首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boya P  Roques B  Kroemer G 《The EMBO journal》2001,20(16):4325-4331
Mitochondrial membrane permeabilization (MMP) is a critical step of several apoptotic pathways. Some infectious intracellular pathogens can regulate (induce or inhibit) apoptosis of their host cells at the mitochondrial level, by targeting proteins to mitochondrial membranes that either induce or inhibit MMP. Pathogen-encoded mitochondrion-targeted proteins may or may not show amino acid sequence homology to Bcl-2-like proteins. Among the Bcl-2-unrelated, mitochondrion-targeted proteins, several interact with the voltage-dependent anion channel (VDAC) or with the adenine nucleotide translocator (ANT). While VDAC-targeted proteins show homology to VDAC/porin, ANT-targeted proteins possess relatively short cationic binding domains, which may facilitate insertion into the negatively charged inner mitochondrial membrane. It may be speculated that such proteins employ pre-existing host-intrinsic mechanisms of MMP control.  相似文献   

2.
Oxidative stress causes selective oxidation of cardiolipin (CL), a fourtail lipid specific for the inner mitochondrial membrane. Interaction with oxidized CL transforms cytochrome c into peroxidase capable of oxidizing even more CL molecules. Ultimately, this chain of events leads to the pore formation in the outer mitochondrial membrane and release of mitochondrial proteins, including cytochrome c, into the cytoplasm. In the cytoplasm, cytochrome c promotes apoptosome assembly that triggers apoptosis (programmed cell death). Because of this amplification cascade, even an occasional oxidation of a single CL molecule by endogenously formed reactive oxygen species (ROS) might cause cell death, unless the same CL oxidation triggers a separate chain of antiapoptotic reactions that would prevent the CL-mediated apoptotic cascade. Here, we argue that the key function of CL in mitochondria and other coupling membranes is to prevent proton leak along the interface of interacting membrane proteins. Therefore, CL oxidation should increase proton permeability through the CL-rich clusters of membrane proteins (CL islands) and cause a drop in the mitochondrial membrane potential (MMP). On one hand, the MMP drop should hinder ROS generation and further CL oxidation in the entire mitochondrion. On the other hand, it is known to cause rapid fission of the mitochondrial network and formation of many small mitochondria, only some of which would contain oxidized CL islands. The fission of mitochondrial network would hinder apoptosome formation by preventing cytochrome c release from healthy mitochondria, so that slowly working protein quality control mechanisms would have enough time to eliminate mitochondria with the oxidized CL. Because of these two oppositely directed regulatory pathways, both triggered by CL oxidation, the fate of the cell appears to be determined by the balance between the CL-mediated proapoptotic and antiapoptotic reactions. Since this balance depends on the extent of CL oxidation, mito-chondria-targeted antioxidants might be able to ensure cell survival in many pathologies by preventing CL oxidation.  相似文献   

3.
The intermediate metabolites and redox status imbalance were supported as the two major points for N,N‐dimethylformamide (DMF)‐induced hepatotoxicity. However, the potential mechanism has not yet been concerned. By applying two inhibitors, this study tried to seek the major role in DMF‐induced toxicity on HL7702 cell. We observed that DMF induced cell apoptosis through mitochondrial‐dependent and p53 pathway. Inhibition reactive oxygen species by catalase remarkably attenuated the mitochondrial transmembrane potential (MMP), apoptotic proteins, and apoptosis. On the contrary, it reduced the biodegradation rate of DMF by coincubation with CYP2E1 antagonist (DDC) partially reduced late apoptosis. However, the change in MMP, the ratio of Bax to Bcl‐xl, and cleaved‐caspase 9 was not attenuated by DDC. The pathway in DDC coincubation groups was related to the p53 rather than the mitochondrial pathway. Restoring the redox balance during biodegradation is much more effective than attenuating the metabolite rate of DMF. This study may provide a suitable prevention method to occupational workers.  相似文献   

