首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sea urchin eggs emit light in the visible region during their fertilization. Judging from the chemiluminescence spectra, one of the excited species generated is considered to have originated from a tyrosine cation radical-mediated reaction. Chemiluminescence probes such as luminol or a cypridina luciferin analog (See text) are useful for detecting the ovoperoxidase +H2O2 reaction associated with membrane hardening and O2- generation, respectively, during fertilization of sea urchin eggs.  相似文献   

2.
Ovoperoxidase, the enzyme implicated in hardening the extracellular coat of the fertilized sea urchin egg, is inserted into the assembling uncrosslinked (soft) fertilization membrane via specific interactions with a protein, proteoliaisin (P. Weidman, E. Kay, and B. M. Shapiro (1985). J. Cell. Biol. 100, 938-946), and the vitelline scaffold. Dityrosine crosslinks introduced by ovoperoxidase have been postulated to harden the assembled structure from such indirect data as the discovery of dityrosine in hard fertilization membranes (Foerder and B. M. Shapiro (1977). Proc. Natl. Acad. Sci. USA 74, 4214-4128; H. G. Hall (1978). Cell 15, 343-355). In this report, we show directly that soft fertilization membranes (SFM) contain no dityrosine residues but acquire these crosslinks in vitro only during hardening. In vitro hardening alters the susceptibility of the fertilization membrane to disruption in cation-depleted solutions and in detergent; the kinetics of these phenomena are all similar to those of hardening in vivo. Ovoperoxidase substrates were identified as a class of high-molecular-weight proteins of SFM by polyacrylamide gel electrophoresis after in vitro hardening or after an ovoperoxidase-catalyzed radioiodination reaction. The specificity of ovoperoxidase for particular substrates decreased once it was no longer associated with these polypeptides within the SFM. Moreover, after disruption of the SFM, ovoperoxidase had an increased capacity to iodinate an exogenous protein, myoglobin. These data suggest that assembly of ovoperoxidase into a specific locus within the soft fertilization membrane provides a regulatory mechanism to guarantee the crosslinking of only certain appropriately juxtaposed tyrosyl residues in the assembled structure.  相似文献   

3.
To analyze the mechanism of assembly of the fertilization membrane of the sea urchin Strongylocentrotus purpuratus, we inhibited the ovoperoxidase that catalyzes dityrosine formation to isolate an uncrosslinked, soft fertilization membrane (SFM). The SFM intermediates were stabilized by divalent cation-dependent interactions: in the absence of divalent cations, the SFM became amorphous and less refractile and released proteins into the surrounding medium. We term the remaining structures “wraiths.” The rate of this disaggregation was increased in solutions of low ionic strength, but 510 mM divalent cations (Ca2+, Mg2+, Mn2+ or Ba2+) prevented disaggregation. Wraiths could be reassembled into structures that resembled SFM by readdition of divalent cations. The SFM contained active ovoperoxidase and could be hardened in vitro by washing away the ovoperoxidase inhibitor and adding H2O2. After hardening, certain proteins of over 100 kd were excluded from SDS-polyacrylamide gels, suggesting that these proteins contain the substrates for crosslinking. We propose that the SFM is a divalent cation-dependent intermediate on the pathway of fertilization membrane assembly containing tyrosyl residues that are appropriately juxtaposed for crosslinking.  相似文献   

4.
When transferred to sea water the chorion of cod and lumpsucker eggs harden, reaching a resistance of about 150 and 2000 g respectively. In sea water this hardening process is independent of fertilization. Studies of eggs kept in artificial sea water with various ionic compositions indicated, in the lumpsucker eggs, that a cortical reaction seems to be a prerequisite for the hardening process. Calcium is necessary for the reaction both in unfertilized and inseminated eggs, whereas hardening takes place in the absence of potassium, magnesium or sulphate. Addition of barium or strontium as a substitute for calcium only caused hardening in the presence of activating spermatozoa. Activating spermatozoa were also necessary for hardening of lumpsucker eggs kept in ovarian fluid, but such hardening only occurred if calcium and/or magnesium were added. The hardening of lumpsucker eggs was associated with profound changes in the thickness and surface appearance of the chorion.  相似文献   

