首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There are many PAH-degrading bacteria in mangrove sediments and in order to explore their degradation potential, surface sediment samples were collected from a mangrove area in Fugong, Longhai, Fujian Province of China. A total of 53 strains of PAH-degrading bacteria were isolated from the mangrove sediments, consisting of 14 strains of phenanthrene (Phe), 13 strains of pyrene (Pyr), 13 strains of benzo[a]pyrene (Bap) and 13 strains of mixed PAH (Phe + Pyr + Bap)-degrading bacteria. All of the individual colonies were identified by 16S rDNA sequencing. Based on the information of bacterial PCR-DGGE profiles obtained during enrichment batch culture, Phe, Pyr, Bap and mixed PAH-degrading consortia consisted of F1, F2, F3, F4 and F15 strains, B1, B3, B6, B7 and B13 strains, P1, P2, P3, P5 and P7 strains, M1, M2, M4, M12 and M13 strains, respectively. In addition, the degradation ability of these consortia was also determined. The results showed that both Phe and mixed PAH-degrading consortia had the highest ability to degrade the Phe in a liquid medium, with more than 91% being degraded in 3 days. But the biodegradation percentages of Pyr by Pyr-degrading consortium and Bap by Bap-degrading consortium were relatively lower than that of the Phe-degrading consortium. These results suggested that a higher degradation of PAHs depended on both the bacterial consortium present and the type of PAH compound. Moreover, using the bacterial community structure analysis method, where the consortia consist of different PAH-degrading bacteria, the information from the PCR-DGGE profiles could be used in the bioremediation of PAHs in the future.  相似文献   

2.
Hydrocarbon-degrading bacteria isolated from oil-polluted soils, were used to design three defined mixed cultures (DMC) for biodegradation of Maya crude oil fractions. The first degrading culture, DMC A was made up with 10 strains. Design of DMC B (six strains) and DMC C (three strains) was based on DGGE profiles obtained throughout biodegradation assays of different petroleum fractions. Biodegradation of the aliphatic fraction (10 000 mg l−1) and an aromatic–polar mixture (5000 mg l−1) was evaluated for the DMC B. Biodegradation of total hydrocarbons (10 000 mg l−1) and its fractions was evaluated for DMC B and DMC C. During biodegradation assays, O2 consumption and CO2 production were assessed by respirometry, while population dynamics of predominant strains was based on PCR-DGGE profiles of partial 16S rDNA. Aliphatic fraction was completely biodegraded by DMC B, while degradation of the aromatic–polar mixture was 12.5% and for total hydrocarbons 40.5%. DMC B was able to degrade the aromatic fraction (31%) and even the polar fraction (19.6%) present in total hydrocarbons. DMC C degraded the aromatic and polar fractions (5.6% and 2%, respectively) present in total hydrocarbons. DGGE profiles of the DMCs indicated that Pseudomonas sp., Gordonia rubripertincta and a non-identified strain were predominant and probably responsible of the hydrocarbons biodegradation. The use of DGGE-fingerprinting to track microbial populations, allowed selecting strains to design efficient oil-degrading defined mixed cultures.  相似文献   

3.
4.
The aim of this work was to evaluate the effect of a non-biodegradable (Tergitol NP-10) and a biodegradable (Tween-80) surfactant on growth, degradation rate and microbial dynamics of a polycyclic aromatic hydrocarbon (PAHs) degrading consortium (C2PL05) from a petroleum polluted soil, applying cultivable and non cultivable techniques. Growth and degradation rate were significantly lower with Tergitol NP-10 than that with Tween-80. Toxicity did not show any significant reduction with Tergitol NP-10 whereas with Tween-80 toxicity was almost depleted (30%) after 40 days. Regarding to the cultured bacteria, Pseudomonas and Stenotrophomonas groups were dominant during PAH degradation with Tergitol NP-10, whereas Enterobacter and Stenotrophomonas were dominant with Tween-80. DGGE analyses (PRIMER and MDS) showed that bacteria composition was more similar between treatments when PAHs were consumed than when PAHs concentration was still high. Community changes between treatments were a consequence of Pseudomonas sp., Sphingomonas sp., Sphingobium sp. and Agromonas sp.  相似文献   

