homeostasis, we investigated how oxidative stress influences selenoprotein expression as a function of different selenium concentrations. We found that selenium supplementation of the culture media, which resulted in a hierarchical up-regulation of selenoproteins, protected HEK293 cells from reactive oxygen species formation. Furthermore, in response to oxidative stress, we identified a selective up-regulation of several selenoproteins involved in antioxidant defense (Gpx1, Gpx4, TR1, SelS, SelK, and Sps2). Interestingly, the response was more efficient when selenium was limiting. Although a modest change in mRNA levels was noted, we identified a novel translational control mechanism stimulated by oxidative stress that is characterized by up-regulation of UGA-selenocysteine recoding efficiency and relocalization of SBP2, selenocysteine-specific elongation factor, and L30 recoding factors from the cytoplasm to the nucleus.  相似文献   

9.
Reactive lipid hydroperoxides formed by lipoxygenases and cyclooxygenases can contribute to disease through cellular oxidative damage. Several selenoproteins have lipid hydroperoxidase activity, including glutathione peroxidase 4, thioredoxin reductase, and selenoprotein P (SelP). SelP is an extracellular glycoprotein that functions both in selenium distribution and has an antioxidant activity. The major objective of this study was to determine if an SelP, at physiological concentrations and in selenium replete media, possessed hydroperoxidase activity directed at lipid hydroperoxides generated from the metabolism of arachidonic acid by 15-lipoxygenase-1 (15-LOX-1). An SelP displayed in vitro lipid hydroperoxidase activity of 15-hydroperoxyeicosatetraenoic acid (15-HpETE), attenuated 15-HpETE oxidation in cellular assays, and in transcellular assay when 15-LOX-1 is metabolically active. These results suggest that an SelP can function as an antioxidant enzyme against reactive lipid intermediates formed during inflammation, but an SelP has modest activity. Nevertheless, this effect may help protect cells against the oxidative damage induced by these lipid metabolites.  相似文献   

10.
Proteins are subject to modification by reactive oxygen species (ROS), and oxidation of specific amino acid residues can impair their biological function, leading to an alteration in cellular homeostasis. Sulfur-containing amino acids as methionine are the most vulnerable to oxidation by ROS, resulting in the formation of methionine sulfoxide [Met(O)] residues. This modification can be repaired by methionine sulfoxide reductases (Msr). Two distinct classes of these enzymes, MsrA and MsrB, which selectively reduce the two methionine sulfoxide epimers, methionine-S-sulfoxide and methionine-R-sulfoxide, respectively, are found in virtually all organisms. Here, we describe the homologs of methionine sulfoxide reductases, msrA and msrB, in the filamentous fungus Aspergillus nidulans. Both single and double inactivation mutants were viable, but more sensitive to oxidative stress agents as hydrogen peroxide, paraquat, and ultraviolet light. These strains also accumulated more carbonylated proteins when exposed to hydrogen peroxide indicating that MsrA and MsrB are active players in the protection of the cellular proteins from oxidative stress damage.  相似文献   

11.
Peptide methionine sulfoxide reductase (MsrA) repairs oxidative damage to methionine residues arising from reactive oxygen species and reactive nitrogen intermediates. MsrA activity is found in a wide variety of organisms, and it is implicated as one of the primary defenses against oxidative stress. Disruption of the gene encoding MsrA in several pathogenic bacteria responsible for infections in humans results in the loss of their ability to colonize host cells. Here, we present the X-ray crystal structure of MsrA from the pathogenic bacterium Mycobacterium tuberculosis refined to 1.5 A resolution. In contrast to the three catalytic cysteine residues found in previously characterized MsrA structures, M. tuberculosis MsrA represents a class containing only two functional cysteine residues. The structure reveals a methionine residue of one MsrA molecule bound at the active site of a neighboring molecule in the crystal lattice and thus serves as an excellent model for protein-bound methionine sulfoxide recognition and repair.  相似文献   

