首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
This study investigated the mechanisms underlying the carbapenem resistance of bloodstream isolates of Pseudomonas aeruginosa obtained from two Korean hospitals. Of the 79 P. aeruginosa isolates, 22 and 21 were resistant to imipenem and meropenem, respectively. The 22 imipenem-resistant P. aeruginosa isolates were classified into 7 sequence types (STs) and 13 pulsotypes. Twelve imipenem-resistant isolates from one hospital were found to belong to the international clone ST111. Two imipenem-resistant P. aeruginosa ST235 isolates carried the bla IMP-6 gene, but the remaining 20 isolates did not produce carbapenemases. Mutations in the oprD gene and a related decrease in gene expression were found in 21 and 5 isolates, respectively. However, all imipenemresistant P. aeruginosa isolates showed no significant expression of OprD in the outer membrane as compared with that of carbapenem-susceptible PAO1 strain. Overexpression of genes associated with efflux pumps, including mexB, mexD, mexF, and mexY, was not found in any imipenem-resistant isolate. One imipenem-resistant P. aeruginosa isolate overexpressed the ampC gene. Our results show that the low permeability of drugs due to the mutational inactivation of OprD is primarily responsible for carbapenem resistance in bloodstream isolates of P. aeruginosa from Korean hospitals.  相似文献   

2.
The aims of this study were to evaluate the epidemiology of nosocomial candidemia in a tertiary hospital in South Brazil and the in vitro antifungal susceptibility of isolates. Blood strains from 108 patients were identified by PCR-based method. Some 30.5 % of candidemia were caused by Candida tropicalis, 28.7 % were due to Candida albicans, 24.1 % with Candida parapsilosis sensu stricto, 8.3 % with Candida glabrata sensu lato, 1.8 % involved Candida krusei and 6.6 % with other species. Candidemia was more common in intensive care unit settings (66 %). In vitro susceptibility to antifungal drugs was determined by a microdilution method; and new species-specific clinical breakpoints for fluconazole and voriconazole were applied. Overall susceptibility rates were 100 % for itraconazole, 91 % for fluconazole, 98 % for voriconazole and 99 % for amphotericin B. Fluconazole resistance was mostly among C. parapsilosis sensu stricto isolates (26.9 %). Most of the findings reported here agreed with epidemiological features common to other tertiary hospitals in Brazil; but also revealed some peculiarities, such as a high frequency of C. tropicalis associated with candidemia. Besides, high rate of fluconazole resistance among C. parapsilosis stricto sensu isolates was obtained when applying the new species-specific clinical breakpoints.  相似文献   

3.
Clinical management of fungal diseases is compromised by the emergence of antifungal drug resistance in fungi, which leads to elimination of available drug classes as treatment options. An understanding of antifungal resistance at molecular level is, therefore, essential for the development of strategies to combat the resistance. This study presents the assessment of molecular mechanisms associated with fluconazole resistance in clinical Candida glabrata isolates originated from Iran. Taking seven distinct fluconazole-resistant C. glabrata isolates, real-time PCRs were performed to evaluate the alternations in the regulation of the genes involved in drug efflux including CgCDR1, CgCDR2, CgSNQ2, and CgERG11. Gain-of-function (GOF) mutations in CgPDR1 alleles were determined by DNA sequencing. Cross-resistance to fluconazole, itraconazole, and voriconazole was observed in 2.5 % of the isolates. In the present study, six amino acid substitutions were identified in CgPdr1, among which W297R, T588A, and F575L were previously reported, whereas D243N, H576Y, and P915R are novel. CgCDR1 overexpression was observed in 57.1 % of resistant isolates. However, CgCDR2 was not co-expressed with CgCDR1. CgSNQ2 was upregulated in 71.4 % of the cases. CgERG11 overexpression does not seem to be associated with azole resistance, except for isolates that exhibited azole cross-resistance. The pattern of efflux pump gene upregulation was associated with GOF mutations observed in CgPDR1. These results showed that drug efflux mediated by adenosine-5-triphosphate (ATP)-binding cassette transporters, especially CgSNQ2 and CgCDR1, is the predominant mechanism of fluconazole resistance in Iranian isolates of C. glabrata. Since some novel GOF mutations were found here, this study also calls for research aimed at investigating other new GOF mutations to reveal the comprehensive understanding about efflux-mediated resistance to azole antifungal agents.  相似文献   