5.
A procedure is described for the complete removal of the vitelline layer of the eggs of the sea urchin, Strongylocentrotus purpuratus. The method involves treatment of unfertilized eggs with an S. purpuratus cortical granule protease preparation followed by incubation in an alkaline dithiothreitol seawater solution. Eggs denuded of their vitelline layers react metabolically to parthenogenetic agents and sperm like unfertilized eggs, whereas the fertilizability of denuded eggs and receptivity to sperm is much less than controls. The present method is superior to previous methods using mercaptans in that all of the vitelline layer is removed and to procedures using other proteolytic enzymes in that no 125I-labelled plasma membrane proteins are extensively modified. Thus the cortical granule protease dithiothreitol procedure is ideal for studies of the plasma membrane of the unfertilized egg and for studies on the role of the vitelline layer in normal fertilization and development.  相似文献   

6.
We investigated the electrical properties of the egg of the nemertean worm Cerebratulus, and found evidence that an electrically-mediated polyspermy block operates for a period of about 1 hr after fertilization. At fertilization, in natural or artificial sea water, the membrane potential shifts from its resting level of about -66 mV to a peak of about +43 mV, and in most cases remains greater than 0 mV for more than 1 hr. The average potential during the first 30 min is +22 +/- 8 mV (SD, n = 12). When the external Na+ concentration is reduced from 486 to 51 mM (choline substituted) the fertilization potential amplitude is reduced; the average potential during the first 30 min is -27 +/- 21 mV (SD, n = 5). Eggs inseminated in 51 mM Na+ sea water become polyspermic, indicating that polyspermy prevention depends on an electrically-mediated mechanism. The electrical block is required for about 60 min, since transfer to 51 mM Na+ sea water during this period results in polyspermy. During the first hour following fertilization, the egg is also developing a permanent, nonelectrical block; the degree of polyspermy which results upon transfer to low Na+ sea water decreases progressively with time. The permanent block appears to be at the level of the egg plasma membrane or glycocalyx, since the egg envelope is not a barrier to sperm penetration, nor does its removal induce polyspermy. Electron micrographs show no obvious changes in the morphology of the extracellular layers, plasma membrane or cortex of the egg after fertilization.  相似文献   

7.
M Veron  C Foerder  E M Eddy 《Cell》1977,10(2):321-328
The fertilization membrane of Strongylocentrotus purpuratus undergoes changes in morphology, solubility, and permeability during the process of hardening. As the fertilization membrane elevates from the egg surface, it retains casts of the tips of the microvillous processes of the plasma membrane. The dome-shaped microvillar casts become angular at the same time that the fertilization membrane becomes resistant to solubilization in mercaptan solutions. 2-4 min after this morphological and chemical transition, the fertilization membrane becomes impermeable to the lectin conconavalin A, as monitored by binding of 125I- or fluorescein-labeled concanavalin A. Glycine ethyl ester inhibits the changes in morphology, solubility, and permeability, whereas sodium sulfite inhibits only the permeability block and resistance to solubilization by mercaptans. Parthenogenetic activation with the divalent ionophore, A23187, elicits fertilization membrane elevation more rapidly than does activation by fertilization; however, the morphological and permeability changes characteristic of hardening proceed more slowly. Elevation and hardening of the fertilization membrane thus appear to be discrete, multiple-step assembly processes that occur in fixed sequence, with kinetics that are affected by the mechanism of cortical granule exocytosis.  相似文献   

8.
Jaspisin, originally isolated from a marine sponge as an inhibitor of the hatching of the sea urchin (Hemicentrotus pulcherrimus) embryo, causes inhibition of sea urchin fertilization. Electron microscopic examination revealed that the acrosome reaction was induced in jaspisin-treated sperm when they were incubated with an intact egg. The acrosome-reacted sperm bound to the vitelline layer by the acrosomal material surrounding the acrosomal process. However, fusion of the acrosomal process and the egg plasma membrane failed to take place. Membrane potential changes were monitored using eggs preloaded with a membrane potential-sensitive fluorochrome, di-8-ANEPPS. Depolarization of the membrane potential, normally observed in the fertilized egg was not observed in the egg inseminated in the presence of jaspisin, indicating the absence of electrical continuity between the jaspisin-treated egg and sperm. Jaspisin inhibited the activities of matrix metallo-endoproteinase members but not of other types of proteinases. These results provide strong, albeit indirect, evidence that a matrix metallo-endoproteinase(s) is involved in the process of gamete fusion during sea urchin fertilization.  相似文献   