4.
In this study, we have compared several features of cell death triggered by classical inducers of apoptotic pathways (etoposide and tumour necrosis factor (TNF)-α) versus exogenous reactive oxygen species (ROS; hydrogen peroxide (H?O?), tert-butyl hydroperoxide (t-BHP)) or a ROS generator (paraquat). Our aim was to characterize relationships that exist between ROS, mitochondrial perturbations, Bcl-2 and caspases, depending on source and identity of ROS. First, we have found that these five inducers trigger oxidative stress, mitochondrial membrane permeabilization (MMP), cytochrome c (cyt c) release from mitochondria and cell death. In each case, cell death could be inhibited by several antioxidants, showing that it is primarily ROS dependent. Second, we have highlighted that during etoposide or TNF-α treatments, intracellular ROS level, MMP and cell death are all regulated by caspases and Bcl-2, with caspases acting early in the process. Third, we have demonstrated that H?O?-induced cell death shares many of these characteristics with etoposide and TNF-α, whereas t-BHP induces both caspase-dependent and caspase-independent cell death. Surprisingly, paraquat-induced cell death, which harbours some characteristics of apoptosis such as cyt c release and caspase-3 activation, is not modulated by Bcl-2 and caspase inhibitors, suggesting that paraquat also triggers non-apoptotic cell death signals. On the one hand, these results show that endogenous or exogenous ROS can trigger multiple cell death pathways with Bcl-2 and caspases acting differentially. On the other hand, they suggest that H?O? could be an important mediator of etoposide and TNF-α-dependent cell death since these inducers trigger similar phenotypes.  相似文献   

5.
The present work demonstrates the ability of CO to prevent apoptosis in a primary culture of astrocytes. For the first time, the antiapoptotic behavior can be clearly attributed to the inhibition of mitochondrial membrane permeabilization (MMP), a key event in the intrinsic apoptotic pathway. In isolated non-synaptic mitochondria, CO partially inhibits (i) loss of potential, (ii) the opening of a nonspecific pore through the inner membrane, (iii) swelling, and (iv) cytochrome c release, which are induced by calcium, diamide, or atractyloside (a ligand of ANT). CO directly modulates ANT function by enhancing ADP/ATP exchange and prevents its pore-forming activity. Additionally, CO induces reactive oxygen species (ROS) generation, and its prevention by β-carotene decreases CO cytoprotection in intact cells as well as in isolated mitochondria, revealing the key role of ROS. On the other hand, CO induces a slight increase in mitochondrial oxidized glutathione, which is essential for apoptosis modulation by (i) delaying astrocytic apoptosis, (ii) decreasing MMP, and (iii) enhancing ADP/ATP translocation activity of ANT. Moreover, CO and GSSG trigger ANT glutathionylation, a post-translational process regulating protein function in response to redox cellular changes. In conclusion, CO protects astrocytes from apoptosis by preventing MMP, acting on ANT (glutathionylation and inhibition of its pore activity) via a preconditioning-like process mediated by ROS and GSSG.  相似文献   

6.
Presenilin 1-associated protein/mitochondrial carrier homolog 1 (PSAP/Mtch1) is a proapoptotic outer mitochondrial membrane protein first identified as a presenilin 1-associated protein. The mechanism by which it induces apoptosis upon overexpression in cultured cells is so far unknown. We had previously reported that deletion of two independent regions of PSAP/Mtch1 is required to prevent apoptosis. We now report that mitochondrial targeting of the region containing both proapoptotic domains, or any of them independently, to the outer membrane is sufficient to induce apoptosis. On the other hand, targeting of that region to the surface of the endoplasmic reticulum does not induce apoptosis, indicating that attachment of those domains to the outer mitochondrial membrane, and not just cytosolic exposure, is a requisite for apoptosis. Overexpression of PSAP/Mtch1 in cultured cells causes mitochondrial depolarization and apoptosis that does not depend on Bax or Bak, since apoptosis is induced in mouse embryonic fibroblasts lacking these two proteins. Our results suggest that apoptosis induced by PSAP/Mtch1 likely involves the permeability transition pore.  相似文献   