4.
Cotton bollworm, Helicoverpa armigera, is one of the most damaging polyphagous pests worldwide, which has developed high levels of resistance to commonly applied insecticides. Mitochondrial P-glycoprotein (Pgp) was detected in the insecticide-resistant strain of H. armigera using C219 antibodies, and its possible role was demonstrated in the efflux of xenobiotic compounds using spectrofluorometer. The TMR accumulated in mitochondria in the absence of ATP, and effluxed out in presence of ATP; the process of efflux was inhibited in the presence of ortho-vandate, an inhibitor of Pgp, in insecticide-resistant larvae of H. armigera. The mitochondria isolated from insecticide-resistant larvae were resistant to insecticide-induced inhibition of oxygen consumption and cytochrome c release. Membrane potential decreased in a dose-dependent manner in the presence of higher concentration of insecticides (>50 µM) in mitochondria of insecticide-resistant larvae. In conclusion, mitochondrial Pgp ATPase detected in the insecticide-resistant larvae influenced the efflux of xenobiotic compounds. Pgp might be involved in protecting the mitochondrial DNA and the components of the electron transport chain from damage due to insecticides, and contributing to the resistance to the deleterious effects of insecticides on the growth of insecticide-resistant H. armigera larvae.  相似文献   

5.
Twenty-two 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterial isolates were collected from agricultural soils at three sites in China. Sequence analysis of the 16S rRNA genes indicated that the isolates were phylogenetically grouped into four categories: Ochrobactrum anthropi, in the Alpha- class of the phylum Proteobacteria (3 out of 22 isolates), Cupriavidus sp., of the Betaproteobacteria (3 out of 22), Pseudomonas sp. and Stenotrophomonas sp., which are Gammaproteobacteria (7 out of 22), and Bacillus sp., of the phylum Firmicutes (9 out of 22). Primers were designed to amplify the conserved domain of tfdA, which is known to be involved in the degradation of 2,4-D. Results showed that the tfdA genes of all 22 strains were most similar to that of Cupriavidus necator JMP134, which belongs to the 2,4-D/α-ketoglutarate dioxygenase TfdA protein family, indicating that the JMP134-type tfdA gene is likely to be almost universal among the 2,4-D-degrading bacteria isolated from China. Degradation abilities of these 22 strains were investigated in assays using 2,4-D as the sole source of carbon and energy. Thirteen strains degraded >60 % of the available 2,4-D (500 mg l?1) over a 1-week incubation period, while a further nine Bacillus sp. strains degraded 50–81 % of the available 2,4-D. None of these nine strains degraded other selected herbicides, such as mecoprop, 2-methyl-4-chlorophenoxyacetic acid, quizalofop, and fluroxypyr. This is the first report of 2,4-D-degradation by Bacilli.  相似文献   

