首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pan LL  Liu XH  Gong QH  Zhu YZ 《Amino acids》2011,41(1):205-215
The present study attempts to investigate the effects of S-propargyl-cysteine (SPRC), a sulfur-containing amino acid, on lipopolysaccharide (LPS)-induced inflammatory response in H9c2 cardiac myocytes. We found that SPRC prevented nuclear factor-κB (NF-κB) activation assessed by NF-κB p65 phosphorylation and IκBα degradation, suppressed LPS-induced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and intracellular reactive oxygen species (ROS) production. Furthermore, incubation of H9c2 cells with SPRC induced phosphorylation of Akt in a time- and concentration-dependent manner. In addition, SPRC attenuated LPS-induced mRNA and protein expression of tumor necrosis factor-α (TNF-α), and mRNA expression of intercellular adhesion molecule-1 (ICAM-1) and inducible nitric oxide synthase (iNOS). The effects of SPRC were abolished by cystathionine γ-lyase [CSE-an enzyme that synthesizes hydrogen sulfide (H2S)] inhibitor, dl-propargylglycine (PAG), SPRC-induced Akt phosphorylation and TNF-α release was also abolished by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002. Furthermore, SPRC also increased LPS-induced down-regulation expression of CSE and H2S level in H9c2 cells. PAG abolished SPRC-induced up-regulation of H2S level. Therefore, we concluded that SPRC produced an anti-inflammatory effect in LPS-stimulated H9c2 cells partly through the CSE/H2S pathway by impairing IκBα/NF-κB signaling and by activating PI3K/Akt signaling pathway.  相似文献   

2.
In order to determine the possible effects of hemolysate on brain microvascular endothelial cells (BMECs), we examined the effects of hemolysate on the expression of intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1), generation of reactive oxygen species (ROS), and NF-κB activation in rat BMECs. Hemolysate induced the expression of ICAM-1 and MCP-1 in endothelial cells. In addition, hemolysate stimulated nuclear translocation of the p65 subunit of NF-κB, and NF-κB DNA-binding activity in BMECs. Furthermore, hemolysate increased ROS generation, and hemolysate-induced ICAM-1and MCP-1 expression and NF-κB activation were abrogated in the presence of the direct scavenger of ROS. Taken together, our results indicate that hemolysate can induce inflammatory responses that increase expression of ICAM-1 and MCP-1, through ROS-dependent NF-κB activation in BMECs.  相似文献   

3.
4.
Many lines of evidence have suggested that oxidative stress and inflammation play a pivotal role in the toxicity of nickel salts. Considering that neutrophils are active participants in inflammatory processes, namely by producing high amounts of reactive oxygen species, the aim of the present study was to evaluate the putative activation of human neutrophils’ oxidative burst by nickel. Subsequently, the influence of nickel in the pathways leading to NADPH oxidation in neutrophils was evaluated by measuring protein kinase C (PKC) activation. The effects of nickel on neutrophils’ nuclear factor κB (NF-κB) activation and on the production of the proinflammatory mediators interleukin (IL)-1β, IL-6, IL-8 and tumour necrosis factor α were also evaluated. The results obtained showed that nickel, at concentrations that may be attained in vivo, stimulates the production of superoxide radical (O2 ·−), hydrogen peroxide (H2O2), and hypochlorous acid (HOCl) in human neutrophils in vitro, via activation of PKC. In addition, nickel was shown to activate NF-κB and to induce the production of IL-8 in these cells. These observations indicate that the sustained activation of human neutrophils by nickel may contribute for the long-term adverse effects on human health mediated by this metal.  相似文献   

5.
Summary Hydroxyhydroquinone or 1,2,4-benzenetriol (BT) detected in the beverages has a structure that coincides with the water-soluble form of a sesame lignan, sesamol. We previously showed that sesame antioxidants had neuroprotective abilities due to their antioxidant properties and/or inducible nitric oxide synthase (iNOS) inhibition. However, studies show that BT can induce DNA damage through the generation of reactive oxygen species (ROS). Therefore, we were interested to investigate the neuroprotective effect of BT in vitro and in vivo. The results showed that instead of enhancing free radical generation, BT dose-dependently (10–100 μM) attenuated nitrite production, iNOS mRNA and protein expression in lipopolysaccharide (LPS)-stimulated murine BV-2 microglia. BT significantly reduced LPS-induced NF-κB and p38 MAPK activation. It also significantly reduced the generation of ROS in H2O2-induced BV-2 cells and in H2O2-cellfree conditions. The neuroprotective effect of BT was further demonstrated in the focal cerebral ischemia model of Sprague–Dawley rat. Taken together, the inhibition of LPS-induced nitrite production might be due to the suppression of NF-κB, p38 MAPK signal pathway and the ROS scavenging effect. These effects might help to protect neurons from the ischemic injury.  相似文献   