7.
Viral proteins targeting mitochondria: controlling cell death   总被引:17,自引:0,他引:17  
Mitochondrial membrane permeabilization (MMP) is a critical step regulating apoptosis. Viruses have evolved multiple strategies to modulate apoptosis for their own benefit. Thus, many viruses code for proteins that act on mitochondria and control apoptosis of infected cells. Viral proapoptotic proteins translocate to mitochondrial membranes and induce MMP, which is often accompanied by mitochondrial swelling and fragmentation. From a structural point of view, all the viral proapoptotic proteins discovered so far contain amphipathic alpha-helices that are necessary for the proapoptotic effects and seem to have pore-forming properties, as it has been shown for Vpr from human immunodeficiency virus-1 (HIV-1) and HBx from hepatitis B virus (HBV). In contrast, antiapoptotic viral proteins (e.g., M11L from myxoma virus, F1L from vaccinia virus and BHRF1 from Epstein-Barr virus) contain mitochondrial targeting sequences (MTS) in their C-terminus that are homologous to tail-anchoring domains. These domains are similar to those present in many proteins of the Bcl-2 family and are responsible for inserting the protein in the outer mitochondrial membrane leaving the N-terminus of the protein facing the cytosol. The antiapoptotic proteins K7 and K15 from avian encephalomyelitis virus (AEV) and viral mitochondria inhibitor of apoptosis (vMIA) from cytomegalovirus are capable of binding host-specific apoptosis-modulatory proteins such as Bax, Bcl-2, activated caspase 3, CAML, CIDE-B and HAX. In conclusion, viruses modulate apoptosis at the mitochondrial level by multiple different strategies.  相似文献   

8.
9.
Reactive oxygen species (ROS) generated after exposure to hypoxia and reoxygenation (H/R) play a pivotal role in the stimulation of cell death. In this study, we explored H/R-induced cytotoxicity in human lymphocytes. Compared to cells under normoxic conditions, H/R-treated cells exhibited significantly decreased viability and increased DNA breakage. Western blotting analysis demonstrated that H/R-induced the accumulation of p53 and p63 proteins. H/R also led to the activation of caspase-3 and -9, accompanied by the cleavage of PARP (poly(ADP-ribose)polymerase). Because apoptosis is usually accompanied by ROS generation and collapse of the mitochondrial membrane potential (MMP, Deltapsi(m)), we examined ROS and MMP levels in H/R-treated lymphocytes. Cells subjected to H/R exhibited significantly increased ROS and decreased MMP, compared with normoxic cells. Taken together, these results indicate that H/R treatment of human lymphocytes induces rapid ROS generation and MMP collapse, which triggers apoptosis.  相似文献   

10.
The redox environment of the cell is currently thought to be extremely important to control either apoptosis or autophagy. This study reported that reactive oxygen species (ROS) and nitric oxide (NO) generations were induced by evodiamine time-dependently; while they acted in synergy to trigger mitochondria-dependent apoptosis by induction of mitochondrial membrane permeabilization (MMP) through increasing the Bax/Bcl-2 or Bcl-x(L) ratio. Autophagy was also stimulated by evodiamine, as demonstrated by the positive autophagosome-specific dye monodansylcadaverine (MDC) staining as well as the expressions of autophagy-related proteins, Beclin 1 and LC3. Pre-treatment with 3-MA, the specific inhibitor for autophagy, dose-dependently decreased cell viability, indicating a survival function of autophagy. Importantly, autophagy was found to be promoted or inhibited by ROS/NO in response to the severity of oxidative stress. These findings could help shed light on the complex regulation of intracellular redox status on the balance of autophagy and apoptosis in anti-cancer therapies.  相似文献   

11.
Mitochondrial membrane permeabilization by HIV-1 Vpr   总被引:1,自引:0,他引:1  
The mitochondrion is a privileged target for apoptosis-modulatory proteins of viral origin. Thus, viral protein R (Vpr) can target mitochondria and induce apoptosis via a specific interaction with the permeability transition pore complex (PTPC). Vpr cooperates with the adenine nucleotide translocator (ANT) to form large conductance channels and to trigger all the hallmarks of mitochondrial membrane permeabilization (MMP). The Vpr/ANT interaction is direct, since it is abolished by the addition of a peptide corresponding to the Vpr binding site of ANT, ADP, ATP, or by Bcl-2. Accordingly, Vpr modulates MMP through direct structural and functional interactions with PTPC proteins.  相似文献   