5.
The response of river water microbial communities to chemical compounds was monitored under laboratory conditions using aniline as a model. Bacteria were collected from unpolluted and polluted sites. Bacterial abundance (plate and total direct counting) and its relation to aniline biodegradation was examined. Colony hybridization with 16S rRNA oligonucleotide probes was used to study the changes in microbial community structure during biodegradation of aniline. The changes in bacterial abundance and community structure were related to biodegradation of aniline. Burkholderia–Pseudomonas (rRNA group III), an authentic Alcaligenes group became dominant despite the initial differences in the microbial communities, suggesting that these genera are the main aniline degraders in the aquatic environment.  相似文献   

6.
Under alternating aerobic/anaerobic conditions and without additional carbon sources, a bacterial consortium consisting initially of 18 bacterial strains was obtained in a sequence batch reactor. The phosphorus removal capability could only be maintained using sterile filtrate of activated sludge as medium. The addition of calcium and magnesium salts, as well as vitamins and trace elements, to autoclaved sterile filtrate of activated sludge was not sufficient to achieve stable phosphorus removal. A further enrichment by subcultivation on solid, agar, freezing, and shortening of the aerobic and anaerobic phases led to a defined bacterial consortium consisting of four strains. On the basis of physiological and chemotaxonomic characterization, and partial 16S rRNA sequencing, one of the organisms was identified as Delftia acidovorans. A further isolate belonged to the Bacillus cereus group, and the third isolate was identified as Microbacterium sp.. The remaining strain seems to represent a new genus within the Flavobacteriaceae. Under continuous chemostat conditions, this consortium was able to remove up to 9.6 mg P/l phosphate in the aerobic phase and released up to 8.5 mg/l in the anaerobic phase. Up to 25 mg P-polyphosphate/g dry mass was stored under aerobic conditions.  相似文献   

7.
陈婷  王伟 《微生物学通报》2016,43(12):2657-2666
【目的】了解有机磷杀虫剂毒死蜱对土壤细菌群落结构的作用。【方法】联合微生物平板计数法、末端限制性片段多态性分析,选择PRIMER 5进行群落结构分析,以研究不同浓度的毒死蜱对辣椒根围可培养和不可培养细菌群落结构的影响。【结果】毒死蜱施入后前30 d,3个处理组的可培养细菌较对照组具有显著差异(P0.05),但在第30天后,处理组可培养细菌数均能恢复到对照水平。采用PRIMER 5对T-RFLP数据进行多角度分析发现,HaeⅢ酶切片段中,对照组C3、处理组Y0和Z2的细菌群落结构较整体聚类较远。HhaⅠ酶切片段中,150μg/g的毒死蜱处理组(Z0)在第0天表现出最大的群落差异。ANOSIM表明,以不同浓度的毒死蜱分组,各组间细菌群落组成差异不显著(HaeⅢ:Global R=0.041,P=0.168;HhaⅠ:Global R=-0.04,P=0.842);以不同取样时间分组时,细菌群落组成差异显著(HaeⅢ:Global R=0.304,P=0.001;HhaⅠ:Global R=0.28,P=0.001)。经SIMPER分析所有TRFs可知,对群落丰度贡献最大的片段分别为TRF239、TRF240、TRF241。在线比对得到其代表菌群有芽孢杆菌属(Bacillus sp.)、梭菌属(Clostridium sp.)、葡萄球菌属(Staphylococcus sp.)、八叠球菌属(Sarcina sp.)、假单胞菌属(Pseudomonas sp.)等。【结论】高浓度的毒死蜱会对土壤细菌群落产生影响,抑制根围细菌生长,从而遏制植物的健康生长,因而有必要及时采取措施以减少大量重复使用毒死蜱所带来的危害。  相似文献   