6.
Nocardia species are ubiquitous in the environment with an increasing number of species isolated from clinical sources. From 2005 to 2009, eight isolates (W9042, W9247, W9290, W9319, W9846, W9851T, W9865, and W9908) were obtained from eight patients from three states in the United States and Canada; all were from males ranging in age from 47 to 81 years old; and all were obtained from finger (n = 5) or leg (n = 3) wounds. Isolates were characterized by polyphasic analysis using molecular, phenotypic, morphologic and chemotaxonomic methods. Sequence analysis of 16S rRNA gene sequences showed the eight isolates are 100 % identical to each other and belong in the genus Nocardia. The nearest phylogenetically related neighbours were found to be the type strains for Nocardia altamirensis (99.33 % sequence similarity), Nocardia brasiliensis (99.37 %), Nocardia iowensis (98.95 %) and Nocardia tenerifensis (98.44 %). The G+C content of isolate W9851T was determined to be 68.4 mol %. The DNA–DNA relatedness between strain W9851T and the N. brasiliensis type strain was 72.8 % and 65.8 % when measured in the laboratory and in silico from genome sequences, respectively, and 95.6 % ANI. Whole-cell peptidoglycan was found to contain meso-diaminopimelic acid; MK-8-(H4)ω-cyc was identified as the major menaquinone; the major fatty acids were identified as C16:0, 10 Me C18:0, and C18:1 w9c, the predominant phospholipids were found to include diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannosides; whole-cell sugars detected were arabinose and galactose; and mycolic acids ranging from 38 to 60 carbon atoms were found to be present. These chemotaxonomic analyses are consistent with assignment of the isolates to the genus Nocardia. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectra of the clinical isolates showed genus and species level profiles that were different from other Nocardia species. All isolates were resistant to ciprofloxacin, clarithromycin and imipenem but were susceptible to amikacin, amoxicillin/clavulanate, linezolid and trimethoprim/sulfamethoxazole. The results of our polyphasic analysis suggest the new isolates obtained from wound infections represent a novel species within the genus Nocardia, for which the name Nocardia vulneris sp. nov. is proposed, with strain W9851T (= DSM 45737T = CCUG 62683T = NBRC 108936T) as the type strain.  相似文献   

7.

Key message

A CIho 5791 × Tifang recombinant inbred mapping population was developed and used to identify major dominant resistance genes on barley chromosomes 6H and 3H in CI5791 and on 3H in Tifang.

Abstract

The barley line CIho 5791 confers high levels of resistance to Pyrenophora teres f. teres, causal agent of net form net blotch (NFNB), with few documented isolates overcoming this resistance. Tifang barley also harbors resistance to P. teres f. teres which was previously shown to localize to barley chromosome 3H. A CIho 5791 × Tifang F6 recombinant inbred line (RIL) population was developed using single seed descent. The Illumina iSelect SNP platform was used to identify 2562 single nucleotide polymorphism (SNP) markers across the barley genome, resulting in seven linkage maps, one for each barley chromosome. The CIho 5791 × Tifang RIL population was evaluated for NFNB resistance using nine P. teres f. teres isolates collected globally. Tifang was resistant to four of the isolates tested whereas CIho 5791 was highly resistant to all nine isolates. QTL analysis indicated that the CIho 5791 resistance mapped to chromosome 6H whereas the Tifang resistance mapped to chromosome 3H. Additionally, CIho 5791 also harbored resistance to two Japanese isolates that mapped to a 3H region similar to that of Tifang. SNP markers and RILs harboring both 3H and 6H resistance will be useful in resistance breeding against NFNB.
  相似文献   

8.
Development and large-scale genotyping of single-nucleotide polymorphism (SNP) is required to use identified sequence variation in the alleles of different genes to determine their functional relevance to the candidate gene(s). In the present study, Illumina GoldenGate assay was used to validate and genotype SNPs in a set of six major rice blast resistance genes, viz. Pi-ta, Piz(t), Pi54, Pi9, Pi5(1) and Pib, distributed over five chromosomes, to understand their functional relevance and study the population structure in rice. All the selected SNPs loci (96) of six blast (Magnaporthe oryzae) resistance genes were genotyped successfully in 92 rice lines with an overall genotype call rate of 92.0 % and minimum GenTrain cutoff score of ≥0.448. The highest genotyped SNPs were found in japonica type (97.1 %) rice lines, followed by indica (92.12 %), indica basmati (91.84 %) and minimum in case of wild species (82.0 %). Among the genotyped loci, the highest score (98.68 %) was observed in case of Piz(t), followed by Pi-ta, Pi5(1), Pib, Pi54 and Pi9. Polymorphism was obtained in 87.5 % SNPs loci producing 7,728 genotype calls. Minor allele frequency ranged from 0.01 to 0.49 and has good differentiating power for distinguishing different rice accessions. Population structure analysis revealed that a set of genotypes from four rice subpopulations had “admix” ancestry (>26 %) with more than one genetic background of indica, japonica and wild types. SNPs markers were validated in a set of 92 rice lines and converted into CAPS markers which can be used in blast resistance breeding programme.  相似文献   