12.
Apoptotic death of hair cells (HCs) in the cochlea has been found following exposure to intense noise. The current study was designed to examine the mitochondrial energetic function of HCs during the course of noise-induced apoptosis. Two aspects of the mitochondrial energetic function, succinate dehydrogenase (SDH) activity and mitochondrial membrane potential (MMP), were examined in HCs of chinchilla cochleae following exposure to a series of 75 pairs of impulse noises at 155 dB pSPL. The results showed that nuclear condensation and uptake of propidium iodide or trypan blue appeared at 10 min after the noise exposure, indicating a rapid progression of HC apoptosis. However, SDH activity was preserved at this time point. As the time elapsed (1 hr or 24 hrs) after the noise exposure, all newly-generated apoptotic HCs showed strong SDH activity, indicating the preservation of SDH activity during the course of apoptosis. Examination of MMP with rhodamine 123 staining revealed that MMP was sustained in the apoptotic HCs having mild nuclear condensation, even after the occurrence of cell membrane leakage. MMP was reduced with further progression of nuclear condensation. These results suggest the presence of a delayed mitochondrial dysfunction in apoptotic HCs following exposure to intense noise. Research was supported by the Grant NIDCD 1R03 DC006181-01A1.  相似文献   

13.
Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, this seems not to be the case in Drosophila, an insect model organism; thus more in-depth studies of insect cell apoptosis are necessary. In the present study, mitochondrial involvement during azadirachtin- and camptothecin-induced apoptosis in Spodoptera frugiperda Sf9 cells (isolated from Spodoptera frugiperda pupal ovarian tissue) was investigated. The results showed that both azadirachtin and camptothecin could induce apoptosis in Sf9 cells. Reactive oxygen species (ROS) generation, activation of mitochondrial permeability transition pores (MPTPs) and loss of mitochondrial membrane potential (MMP) were observed very early during apoptosis and were followed subsequently by the release of cytochrome-c from the mitochondria. Furthermore, the results also revealed that the opening of MPTPs and the loss of MMP induced by azadirachtin could be significantly inhibited by the permeability transition pore (PTP) inhibitor cyclosporin A (CsA), which was used to identify the key role of mitochondria in the apoptosis of Sf9 cells. However, in camptothecin-treated Sf9 cells, CsA could not suppress the opening of MPTPs and the loss of MMP when apoptosis was induced. The data from caspase-3 and caspase-9 activity assays and detection of apoptosis by morphological observation and flow cytometry also uncovered the different effect of CsA on the two botanical apoptosis inducers. Although different mechanisms of apoptosis induction exist, our study revealed that mitochondria play a crucial role in insect cell line apoptosis.  相似文献   

14.
Past studies have shown that TNF-related apoptosis-inducing ligand (TRAIL) induced apoptosis in a high proportion of cultured melanoma by caspase-dependent mechanisms. In the present studies we have examined whether TRAIL-induced apoptosis of melanoma was mediated by direct activation of effector caspases or whether apoptosis was dependent on changes in mitochondrial membrane potential (MMP) and mitochondrial-dependent pathways of apoptosis. Changes in MMP were measured by fluorescent emission from rhodamine 123 in mitochondria. TRAIL, but not TNF-alpha or Fas ligand, was shown to induce marked changes in MMP in melanoma, which showed a high correlation with TRAIL-induced apoptosis. This was associated with activation of proapoptotic protein Bid and release of cytochrome c into the cytosol. Overexpression of B cell lymphoma gene 2 (Bcl-2) inhibited TRAIL-induced release of cytochrome c, changes in MMP, and apoptosis. The pan caspase inhibitor z-Val-Ala-Asp-fluoromethylketone (zVAD-fmk) and the inhibitor of caspase-8 (z-Ile-Glu-Thr-Asp-fluoromethylketone; zIETD-fmk) blocked changes in MMP and apoptosis, suggesting that the changes in MMP were dependent on activation of caspase-8. Activation of caspase-9 also appeared necessary for TRAIL-induced apoptosis of melanoma. In addition, TRAIL, but not TNF-alpha or Fas ligand, was shown to induce clustering of mitochondria around the nucleus. This process was not essential for apoptosis but appeared to increase the rate of apoptosis. Taken together, these results suggest that TRAIL induces apoptosis of melanoma cells by recruitment of mitochondrial pathways to apoptosis that are dependent on activation of caspase-8. Therefore, factors that regulate the mitochondrial pathway may be important determinants of TRAIL-induced apoptosis of melanoma.  相似文献   