8.
In the present work, biodegradation of phenanthrene by a bacterial consortium (LB2), isolated from lab-polluted soils has been investigated. The 16S rRNA gene-based molecular analysis revealed that the bacterial consortium LB2 consisted of two strains showing a very high homology with Staphylococcus warneri and Bacillus pumilus. The optimization of phenanthrene degradation by the consortium LB2, using a central composite face-centered design was carried out taking into account three important parameters such as temperature, pH, and phenanthrene concentration. Near complete phenanthrene degradation was reached by consortium LB2 at the optimal conditions (pH of 7.5 and 37.5 °C) in less than 48 h. Moreover, the efficiency of phenanthrene biodegradation was assessed by using logistic and Luedeking and Piret-type models. Finally, the process was implemented at bench-scale bioreactor and the main degradation routes were identified based on GC-MS data.  相似文献   

9.
Three bacterial strains utilizing paracetamol as the sole carbon, nitrogen, and energy source were isolated from a paracetamol-degrading aerobic aggregate, and assigned to species of the genera Stenotrophomonas and Pseudomonas. The Stenotrophomonas species have not included any known paracetamol degraders until now. In batch cultures, the organisms f1, f2, and fg-2 could perform complete degradation of paracetamol at concentrations of 400, 2,500, and 2,000 mg/L or below, respectively. A combination of three microbial strains resulted in significantly improved degradation and mineralization of paracetamol. The co-culture was able to use paracetamol up to concentrations of 4,000 mg/L, and mineralized 87.1 % of the added paracetamol at the initial of 2,000 mg/L. Two key metabolites of the biodegradation pathway of paracetamol, 4-aminophenol, and hydroquinone were detected. Paracetamol was degraded predominantly via 4-aminophenol to hydroquinone with subsequent ring fission, suggesting new pathways for paracetamol-degrading bacteria. The degradation of paracetamol could thus be performed by the single isolates, but is stimulated by a synergistic interaction of the three-member consortium, suggesting a possible complementary interaction among the various isolates. The exact roles of each of the strains in the consortium need to be further elucidated.  相似文献   

10.
A bacterial consortium (consortium GR) consisting of Proteus vulgaris NCIM-2027 and Micrococcus glutamicus NCIM-2168 could rapidly decolorize and degrade commonly-used sulfonated reactive dye Green HE4BD and many other reactive dyes. Consortium GR shows markedly higher decolorization activity than that of the individual strains. The preferable physicochemical parameters were identified to achieve higher dye degradation and decolorization efficiency. The supplementation of cheap co-substrates (e.g., extracts of agricultural wastes) could enhance the decolorization performance of consortium GR. Extent of mineralization was determined with TOC and COD measurements, showing nearly complete mineralization of Green HE4BD by consortium GR (up to 90% TOC and COD reduction) within 24 h. Oxidoreductive enzymes seemed to be involved in fast decolorization/degradation process with the evidence of enzymes induction in the bacterial consortium. Phytotoxicity and microbial toxicity studies confirm that the biodegraded products of Green HE4BD by consortium GR are non-toxic. Consortium GR also shows significant biodegradation and decolorization activities for mixture of reactive dyes as well as the effluent from actual dye manufacturing industry. This confers the possibility of applying consortium GR for the treatment of industrial wastewaters containing dye pollutants.  相似文献   

11.
Changes in bacterial diversity during the field experiment on biostimulation were monitored by denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rDNA fragments. The results revealed that the bacterial community was disturbed after the start of treatment, continued to change for 45 days or 60 days and then formed a relatively stable community different from the original community structure. DGGE analysis of soluble methane monooxygenase (sMMO) hydroxylase gene fragments, mmoX, was performed to monitor the shifts in the numerically dominant sMMO-containing methanotrophs during the field experiment. Sequence analysis on the mmoX gene fragments from the DGGE bands implied that the biostimulation treatment caused a shift of potential dominant sMMO-containing methanotrophs from type I methanotrophs to type II methanotrophs.  相似文献   