6.
Gao P  Wu X  Shui H  Jia R 《Molecular biology reports》2012,39(4):4719-4725
3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors has been shown to reduce the progression of renal disease independent of cholesterol-lowering effect, but the mechanism of potential protective effect remains unclear. Here, we investigate the effect of fluvastatin on activation of nuclear factor-κB (NF-κB) induced by angiotensin II (AngII) in rat kidney tubule epithelial cells (NRK-52E). Electrophoretic mobility shift assays (EMSA) was used to detect NF-κB activation. Phosphorylation of cellular p38 mitogen-activated protein kinase (p38MAPK) was determined by western blot analysis. AngII stimulated the DNA-binding activity of NF-κB and phosphorylation of p38MAPK in cultured NRK-52E cells in a dose-dependent (10−9–10−6 mol/l) manner (P < 0.01). AngII (10−6 mol/l) induced a rapid (5 min) increase of the p38MAPK phosphorylation. NF-κB DNA-binding activity was increased at as early as 30 min, peaked at 2 h after AngII treatment. This stimulatory effect of AngII on NF-κB was blocked by SB203580 (a specific inhibitor of p38MAPK). Incubation of cells with fluvastatin significantly inhibited the AngII-induced NF-κB activation in a dose-dependent (10−7–10−5 mol/l) manner (P < 0.05). Exogenous mevalonate (10−4mol/l) prevented the effect of fluvastatin on NF-κB activation. These results suggest the fluvastatin reduced AngII-induced NF-κB activation via the p38MAPK pathway in NRK-52E cells. The effect is at least partly due to blocking the biosynthesis of mevalonate.  相似文献   

7.
Song G  Tian H  Liu J  Zhang H  Sun X  Qin S 《Biotechnology letters》2011,33(9):1715-1722
H2 is a therapeutic antioxidant that can reduce oxidative stress. Oxidized low-density lipoprotein, which plays roles in atherosclerosis, may promote endothelial dysfunction by binding the cell-surface receptor LOX-1. LOX-1 expression can be upregulated by various stimuli, including TNF-α. Thus, we aimed to examine whether the upregulation of LOX-1 by different stimuli could be blocked by H2 in endothelial cells. H2 significantly abolished the upregulation of LOX-1 by different stimuli, including TNF-α, at the protein and mRNA levels. The TNF-α-induced upregulation of LOX-1 was also attenuated by the NF-κB inhibitor N-acetyl-l-cysteine. H2 inhibited the TNF-α-induced activation of NF-κB and the phosphorylation of IκB-α. Furthermore, H2 inhibited the expression of LOX-1 and the activation of NF-κB in apolipoprotein E knockout mice, an animal model of atherosclerosis. Thus, H2 probably inhibits cytokine-induced LOX-1 gene expression by suppressing NF-κB activation.  相似文献   

8.
9.
The mechanism of lead (Pb2+)-induced neurotoxicity has not yet been fully elucidated. The purpose of this study was to examine the effects of Pb2+ on several protein kinase C (PKC) isoforms and the nuclear factor-κB (NF-κB)–I-κB kinase-alpha (IKK-α) axis in cultured neuronal cells. Neurons were isolated from rat fetal brain at the 18th day of gestation of pregnant Sprague Dawley rats and cultured for 10 days before use. Neurons were exposed to Pb2+ at concentrations of 10−10, 10−9, 10−8, and 10−7 mol/L for 14 h and antigens of typical PKC-α,β,γ; novel PKC (ε, δ), atypical PKC (λ), NF-κB (p50), and IKK-α were enriched by immunoprecipitation and determined by western blotting. Total, calcium-dependent and independent PKC activities were also determined by counting the transferred γ-32 P in the substrate-histone. The results indicated that inorganic Pb2+ significantly reduced all PKC isoforms (α,β,γ, ε, λ) except δ, inhibiting the total, calcium-dependent and calcium-independent PKC activities in a dose-dependent manner. Additionally, Pb2+ gradually reduced NF-κB (p50) and IKK-α protein levels. This suggests that Pb2+ exhibits varying preference for individual PKC isoforms but reduces the NF-κB–IKK-α axis to a similar extent.  相似文献   