12.
Reactive oxygen and nitrogen intermediates can cause damage to many cellular components and have been implicated in a number of diseases. Cells have developed a variety of mechanisms to destroy these reactive molecules or repair the damage once it occurs. In proteins one of the amino acids most easily oxidized is methionine, which is converted to methionine sulfoxide. An enzyme, peptide methionine sulfoxide reductase (MsrA), catalyzes the reduction of methionine sulfoxide in proteins back to methionine. There is growing evidence that MsrA plays an important role in protecting cells against oxidative damage. This paper reviews the biochemical properties and biological role of MsrA.  相似文献   

13.
Of the many health benefits attributed to selenium, the one that has received the most attention is its role in cancer prevention. Selenium-containing proteins (selenoproteins) have been shown in recent years to have roles in cancer prevention. However, selenoproteins have diverse functions and their view as antioxidants is oversimplified. Some selenoproteins appear to have a split personality in having roles both in preventing and promoting cancer. The contrasting roles of one selenoprotein, thioredoxin reductase 1, in cancer are discussed in detail, but as also noted, at least one other selenoprotein may also have such a dual function. In addition, we discuss examples of inhibition of cancer development by selenoprotein deficiency in mouse models. These studies highlight the complex nature of selenium in relation to cancer.  相似文献   

14.
Mammalian thioredoxin reductases contain a TGA-encoded C-terminal penultimate selenocysteine (Sec) residue, and show little homology to bacterial, yeast, and plant thioredoxin reductases. Here we show that the nematode, Caenorhabditis elegans, contains two homologs related to the mammalian thioredoxin reductase family. The gene for one of these homologs contains a cysteine codon in place of TGA, and its product, designated TR-S, was previously suggested to function as thioredoxin reductase. The other gene contains TGA and its product is designated TR-Se. This Sec-containing thioredoxin reductase lacks a canonical Sec insertion sequence element in the 3'-untranslated area of the gene. TR-Se shows greater sequence similarity to mammalian thioredoxin reductase isozymes TR1 and TR2, whereas TR-S is more similar to TR3. TR-Se was identified as a thioredoxin reductase selenoprotein by labeling C. elegans with 75Se and characterizing the resulting 75Se-labeled protein by affinity and other column chromatography and gel-electrophoresis. TR-Se was expressed in Escherichia coli as a selenoprotein when a bacterial SECIS element was introduced downstream of the Sec TGA codon. The data show that TR-Se is the major naturally occurring selenoprotein in C. elegans, and suggest an important role for selenium and the thioredoxin system in this organism.  相似文献   

15.
The mammalian thioredoxin reductases (TrxR) are selenoproteins with a catalytic selenocysteine residue which in the oxidized enzyme forms a selenenylsulfide and in the reduced enzyme is present as a selenolthiol. Selenium compounds such as selenite, selenodiglutathione and selenocystine are substrates for the enzyme with low Km-values and the enzyme is implicated in reductive assimilation of selenium by generating selenide for selenoprotein synthesis. Redox cycling of reduced metabolites of these selenium compounds including selenide with oxygen via TrxR and reduced thioredoxin (Trx) will oxidize NADPH and produce reactive oxygen species inducing cell death at high concentrations explaining selenite toxicity. There is no free pool of selenocysteine since this would be toxic in an oxygen environment by redox cycling via thioredoxin systems. The importance of selenium compounds and TrxR in cancer and cardiovascular diseases both for prevention and treatment is discussed. A selenazol drug like ebselen is a direct substrate for mammalian TrxR and dithiol Trx and ebselen selenol is readily reoxidized by hydrogen peroxide and lipid hydroperoxides, acting as an anti-oxidant and anti-inflammatory drug.  相似文献   