9.

Key message

Two virus inhibitory proteins were purified from Cyamopsis tetragonoloba , induced to resist virus infections by CIP-29, a systemic resistance inducing protein from Clerodendrum inerme , and characterized. One of them shared homology with a lectin.

Abstract

CIP-29, a known 29 kDa systemic antiviral resistance inducing protein isolated from Clerodendrum inerme, has been used to induce systemic resistance in Cyamopsis tetragonoloba against Sunn-hemp rosette virus (SRV). Paper reports the detection of virus inhibitory activity in induced-resistant leaf sap of C. tetragonoloba, and the purification of two virus inhibitory agents (VIAs) thereof. VIA activity was recorded as a reduction in lesion number of SRV, Tobacco mosaic virus, and Papaya ringspot virus, when they were incubated separately with resistant sap and inoculated onto susceptible C. tetragonoloba, Nicotiana tabacum cv. Xanthi-nc, and Chenopodium quinoa, respectively. The two VIAs were isolated from resistant C. tetragonoloba plant leaves using combinations of column chromatography. Both were basic proteins, and since their M r was 32 and 62 kDa, these VIAs were called CT-VIA-32 and CT-VIA-62, respectively, on the basis of their molecular mass and the host. CT-VIA-62 displayed better activity, and was thus studied further. It tested positive for a glycoprotein, and was serologically detected only in leaf tissue post-induction. Tryptic peptides generated in-gel, post SDS-PAGE of CT-VIA-62, were sequenced through LC/MS/MS. All CT-VIA-62 peptides were found to share homologies with proteins from Medicago truncatula that possess a mannose-binding lectin domain.  相似文献   

10.
Vulvovaginal candidiasis is one of the most common mycosis. However, the information about antifungal susceptibilities of the yeasts causing this infection is scant. We studied 121 yeasts isolated from 118 patients with vulvovaginal candidiasis. The isolates were identified by phenotypic and molecular methods, including four phenotypic methods described to differentiate Candida albicans from C. dubliniensis. Antifungal susceptibility testing was performed according to CLSI documents M27A3 and M27S4 using the drugs available as treatment option in the hospital. Diabetes, any antibacterial and amoxicillin treatment were statistically linked with vulvovaginal candidiasis, while oral contraceptives were not considered a risk factor. Previous azole-based over-the-counter antifungal treatment was statistically associated with non-C.albicans yeasts infections. The most common isolated yeast species was C. albicans (85.2 %) followed by C. glabrata (5 %), Saccharomyces cerevisiae (3.3 %), and C. dubliniensis (2.5 %). Fluconazole- and itraconazole-reduced susceptibility was observed in ten and in only one C. albicans strains, respectively. All the C. glabrata isolates showed low fluconazole MICs. Clotrimazole showed excellent potency against all but seven isolates (three C. glabrata, two S. cerevisiae, one C. albicans and one Picchia anomala). Any of the strains showed nystatin reduced susceptibility. On the other hand, terbinafine was the less potent drug. Antifungal resistance is still a rare phenomenon supporting the use of azole antifungals as empirical treatment of vulvovaginal candidiasis.  相似文献   