15.
Lorenzo Galluzzi 《BBA》2009,1787(5):402-413
Mitochondrial membrane permeabilization (MMP) is commonly regarded as the “point-of-no-return” in the cascade of events that delineate the intrinsic pathway of apoptosis. MMP leads to the functional impairment of mitochondria and to the release into the cytosol of toxic proteins that are normally confined within the mitochondrial intermembrane space. These include direct activators of caspases and caspase-independent effectors of the cell death program. MMP has been implicated in a plethora of pathophysiological settings. In particular, MMP contributes to both the immediate and delayed phases of cell loss that follow acute neuronal injury by ischemia/reperfusion or trauma. Although preventing MMP a priori would be the most desirable therapeutic choice, prophylactic interventions are rarely (if ever) achievable in the treatment of stroke and trauma patients. Conversely, interventions that block the post-mitochondrial phase of apoptosis (if administered within the first few hours after the accident) hold great promises for the development of novel neuroprotective strategies. In animal models of acute neuronal injury, the inhibition of caspases, apoptosis-inducing factor (AIF) and other apoptotic effectors can confer significant neuroprotection. Our review recapitulates the results of these studies and proposes novel strategies of inhibiting post-mitochondrial apoptosis in neurons.  相似文献   

16.
Bcl-2 family proteins regulate the release of proteins like cytochrome c from mitochondria during apoptosis. We used cell-free systems and ultimately a vesicular reconstitution from defined molecules to show that outer membrane permeabilization by Bcl-2 family proteins requires neither the mitochondrial matrix, the inner membrane, nor other proteins. Bid, or its BH3-domain peptide, activated monomeric Bax to produce membrane openings that allowed the passage of very large (2 megadalton) dextran molecules, explaining the translocation of large mitochondrial proteins during apoptosis. This process required cardiolipin and was inhibited by antiapoptotic Bcl-x(L). We conclude that mitochondrial protein release in apoptosis can be mediated by supramolecular openings in the outer mitochondrial membrane, promoted by BH3/Bax/lipid interaction and directly inhibited by Bcl-x(L).  相似文献   

17.
The redox environment of the cell is currently thought to be extremely important to control either apoptosis or autophagy. This study reported that reactive oxygen species (ROS) and nitric oxide (NO) generations were induced by evodiamine time-dependently; while they acted in synergy to trigger mitochondria-dependent apoptosis by induction of mitochondrial membrane permeabilization (MMP) through increasing the Bax/Bcl-2 or Bcl-xL ratio. Autophagy was also stimulated by evodiamine, as demonstrated by the positive autophagosome-specific dye monodansylcadaverine (MDC) staining as well as the expressions of autophagy-related proteins, Beclin 1 and LC3. Pre-treatment with 3-MA, the specific inhibitor for autophagy, dose-dependently decreased cell viability, indicating a survival function of autophagy. Importantly, autophagy was found to be promoted or inhibited by ROS/NO in response to the severity of oxidative stress. These findings could help shed light on the complex regulation of intracellular redox status on the balance of autophagy and apoptosis in anti-cancer therapies.  相似文献   

18.
Since mitochondrial factors have been implicated in apoptosis, experiments were designed to assess whether or not the potent mitochondrial nuclease could be one of these factors. Nuclei isolated by two different methods were found to contain mitochondrial nuclease in masked form. This nuclease was released by treatment with the non-ionic detergent NP-40 and rendered trypsin-sensitive. It was not removed appreciably from the nuclei by washing and sedimentation of the nuclei through a sucrose cushion. Levels of the mitochondrial nuclease were followed during drug-induced apoptosis. Time courses of apoptosis in cultures of HL-60 cells were monitored by flow cytometry of propidium iodide-stained cells and by agarose gel electrophoresis of extracted DNA. Changes in the inner mitochondrial transmembrane potential were monitored by flow cytometry of chloromethyl-X-Rosamine-stained cells. Apoptosis was induced by treatment with either the chemotherapeutic agent etoposide (VP-16 at 10 M) over an 8 h period or with the anti-rheumatic agent hydroxychloroquine (HCQ at 0.28 mM) over a 24 h period. These two drugs likely act in different pathways of apoptosis. VP-16 caused loss of the mitochondrial transmembrane potential 1.0–1.5 h before apoptosis was detected. On the other hand, treatment with HCQ caused these processes to occur in parallel possibly indicating that the mitochondrial changes are secondary events. No losses of masked mitochondrial nuclease were detected with either drug treatment during the course of apoptosis. HL-60 mitochondrial DNA was also not degraded during apoptosis induced by either agent. These observations likely explain why the mitochondrial DNA is not degraded and make it unlikely that mitochondrial nuclease plays any role in vivo in chromatin DNA fragmentation.  相似文献   