10.
Complex I is the main O2 producer of the mitochondrial respiratory chain. O2 release is low with NAD-linked substrates and increases strongly during succinate oxidation, which increases the QH2/Q ratio and is rotenone sensitive. We show that the succinate dependent O2 production (measured as H2O2 release) is inhibited by propargylamine containing compounds (clorgyline, CGP 3466B, rasagiline and TVP-1012). The inhibition does not affect membrane potential and is unaffected by ΔpH modifications. Mitochondrial respiration is similarly unaffected. The propargylamines inhibition of O2 /H2O2 production is monitored also in the presence of the Parkinson's disease toxin dopaminochrome which stimulates O2 release. Propargylamine-containing compounds are the first pharmacological inhibitors described for O2 release at Complex I.  相似文献   

11.
To investigate the effect of apolipoprotein E (apoE) on cytokine expression profile of the liver of young mice, quantitative RT-PCR (qRT-PCR) assay and cytokine antibody array for multiplex analysis of 62 cytokines have been used to analyze characteristics of expression of cytokines in the liver of 6-week-old apoE-null (apoE−/−) mice. The levels of plasma cytokines were also analyzed. The mRNA level of IL-1β, IL-2, IL-6, ICAM-1, VCAM-1, MCP-1, NF-κB (p65), IFN-γ and IκB-α were increased significantly in apoE−/− mice comparative to wild-type (WT) mice. IL-4, IL-10 and GM-CSF, however, were slightly decreased. Compared with WT, levels of 21 cytokines altered twofold or more in apoE−/− mice, including 10 cytokines increased and 11 decreased. Expression patterns of IL-1β, IL-2, IL-4, IL-6, IL-10, GM-CSF, IFN-γ and VCAM-1 showed identical trend between cytokine antibody array and qRT-PCR analysis. Moreover, levels of IL-1β, IFN-γ and IL-6 in the plasma were elevated, while IL-4 was lightly decreased in apoE−/− mice compared to those in WT mice. These results implied that promotion of type I immune response in the liver of young apoE−/− mice due to alteration of these cytokines, and the phenotypes may be caused by the regulation of NF-κB. The inflammation and lipid metabolism dysfunction in the liver cooperated in dysfunction of the liver in young apoE−/− mice.  相似文献   

12.
15-deoxy-∆12,14-prostaglandin J2 (15d-PGJ2) is an anti-inflammatory prostaglandin that plays a role in promoting the resolution of inflammation. We investigated the effects of 15d-PGJ2 on the production of IL-8 and on the expression of Toll-like receptors (TLRs) 2 in human primary keratinocytes stimulated with lipopolysaccharide (LPS). Cell proliferation was analyzed using the MTT assay, TLR2 and -4 mRNA expression was detected by RT–PCR, and IL-8 production and NF-κB p65 activities were determined by ELISA. LPS and 15d-PGJ2 did not influence the proliferation rate at low concentrations (0.5 and 2.0 μM) in keratinocytes, and showed toxicity at high concentrations (5.0 μM). LPS, compared with control, induced the expression of TLR2 mRNA, increased IL-8 production, and enhanced NF-κB activity. 15d-PGJ2 decreased TLR2 mRNA, increased IL-8 production, and suppressed NF-κB activity. Costimulation with LPS and 15d-PGJ2, compared with LPS stimulation alone, decreased TLR2 mRNA (1.8-fold), increased IL-8 production (1.8-fold at 0.5 μM and 3.7-fold at 2.0 μM), and inhibited NF-κB activity (3.3-fold at 0.5 μM and 5.1-fold at 2.0 μM). TLR4 mRNA was not expressed in primary keratinocytes. These results suggest that 15d-PGJ2 suppresses TLR2 expression and that it up-regulates the production of IL-8 by inhibiting the NF-κB signaling pathway in primary keratinocytes. Thus, 15d-PGJ2 can have both anti- and pro-inflammatory effects, and 15d-PGJ2-mediated IL-8 up-regulation is related to the mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways.  相似文献   

13.
14.