9.
1. The surface of the unfertilized sea urchin egg is folded and the folds are reversibly eliminated by exposing the egg to hypotonic sea water. If the plasma membrane is outside the layer of cortical granules, unfolding may explain why the membrane capacitance per unit area decreases (and does not increase) when a sea urchin egg is put into hypotonic sea water. 2. The degree of surface folding markedly increases after fertilization, which provides an explanation for the increase in membrane capacitance per unit area observed after fertilization. 3. The percentage reduction in membrane folding in fertilized eggs after immersion in hypotonic sea water is probably sufficient to explain the decrease in membrane capacitance per unit area observed in these conditions.  相似文献   

10.
Prevention of polyspermic fertilization in sea urchins (Jaffe, 1976, Nature (Lond.). 261:68-71) and the worm Urechis (Gould-Somero, Jaffe, and Holland, 1979, J. Cell Biol. 82:426-440) involves an electrically mediated fast block. The fertilizing sperm causes a positive shift in the egg's membrane potential; this fertilization potential prevents additional sperm entries. Since in Urechis the egg membrane potential required to prevent fertilization is more positive than in the sea urchin, we tested whether in a cross-species fertilization the blocking voltage is determined by the species of the egg or by the species of the sperm. With some sea urchin (Strongylocentrotus purpuratus) females, greater than or equal to 90% of the eggs were fertilized by Urechis sperm; a fertilization potential occurred, the fertilization envelope elevated, and sometimes decondensing Urechis sperm nuclei were found in the egg cytoplasm. After insemination of sea urchin eggs with Urechis sperm during voltage clamp at +50 mV, fertilization (fertilization envelope elevation) occurred in only nine of twenty trials, whereas, at +20 mV, fertilization occurred in ten of ten trials. With the same concentration of sea urchin sperm, fertilization of sea urchin eggs occurred, in only two of ten trials at +20 mV. These results indicate that the blocking voltage for fertilization in these crosses is determined by the sperm species, consistent with the hypothesis that the fertilization potential may block the translocation within the egg membrane of a positively charged component of the sperm.  相似文献   

11.
A simple procedure is described for isolating preparations of cortical granule layers from sea urchin eggs. The isolated granules are structurally intact as revealed by scanning and transmission electron microscopy. When Ca2+ is present, the isolated granules instantaneously discharge their contents. The site of action of Ca2+ may reside in the membrane of the granule. Procaine, a competitive inhibitor of Ca2+ binding to membranes, completely blocks the discharge of cortical granules that normally occurs at fertilization. The results support the hypothesis that once initiated, the propagation of cortical granule discharge spreads as an autocatalytic wave in which discharging granules release Ca2+ through their membranes which in turn triggers the discharge of adjacent granules.  相似文献   

12.
Fine structural studies have been conducted to determine the role of the trypsinlike proteinase during fertilization which is localized within the cortical granules of sea urchin eggs. Eggs were treated with soybean trypsin inhibitor (SBTI), inseminated, and prepared for microscopic examination at various intervals during fertilization. In the presence of SBTI the breakdown of the cortical granules is delayed and the elevation of the vitelline layer is incomplete. Although all the cortical granules in SBTI-treated eggs are dehisced in a manner similar to controls, the rate at which their breakdown is propagated is reduced. Consequently, dehiscence of all the cortical granules in SBTI-treated specimens requires approximately 3 min to complete, vs. 1 min for controls. In addition the fertilization membrane has a blistered appearance owing to its attachment, at multiple loci, to the surface of the zygote. During the early stages of fertilization many of the treated eggs are monospermic, later all are polyspermic. Supernumerary sperm enter treated eggs (zygotes) up to 10 min after the initiation of the cortical granule reaction, apparently at those sites where the fertilization membrane has failed to separate from the zygote's surface.  相似文献   