11.
Spore-forming bacteria are known to produce various enzymes and bioproducts valuable to different industries and to bear the harsh conditions found in the Antarctic environment. However, aerobic or facultative spore-forming bacterial communities found in maritime Antarctic soils yet remain poorly studied. In this study, 80 spore-forming and cold-adapted bacterial strains were isolated from nine different soil samples of King George Island, in maritime Antarctica, and further clustered into amplified ribosomal DNA restriction analysis groups within each soil. Representative strains were then identified as belonging to Bacillus, Rummeliibacillus, Paenibacillus and Sporosarcina by 16S rRNA gene sequencing. The ability to produce extracellular enzymes, antimicrobial substances and biosurfactants was determined in all isolates. The enzymatic activities most frequently found among the isolates were as follows: esterase (45 %), caseinase (30 %), amylase (16.2 %) and gelatinase (15 %). Biosurfactant production was detected in 25 % of the isolates. The growth inhibition of methicillin-resistant Staphylococcus aureus was observed in 13.7 % of the strains tested, but only two strains inhibited the growth of Candida albicans. The isolated spore-forming bacterial species were also compared with the characteristics of the different Antarctic soils sampled based on their physicochemical properties, showing that pH, C and P were the main factors correlated with the distribution of this group of bacteria in the Antarctic soils studied. These Antarctic endospore-forming bacterial strains may have a potential for industrial processes occurring at low temperatures.  相似文献   

12.
In comparison with ciprofloxacin, levofloxacin and moxifloxacin, antimicrobial activity of nemonoxacin against ciprofloxacin-susceptible/-resistant methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) was determined with the availability to select resistant mutants evaluated. Minimum inhibitory concentrations and mutant prevention concentrations of quinolones were determined by agar dilution method, that concentrated bacterial cells were spread onto Mueller–Hinton agar plates containing antibacterials at different concentrations. Selection index (SI) was calculated. Minimum inhibitory concentration and mutant prevention concentration of nemonoxacin were 0.063 and 0.25 μg/mL for ciprofloxacin-susceptible MSSA and those were 0.5 and 4.0 μg/mL for ciprofloxacin-resistant MSSA, lower than observations of three fluoroquinolones distinctly. SI of nemonoxacin and moxifloxacin were similar, with narrower mutant selective window than levofloxacin and ciprofloxacin. Minimum inhibitory concentration and mutant prevention concentration of nemonoxacin were 0.25 and 2.0 μg/mL for ciprofloxacin-susceptible MRSA, which were 0.5 and 16.0 μg/mL for ciprofloxacin-resistant MRSA. Values were lower than those determined from fluoroquinolones. Nemonoxacin presents good antimicrobial activity against clinical isolates of S. aureus, especially for ciprofloxacin-resistant strains. But stepwise mutant accumulation of ciprofloxacin-resistant MRSA can be hardly inhibited by nemonoxacin with pharmacokinetic parameters considered.  相似文献   

13.
We examined the phylogenetic relationships among Phytopythium species using the rDNA ITS region, the LSU rDNA region, and the mitochondrial coxI and coxII genes. The genus was resolved into three monophyletic clades (1–3). Clade 1 was the largest clade, composed of 12 known species. Clades 2 contained two known and one new species candidate and clade 3 contained two known species. Three isolates in clade 2 (FP1, HonMa, and a strain designated as P. helicoides CBS293.35) formed a monophyletic group with high bootstrap support. This monophyletic group was distinct from P. helicoides sensu stricto. All three isolates came from damped-off buckwheat seedlings. The isolates were morphologically identical with one another and were characterized by globose, sub-globose, or pyriform sporangia with apical papillae; internally or internally nested proliferating sporangia; simple sympodia; coiling antheridial stalks; and wavy, sessile, or clavate antheridial cells. The isolates grew at temperatures between 15 °C and 40 °C, and the optimum temperature was 30 °C, with a radial growth rate of 20 mm/24 h. The phylogenetic and morphological analyses indicated that these isolates belong to a distinct species, which was previously under the genus Pythium, named here Phytopythium fagopyri comb. nov.  相似文献   