Background  

Activation of nuclear factor-κB (NF-κB) is one of the key events in early atherosclerosis and restenosis. We hypothesized that tumor necrosis factor-α (TNF-α) induced and NF-κB mediated expression of intercellular adhesion molecule-1 (ICAM-1) can be inhibited by antisense RelA p65 and NF-κB1 p50 oligonucleotides (RelA p65 and NF-κB1 p50).  相似文献   

15.
In this study, we have characterized the cellular source and mechanism for the enhanced generation of reactive oxygen species (ROS) in the myocardium during Trypanosoma cruzi infection. Cardiac mitochondria of infected mice, as compared to normal controls, exhibited 63.3% and 30.8% increase in ROS-specific fluorescence of dihydroethidium (detects O2 •−) and amplex red (detects H2O2), respectively. This increase in ROS level in cardiac mitochondria of infected mice was associated with a 59% and 114% increase in the rate of glutamate/malate- (complex I substrates) and succinate- (complex II substrate) supported ROS release, respectively, and up to a 74.9% increase in the rate of electron leakage from the respiratory chain when compared to normal controls. Inhibition studies with normal cardiac mitochondria showed that rotenone induced ROS generation at the QNf-ubisemiquinone site in complex I. In complex III, myxothiazol induced ROS generation from a site located at the Qo center that was different from the Qi center of O2 •− generation by antimycin. In cardiac mitochondria of infected mice, the rate of electron leakage at complex I during forward (complex I-to-complex III) and reverse (complex II-to-complex I) electron flow was not enhanced, and complex I was not the main site of increased ROS production in infected myocardium. Instead, defects of complex III proximal to the Qo site resulted in enhanced electron leakage and ROS formation in cardiac mitochondria of infected mice. Treatment of infected mice with phenyl-α-tert-butyl-nitrone (PBN) improved the respiratory chain function, and, subsequently, decreased the extent of electron leakage and ROS release. In conclusion, we show that impairment of the Qo site of complex III resulted in increased electron leakage and O2 •− formation in infected myocardium, and was controlled by PBN.  相似文献   

16.
The lectin from Canavalia ensiformis (Concanavalin-A, ConA), one of the most abundant lectins known, enables one to mimic biological lectin/carbohydrate interactions that regulate extracellular matrix protein recognition. As such, ConA is known to induce membrane type-1 matrix metalloproteinase (MT1-MMP) which expression is increased in brain cancer. Given that MT1-MMP correlated to high expression of cyclooxygenase (COX)-2 in gliomas with increasing histological grade, we specifically assessed the early proinflammatory cellular signaling processes triggered by ConA in the regulation of COX-2. We found that treatment with ConA or direct overexpression of a recombinant MT1-MMP resulted in the induction of COX-2 expression. This increase in COX-2 was correlated with a concomitant decrease in phosphorylated AKT suggestive of cell death induction, and was independent of MT1-MMP’s catalytic function. ConA- and MT1-MMP-mediated intracellular signaling of COX-2 was also confirmed in wild-type and in Nuclear Factor-kappaB (NF-κB) p65−/− mutant mouse embryonic fibroblasts (MEF), but was abrogated in NF-κB1 (p50)−/− and in I kappaB kinase (IKK) γ−/− mutant MEF cells. Collectively, our results highlight an IKK/NF-κB-dependent pathway linking MT1-MMP-mediated intracellular signaling to the induction of COX-2. That signaling pathway could account for the inflammatory balance responsible for the therapy resistance phenotype of glioblastoma cells, and prompts for the design of new therapeutic strategies that target cell surface carbohydrate structures and MT1-MMP-mediated signaling. Concise summary Concanavalin-A (ConA) mimics biological lectin/carbohydrate interactions that regulate the proinflammatory phenotype of cancer cells through yet undefined signaling. Here we highlight an IKK/NF-κB-dependent pathway linking MT1-MMP-mediated intracellular signaling to the induction of cyclooxygenase-2, and that could be responsible for the therapy resistance phenotype of glioblastoma cells.  相似文献   

17.
Mitochondrial production of H2O2 is low with NAD substrates (glutamate/pyruvate, 3 and 2 mM) (G/P) and increases over ten times upon further addition of succinate, with the formation of a sigmoidal curve (semimaximal value at 290 μM, maximal H2O2 production at 600 μM succinate). Malate counteracts rapidly the succinate induced increased H2O2 release and moves the succinate dependent H2O2 production curve to the right. Nitric oxide (NO) and carbon monoxide (CO) are cytochrome c oxidase inhibitors which increase mitochondrial ROS production. Cyanide (CN) was used to mimic NO and CO. In the presence of G/P and succinate (300 μM), CN progressively increased the H2O2 release rate, starting at 1.5 μM. The succinate dependent H2O2 production curve was moved to the left by 30 μM CN. The Vmax was little modified. We conclude that succinate is the controller of mitochondrial H2O2 production, modulated by malate and CN. We propose that succinate promotes an interaction between Complex II and Complex I, which activates O2 production.  相似文献   