13.
The protein synthesis inhibitor emetine was used to establish the times of synthesis of mitotic proteins, whose presence in the cell are essential in the mitotic processes of chromosome condensation, nuclear membrane breakdown, and possibly, chromosome alignment at metaphase. In embryos of the purple sea urchin, Strongylocentrotus purpuratus, protein synthesis required for chromosome condensation and nuclear membrane breakdown occurs between 20 and 35 min after fertilization. In Lytechinus variegatus embryos the time of synthesis of the mitotic proteins is more variable, occurring between 4 and 15 min after fertilization. Furthermore, in both species the mitosis of each cell cycle requires new synthesis of these proteins with the synthesis occurring at the beginning of each cycle. This observation indicates that the mitotic proteins, which are active at prophase and metaphase, lose their activity at late ana- and telophase.  相似文献   

14.
Nicotine reduces the amplitude of the fertilization potential in sea urchin eggs, at least in part because it decreases the slope of the current voltage relation of the unfertilized egg membrane. The reduced fertilization potential amplitude provides an electrophysiological explanation for previous observations that nicotine impairs the fast block to polyspermy. The block to polyspermy is also impaired by fertilization in low sodium sea water, a medium which has been reported to reduce fertilization potential amplitude.  相似文献   

15.
Two characteristics of fertilizing sea urchin eggs are the elevation of a fertilization membrane and the excretion of a β-glucanase. Of 13 species tested, one species, Echinometra vanbrunti, lacks both characteristics. No β-glucanase exists in the eggs and cleavage stages. However, β-glucanase appears at hatching and is secreted to the sea water during and after the hatching period. The enzyme may function in the hatching process. The hypothesis is presented that the β-glucanase excreted by eggs of other sea urchin species may function in the elevation of the fertilization membrane.  相似文献   

16.
The initiation of Ca(2+) release from internal stores in the egg is a hallmark of egg activation. In sea urchins, PLCgamma activity is necessary for the production of IP(3), which leads to the initial rise in Ca(2+). To examine the possible function of a tyrosine kinase in activating PLCgamma at fertilization, sea urchin eggs were treated with the specific Src kinase inhibitor PP1 or microinjected with recombinant Src-family SH2-domain proteins, which act as dominant interfering inhibitors of Src-family kinase function. Both modes of inhibiting Src-family kinases resulted in a specific and dose-dependent delay in the onset of Ca(2+) release from the endoplasmic reticulum at fertilization. The rise in cytoplasmic pH at fertilization also was inhibited by microinjection of Src-family SH2-domain proteins. Further, an antibody directed against Src-type kinases recognized a protein of ca. M(r) 57K that was enriched in the membrane fraction of eggs. The kinase activity of this protein was stimulated rapidly and transiently at fertilization, as measured by autophosphorylation and by phosphorylation of an exogenous substrate. Together, these data indicate that a Src-type tyrosine kinase is necessary for the initiation of Ca(2+) release from the egg ER at fertilization and identify a Src-type p57 protein as a candidate in the signaling pathway leading to this Ca(2+) release.  相似文献   

17.
The pathway of sperm entry during sea urchin fertilization was analyzed by using sperm covalently labeled with fluorescent and radioactive tracers. Sperm that have been covalently labeled on their surfaces with fluorescein isothiocyanate (FITC) or a radioactive congener, diiodofluorescein isothiocyanate (125IFC), transfer labeled components to the egg that persist throughout early development. In order to study the transfer of sperm components and their fate after fertilization, cytochalasin B-dependent inhibition of fertilization, previously shown to permit the cortical reaction of sea urchin eggs but block sperm pronuclear incorporation, was investigated. Under certain conditions cytochalasin B or D (CB or CD) results in about half of the activated eggs having both the sperm nucleus and the fluorescently labeled sperm components arrested apparently at the level of the egg plasma membrane. This arrest of internalization was reversed by removal of CB or CD, and the sperm derivatives entered the egg. When sperm were labeled noncovalently with ethidium bromide or rhodamine 123, fluorescence was transferred to the egg in the cytochalasin-inhibited state in a fashion similar to that found in normal fertilization; in both cases the sperm fluorescence disappeared within a few minutes of fertilization, due to the repartitioning of the noncovalent dyes into the egg cytoplasm. It is concluded that cytochalasin arrests fertilization at an intermediate step in which the sperm has fused with the egg to achieve cytoplasmic continuity, but in which the subsequent internalization of sperm components is inhibited. After removal of cytochalasins the fluorescent sperm components move from the egg surface to an internal site, a process that can be monitored by time-lapse video microscopy with an image intensifier to permit extended observations of sperm fluorescence. The cytoplasmic location of labeled sperm components was substantiated by autoradiography of early embryos fertilized with 125IFC-labeled sperm; transfer of sperm components to an internal site was seen after fertilization of either sea urchin or mouse eggs. Taken together, the data suggest that the fate of the labeled sperm surface components, as well as that of the sperm nucleus, is to be transferred to the egg cytoplasm, and that this transfer is mediated by the actin-dependent cytoskeleton of the egg.  相似文献   