16.
Thioredoxin (Trx) is a small molecular protein with complicated functions in a number of processes, including inflammation, apoptosis, embryogenesis, cardiovascular disease, and redox regulation. Some selenoproteins, such as glutathione peroxidase (Gpx), iodothyronine deiodinase (Dio), and thioredoxin reductase (TR), are involved in redox regulation. However, whether there are interactions between Trx and selenoproteins is still not known. In the present paper, we used a Modeller, Hex 8.0.0, and the KFC2 Server to predict the interactions between Trx and selenoproteins. We used the Modeller to predict the target protein in objective format and assess the accuracy of the results. Molecular interaction studies with Trx and selenoproteins were performed using the molecular docking tools in Hex 8.0.0. Next, we used the KFC2 Server to further test the protein binding sites. In addition to the selenoprotein physiological functions, we also explored potential relationships between Trx and selenoproteins beyond all the results we got. The results demonstrate that Trx has the potential to interact with 19 selenoproteins, including iodothyronine deiodinase 1 (Dio1), iodothyronine deiodinase 3 (Dio3), glutathione peroxidase 1 (Gpx1), glutathione peroxidase 2 (Gpx2), glutathione peroxidase 3 (Gpx3), glutathione peroxidase 4 (Gpx4), selenoprotein H (SelH), selenoprotein I (SelI), selenoprotein M (SelM), selenoprotein N (SelN), selenoprotein T (SelT), selenoprotein U (SelU), selenoprotein W (SelW), selenoprotein 15 (Sep15), methionine sulfoxide reductase B (Sepx1), selenophosphate synthetase 1 (SPS1), TR1, TR2, and TR3, among which TR1, TR2, TR3, SPS1, Sep15, SelN, SelM, SelI, Gpx2, Gpx3, Gpx4, and Dio3 exhibited intense correlations with Trx. However, additional experiments are needed to verify them.  相似文献   

17.
Dsb proteins catalyze folding and oxidation of polypeptides in the periplasm of Escherichia coli. DsbC reduces wrongly paired disulfides by transferring electrons from its catalytic dithiol motif (98)CGYC. Genetic evidence suggests that recycling of this motif requires at least three proteins, the cytoplasmic thioredoxin reductase (TrxB) and thioredoxin (TrxA) as well as the DsbD membrane protein. We demonstrate here that electrons are transferred directly from thioredoxin to DsbD and from DsbD to DsbC. Three cysteine pairs within DsbD undergo reversible disulfide rearrangements. Our results suggest a novel mechanism for electron transport across membranes whereby electrons are transferred sequentially from cysteine pairs arranged in a thioredoxin-like motif (CXXC) to a cognate reactive disulfide.  相似文献   

18.
The roles of methionine residues in proteins have not been well defined, but a review of available studies leads to the conclusion that methionine, like cysteine, functions as an antioxidant and as a key component of a system for regulation of cellular metabolism. Methionine is readily oxidized to methionine sulfoxide by many reactive species. The oxidation of surface exposed methionines thus serves to protect other functionally essential residues from oxidative damage. Methionine sulfoxide reductases have the potential to reduce the residue back to methionine, increasing the scavenging efficiency of the system. Reversible covalent modification of amino acids in proteins provides the mechanistic basis for most systems of cellular regulation. Interconversion of methionine and methionine sulfoxide can function to regulate the biological activity of proteins, through alteration in catalytic efficiency and through modulation of the surface hydrophobicity of the protein.  相似文献   

19.
The 2.3 A resolution crystal structure of a [2Fe-2S] cluster containing ferredoxin from Aquifex aeolicus reveals a thioredoxin-like fold that is novel among iron-sulfur proteins. The [2Fe-2S] cluster is located near the surface of the protein, at a site corresponding to that of the active-site disulfide bridge in thioredoxin. The four cysteine ligands are located near the ends of two surface loops. Two of these ligands can be substituted by non-native cysteine residues introduced throughout a stretch of the polypeptide chain that forms a protruding loop extending away from the cluster. The presence of homologs of this ferredoxin as components of more complex anaerobic and aerobic electron transfer systems indicates that this is a versatile fold for biological redox processes.  相似文献   

20.
It is likely that several of the biological effects of selenium are due to its effects on selenoprotein activity. While the effects of the anti-oxidant selenoprotein glutathione peroxidase (GPx) on inhibiting HIV activation have been well documented, it is clear that increased expression of this enzyme can stimulate the replication and subsequent appearance of cytopathic effects associated with an acutely spreading HIV infection. The effects of GPx on both phases of the viral life cycle are likely mediated via its influence on signaling molecules that use reactive oxygen species, and similar influences on signaling pathways may account for some of the anti-cancer effects of selenium. Similarly, selenium can alter mutagenesis rates in both viral genomes and the DNA of mammalian cells exposed to carcinogens. Comparisons between the effects of selenium and selenoproteins on viral infections and carcinogenesis may yield new insights into the mechanisms of action of this element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号