18.
Summary The effect of low concentrations of hydrogen peroxide (H2O2) (5 × 10−7−9.5 × 10−7 M) on cell growth and antibody production was investigated with murine hybridoma cells (Mark 3 and anti-hPL) in culture. Cell growth, measured by flow cytometry with morphological parameters, was significantly stimulated by H2O2 (8 × 10−7 M) but H2O2 concentration of 7 × 10−6 M and above increased cell death. H2O2 stimulation of antibody production was nonsignificant. The metabolism of cells treated with 8 × 10−7 or 1 × 10−5 M H2O2 was similar to that of the control in terms of glucose and glutamine consumption, lactate and ammonia production, and amino acid concentrations in the medium. The concentrations of lactate dehydrogenase, a marker of cell death, in test and control cells were similar. However, concentrations of intracellular free radicals measured by flow cytometry with dihydrorhodamine 123 (DHR 123) and dichlorofluorescein diacetate (DCFH-DA) as fluorochromes were different. The reactive oxygen species content of cells in 8 × 10−7 M H2O2 was similar to that of the controls, but there was a sudden, marked production of superoxide anions (detected with DHR 123) and H2O2 or peroxides (detected with DCFH-DA) by cells incubated with 1 × 10−5 M H2O2 which increased with increasing H2O2 until cell death.  相似文献   

19.
Hypoxia of skin is an important physiopathological process in many diseases, such as pressure ulcer, diabetic ulcer, and varicose ulcer. Although cellular injury and inflammation have been involved in hypoxia-induced dermatic injury, the underlying mechanisms remain largely unknown. This study was conducted to investigate the effects of cobalt chloride (CoCl2), a hypoxia-mimicking agent, on human skin keratinocytes (HaCaT cells) and to explore the possible molecular mechanisms. Exposure of HaCaT cells to CoCl2 reduced cell viability and caused overproduction of reactive oxygen species (ROS) and oversecretion of interleukin-6 (IL-6) and interleukin-8 (IL-8). Importantly, CoCl2 exposure elicited overexpression of cyclooxygenase-2 (COX-2) and phosphorylation of nuclear factor-kappa B (NF-κB) p65 subunit. Inhibition of COX-2 by NS-398, a selective inhibitor of COX-2, significantly repressed the cytotoxicity, as well as secretion of IL-6 and IL-8 induced by CoCl2. Inhibition of NF-κB by PDTC (a selective inhibitor of NF-κB) or genetic silencing of p65 by RNAi (Si-p65), attenuated not only the cytotoxicity and secretion of IL-6 and IL-8, but also overexpression of COX-2 in CoCl2-treated HaCaT cells. Neutralizing anti-IL-6 or anti-IL-8 antibody statistically alleviated CoCl2-induced cytotoxicity in HaCaT cells. N-acetyl-L-cysteine (NAC), a well characterized ROS scavenger, obviously suppressed CoCl2-induced cytotoxicity in HaCaT cells, as well as secretion of IL-6 and IL-8. Additionally, NAC also repressed overexpression of COX-2 and phosphorylation of NF- B κ p65 subunit induced by CoCl2 in HaCaT cells. In conclusion, our results demonstrated that oxidative stress mediates chemical hypoxia-induced injury and inflammatory response through activation of NF-κB-COX-2 pathway in HaCaT cells.  相似文献   

20.
The tachykinins, substance P (SP) and neurokinin A (NKA), are agonists for the NK1 and NK2 receptors, respectively. Tachykinins have various respiratory effects, including bronchoconstriction. This study characterizes tachykinin binding sites in the rabbit lung. We hypothesize that (2-[125I]iodohistidyl1)Neurokinin A ([125I]NKA) interacts with NK1 and NK2 binding sites in the rabbit lung. The Kd determined from saturation isotherms was 0.69 X/÷1.14 nM (geometic mean X/÷ SEM) and the Bmax was 4.15±0.22 femtomole/mg protein (arithmetic mean±SEM). Competitive inhibition studies with NKA, SP and various selective tachykinin agonists showed the rank order of potency: [β-Ala8]-Neurokinin A 4–10=SP ≫ NKA ≫ [Sar9,Met(O2)11]-Substance P. [β-Ala8]-Neurokinin A 4–10, a selective NK2 agonist, and SP inhibition of [125I]NKA binding were best described using a two-site model. Competitive inhibition studies using the selective nonpeptide NK2 antagonist (SR 48968) and the selective nonpeptide NK1 antagonist (CP 96,345) revealed Ki's of 5.5 nM and 8.1 nM, respectively. Our data therefore suggest that [125I]NKA binds to both the NK1 and NK2 receptors in the lung. Special issue dedicated to Dr. Kinya Kuriyama.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号