18.
To determine the role of the sea urchin egg plasma membrane in the species-specificity of fertilization, the ability of denuded activated eggs to be heterospecifically refertilized was determined. Our initial studies included evaluating the effectiveness of three commonly used methods of vitelline envelope (VE) removal using indirect immunofluorescence microscopy with antibodies directed against the VE. Unfertilized Strongylocentrotus purpuratus eggs were extracted with 0.01 M dithiothreitol (DTT) for 3 min or digested with 1.0 mg/ml pronase for 1 hr. Eggs were also fertilized, then diluted into a divalent-free medium to produce thin, elevated envelopes (VE*s) that were mechanically removed by sieving the eggs through nylon mesh. We found that both DTT extraction and pronase digestion were not completely effective in VE removal, and mechanical removal methods gave rise to a mixed population of eggs, those that had their VEs removed and those with a collapsed envelope that was not detectable at the light microscope level. Therefore, a new method of VE removal was developed. Eggs with VE*s were prepared followed by treatment with 0.01 M DTT to solubilize the envelopes. Nearly 100% of the denuded activated eggs incorporated one or more homologous and heterologous sperm, suggesting that the egg plasma membrane does not function in determining the species-specificity of fertilization.  相似文献   

19.
At fertilization, the sea urchin egg undergoes an internal pH (pHi) increase mediated by a Na+ -H+ exchanger. We used antibodies against the mammalian antiporters NHE1 and NHE3 to characterize this exchanger. In unfertilized eggs, only anti-NHE3 cross-reacted specifically with a protein of 81-kDa, which localized to the plasma membrane and cortical granules. Cytochalasin D, C3 exotoxin (blocker of RhoGTPase function), and Y-27632 (inhibitor of Rho-kinase) prevented the pHi change in fertilized eggs. These inhibitors blocked the first cleavage division of the embryo, but not the cortical granule exocytosis. Thus, the sea urchin egg has an epithelial NHE3-like Na+ -H+ exchanger which can be responsible for the pHi change at fertilization. Determinants of this pHi change can be: (i) the increase of exchangers in the plasma membrane (via cortical granule exocytosis) and (ii) Rho, Rho-kinase, and optimal organization of the actin cytoskeleton as regulators, among others, of the intrinsic activity of the exchanger.  相似文献   

20.
H G Hall 《Cell》1978,15(2):343-355
Within minutes after its elevation from the egg surface, the sea urchin fertilization envelope (FE) becomes "hardened" by a reaction that renders it resistant to agents that solubilize, denature or degrade most proteins. Peroxidase activity is released into the surrounding seawater from Stronglyocentrotus purpuratus eggs during fertilization. Evidence from several sources indicate that the catalytic action of the peroxidase is responsible for hardening the FE through the phenolic coupling of tyrosyl residues of the FE proteins. First, the peroxidase is localized within the hardened FE and within the crystalline FE precursor material released from egg cortical granules during the fertilization reaction. Second, a direct correlation is established between the effectiveness of compounds in inhibiting the cortical granule peroxidase (CGP) and their effectiveness in inhibiting hardening of the FE. Third, the CGP catalyzes the cross-linking of tyrosines in solution, a reaction known to be catalyzed by horseradish peroxidase (HRP). Fourth, acid hydrolysates of hardened FEs contain cross-linked tyrosines that are identified by comparing their chromatographic ultraviolet absorption and fluorescent characteristics to those known for cross-linked tyrosines formed by HRP. Finally, when eggs are fertilized in the presence of 125I, the CGP heavily labels proteins of the FE and of the crystalline FE precursor material released with the enzyme from the cortical granules. The iodide label reflects the localization of the CGP and may reflect the sites of peroxidase-generated tyrosyl phenyl radicals involved in the tyrosine coupling reaction. Maximal iodide labeling occurs during the first 5 min period following fertilization, corresponding to the period of FE hardening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号