19.
IR‐783 is a kind of heptamethine cyanine dye that exhibits imaging, cancer targeting and anticancer properties. A previous study reported that its imaging and targeting properties were related to mitochondria. However, the molecular mechanism behind the anticancer activity of IR‐783 has not been well demonstrated. In this study, we showed that IR‐783 inhibits cell viability and induces mitochondrial apoptosis in human breast cancer cells. Exposure of MDA‐MB‐231 cells to IR‐783 resulted in the loss of mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) depletion, mitochondrial permeability transition pore (mPTP) opening and cytochrome c (Cyto C) release. Furthermore, we found that IR‐783 induced dynamin‐related protein 1 (Drp1) translocation from the cytosol to the mitochondria, increased the expression of mitochondrial fission proteins mitochondrial fission factor (MFF) and fission‐1 (Fis1), and decreased the expression of mitochondrial fusion proteins mitofusin1 (Mfn1) and optic atrophy 1 (OPA1). Moreover, knockdown of Drp1 markedly blocked IR‐783‐mediated mitochondrial fission, loss of MMP, ATP depletion, mPTP opening and apoptosis. Our in vivo study confirmed that IR‐783 markedly inhibited tumour growth and induced apoptosis in an MDA‐MB‐231 xenograft model in association with the mitochondrial translocation of Drp1. Taken together, these findings suggest that IR‐783 induces apoptosis in human breast cancer cells by increasing Drp1‐mediated mitochondrial fission. Our study uncovered the molecular mechanism of the anti‐breast cancer effects of IR‐783 and provided novel perspectives for the application of IR‐783 in the treatment of breast cancer.  相似文献   

20.
Hypercholesterolemia can aggravate contrast-induced acute kidney injury, and the exacerbation of renal tubular epithelial cell (RTEC) injury is a major cause. However, the exact mechanisms remain obscure. Mitophagy, a type of autophagy, selectively eliminates damaged mitochondria and reduces mitochondrial oxidative stress, which is strongly implicated in cell homeostasis and acute kidney injury. Oxidized low-density lipoprotein (Ox-LDL) is accumulated in hypercholesterolemia and has a cytotoxic effect. This study aimed to determine whether and how ox-LDL exacerbates contrast-induced injury in RTECs and to further explore whether PINK1/Parkin-dependent mitophagy is involved in this process. Iohexol and ox-LDL were used alone or in combination to treat HK-2 cells. Rapamycin pretreatment was utilized to enhance mitophagy. Cell viability, apoptosis, mitochondrial membrane potential (MMP) and mitochondrial reactive oxygen species (mtROS) were detected by cell counting kit-8, TUNEL staining, JC-1 kit and MitoSOX fluorescence, respectively. The expression of mitophagy-related proteins (including PINK1, Parkin, and so on) and cleaved caspase-3 was confirmed by western blot. Colocalization of MitoTracker-labeled mitochondria and LysoTracker-labeled lysosomes was observed by fluorescence microscopy to evaluate mitophagy. The results of our study showed that ox-LDL aggravated MMP decline, mtROS release and apoptosis in iohexol-treated HK-2 cells, accompanied by a further increased autophagy level. Enhancement of PINK1/Parkin-dependent mitophagy by rapamycin alleviated apoptosis and mitochondrial injury in HK-2 cells in response to iohexol under ox-LDL condition. Therefore, our findings indicate that ox-LDL aggravates contrast-induced injury of RTECs by increasing mitochondrial damage and mitochondrial oxidative stress, which may be associated with the relative insufficiency of PINK1/Parkin-dependent mitophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号