12.
Summary The anaerobic degradation of phenol under denitrifying conditions by a bacterial consortium was studied both in batch and continuous cultures. Anaerobic degradation was dependent on NOf3 p– and concentrations up to 4 mm phenol were degraded within 2–5 days. During continuous growth in a fermenter, steady states could be maintained at eight dilution rates (D) corresponding to residence times between 12.5 and 50 h. Culture wash-out occurred at D=0.084 h–1. The kinetic parameters obtained for anaerobic degradation of phenol under denitrifying conditions by the consortium were: maximam specific growth rate = 0.091 h–1; saturation constant = 4.91 mg phenol/l; true growth yield = 0.57 mg dry wt/mg phenol; maintenance coefficient = 0.013 mg phenol/mg dry wt per hour. The Haldane model inhibition constant was estimated from batch culture data giving a value of 101 mg/l. The requirement of CO2 for the anaerobic degradation of phenol with NOf3 p– indicates that phenol carboxylation to 4-hydroxybenzoate was the first step of phenol degradation by this culture. 4-Hydroxybenzoate, proposed as an intermediate of phenol carboxylation under these conditions, was detected only in continuous cultures at very low growth rates (D=0.02 h–1), but was never detected as a free intermediary metabolite either in batch or in continuous cultures. Correspondence to: N. Khoury  相似文献   

13.
Summary The anaerobic degradation of p-cresol under denitrifying conditions by a bacterial consortium was studied in batch and continuous cultures. Concentrations up to 3 mm were degraded within 5–6 days with 4-hydroxybenzyl alcohol, 4-hydroxybenzaldehyde and 4-hydroxybenzoate as intermediates. Steady states could be maintained at only one dilution rate, D=0.04 h–1. A further increase in the dilution rate to 0.0 8 h–1 resulted in culture wash-out. An estimation of the Saturation constant was made (<1 mg/l), taking the maximum specific growth rate as 0.045 h–1, thus yielding a value of 0.125 mg p-cresol/l. Correspondence to: N. Khoury  相似文献   

14.
采用基于16S rDNA 的变性梯度凝胶电泳(denaturing gradient gel electrophoresis, DGGE)和16S rDNA文库序列分析的手段,研究了重要经济昆虫家蚕Bombyx mori 2个品系——专食性品系C108和广食性品系SCN2幼虫中肠内的细菌群落多样性,同时还探讨了食料对家蚕中肠内细菌群落结构的影响。文库序列分析表明,PCR 扩增得到的16S rDNA基因代表了家蚕中肠内的41种细菌系统发育型(phylotype),大多数属于Proteobacteria,其次是Lactobacillales。此外,还有少数属于Deinococcus-Thermus、Bacillales、Clostridiales和Actinobacteria,尚有5种系统发育型不能确定其所属类型。家蚕的这2个品系中,肠球菌属Enterococcus是其中肠细菌的优势菌群,栖热菌属Thermus是次优势菌群。优势菌肠球菌属的组成在品系和不同食料喂养条件下有着一定的变化,无桑饲料喂养条件下SCN2品系中肠内还出现了新的次优势菌葡萄球菌(Staphylococcus)。DGGE图谱显示家蚕低龄幼虫和高龄幼虫肠道细菌格局存在差异,推测可能与其发育期生理状态的差异有关。本研究结果提示家蚕肠道特殊菌群的出现可能与其特殊的食性有一定的关系,食料改变、生长受阻后肠道微生态平衡也发生变化。  相似文献   

15.
The interaction effect of co-existence of toluene and CH4 on community and activity of methanotrophs and toluene-degrading bacteria was characterized in three consortia enriched with CH4 and toluene (MT), toluene (T), and CH4 (M), respectively, in this study. The CH4 oxidation activity in the enrichment culture of MT was significantly lower than that of M at the end of the experiment (P?=?0.001). The toluene degradation rate could be enhanced by continuous addition of CH4 and toluene in the initial days, but it was inhibited in the later days. Phylogenetic analysis of 16S rRNA genes showed that Proteobacteria and Bacteroidetes were dominant in the three enriched consortia, but the community of methanotrophs and toluene-degrading bacteria was significantly affected by the co-existence of CH4 and toluene. Both Methylosinus (91.8 %) and Methylocystis (8.2 %) were detected in the enrichment culture of MT, while only Methylocystis species were detected in M. The toluene-degrading bacteria including Burkholderia, Flavobacteria, Microbacterium, and Azoarcus were all detected in the enrichment culture of T. However, only Azoarcus was found in the enrichment culture of MT. Significantly higher contents of extracellular polymeric substances polysaccharose and protein in the enrichment culture of MT than that of T and M suggested that a higher environmental stress occurred in the enrichment culture of MT.  相似文献   

16.
17.
This work intended to study the relationship between diuron herbicide dissipation and the population dynamics of co-cultivated Delftia acidovorans WDL34 (WDL34) and Arthrobacter sp. N4 (N4) for different cell formulations: free cells or immobilization in Ca-alginate beads of one or both strains. GFP-tagged WDL34 and N4 Gram staining allowed analyzing the cell growth and distribution of each strain in both beads and culture medium in the course of the time. Compared to the free cell co-culture of WDL34 and N4, immobilization of WDL34 in Ca-alginate beads co-cultivated with free N4 increased the dissipation rate of diuron by 53% (0.141 mg ml−1 h−1). In that case, immobilization strongly modified the final equilibrium among both strains (highest total N4 to WDL34 ratio). Our results demonstrated that the inoculant formulation played a major role in the cell growth of each cultivated strain possibly increasing diuron dissipation. This optimized cell formulation may allow improving water and soil treatment.  相似文献   

18.
从生产毒死蜱的农药生产厂曝气池中分离、筛选到降解毒死蜱且能以毒死蜱为唯一碳源生长的微生物菌株,命名为CP1。根据该菌株的Biolog特性鉴定和16S rRNA序列相似性分析,初步鉴定该菌为苍白杆菌属(Ochrobactrum sp.)。利用正交实验和Box-Behnken响应面法对影响CP1菌株降解毒死蜱的主要因素进行优化分析,得到菌株CP1对毒死蜱的最适降解条件为:农药浓度100 mg/L,pH值7.0,温度为28.5°C。优化后,CP1对毒死蜱的降解率由最初的70.26%提高到75.18%。毒死蜱降解优化试验提高了CP1菌株对毒死蜱的生物降解性能。  相似文献   

19.
Bacterial biodegradation (bioremediation) is the use of microorganisms to break down organic materials into simpler compounds; it plays a pivotal role in the clean-up of hazardous wastes in the environment. Following the completion of genome sequencing in bacteria capable of biodegradation, functional genomic studies have played a major role in obtaining information on bacterial biodegradation pathways. Novel proteomics technologies have recently been developed to make it possible to analyze global protein expression. Proteomics can also provide important information on the life cycle, regulation, and post-translational modification of proteins induced under specific conditions. Proteomics technologies have been applied to the comprehensive study of bacterial biodegradation. In this paper, we introduce the proteomics technologies applicable to bacterial biodegradation studies, review the results of the proteomics analysis of representative biodegrading bacteria, and discuss the potential use of proteomics technologies in future biodegradation studies.  相似文献   

20.
Anaerobic biodegradation of pentachlorophenol (PCP), in mixtures containing cadmium (Cd), by sulfidogenic (SRB) and methanogenic (MET) enrichment cultures, was studied. Removal of 91–93% of PCP occurred in both SRB- and MET-enriched cultures, in the absence of Cd, within 82 days. The presence of soluble Cd initially decreased the rate of PCP removal by the enrichment cultures, but PCP removal rates improved as the Cd precipitated. GC-MS, 14C-PCP, and 13C-PCP studies confirmed mineralization of PCP by both enrichment cultures, as well as the incorporation of PCP carbon into specific phospholipid fatty acids (PLFAs) of the cell membranes of PCP-degrading anaerobes. This is the first report on anaerobic biodegradation of PCP by SRB- and MET-enriched cultures in the presence, with simultaneous precipitation, of the toxic heavy metal Cd, and of the incorporation of PCP carbons into specific PLFAs of the anaerobic bacterial cells. Journal of Industrial Microbiology & Biotechnology (2001) 27, 11–17. Received 22 May 2000/ Accepted in revised form 17 March 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号