14.
An attempt has been made in the present study to assess the allergenicity of dominant pollen types recorded from the atmosphere of Rohtak city. Skin prick test was performed with the antigenic extracts of 22 pollen types on 150 local patients who visited Asthma Clinic, University of Health Sciences, Rohtak. Markedly positive skin reactions (2+ and above) varied from 4.6 to 20.6 % to various pollen antigens. Cenchrus ciliaria (20.6 %), Zea mays (20 %) and Pennisetum typhoides (19.3 %) were the pollen allergens exhibiting maximum sensitivity. Antigenic extract of Cassia occidentalis, Cynodon dactylon and Ricinus communis showed marked skin reactivity in 18.6 % of patients. Prosopis juliflora, Chenopodium murale, Amaranthus spinosus, Cassia fistula and Cassia siamea showed 2+ and above reactions in 16.6, 15.3, 14.6 and 14.0 % of the local patients, respectively. Least reactivity (4.6 %) was shown to the antigenic extract of Cyperus rotundus. Out of 52 sera screened for the presence of specific IgE antibodies against different antigenic extracts, only 5.5 % showed >60 % binding. About 30 % and above binding was shown to the antigenic extracts of Z. mays, A. spinosus, R. communis and Xanthium strumarium. The concordance between positive skin reaction and serum-specific IgE antibodies ranged from 15 to 69 %.  相似文献   

15.
Three novel isolates (A-354T, A-328, and A-384) were retrieved from apparently healthy scleractinian Madracis decactis in the remote St Peter & St Paul Archipelago, Mid-Atlantic Ridge, Brazil. The novel isolates formed a distinct lineage based on the phylogenetic reconstruction using the 16S rRNA and pyrH gene sequences. They fell into the Mediterranei clade and their closest phylogenetic neighbour was V. mediterranei species, sharing upto 98.1 % 16S rRNA gene sequence similarity. Genomic analysis including in silico DDH, MLSA, AAI and genomic signature distinguished A-354T from V. mediterranei LMG 19703 (=AK1) with values of 33.3, 94.2, 92 %, and 11.3, respectively. Phenotypically, the novel isolates can be differentiated from V. mediterranei based on the four following features. They do not grow at 8 % NaCl; use d-gluconic acid but not l-galactonic acid lactone as carbon source; and do not have the fatty acid C18:0. Differentiation from both the other Mediterranei clade species (V. maritimus and V. variabilis) is supported by fifteen features. The novel species show lysine decarboxylase and tryptophan deaminase, but not gelatinase and arginine dihydrolase activity; produce acetoin; use α-d-lactose, N-acetyl-d-galactosamine, myo-Inositol, d-gluconic acid, and β-hydroxy-d,l-butyric acid; and present the fatty acids C14:0 iso, C15:0 anteiso, C16:0 iso, C17:0 anteiso, and C17:1x8c . Whole-cell protein profiles, based on MALDI-TOF, showed that the isolates are not clonal and also distinguished them from the closes phylogenetic neighbors. The name Vibrio madracius sp. nov. is proposed to encompass these novel isolates. The G+C content of the type strain A-354T (=LMG 28124T=CBAS 482T) is 44.5 mol%.  相似文献   

16.
The genetic basis for phenicol resistance was examined in 38 phenicol-resistant clinical Escherichia coli isolates from poultry. Out of 62 isolates, 38 showed resistance for chloramphenicol and nine for florfenicol, respectively. Each strain also demonstrated resistance to a variety of other antibiotics. Molecular detection revealed that the incidence rates of the cat1, cat2, flo, flo-R, cmlA, and cmlB were 32, 29, 18, 13, 0, and 0%, respectively. Nineteen strains were tolerant to organic solvents. PCR amplification of the complete acrR (regulator/repressor) gene of five isolates revealed the amino acid changes in four isolates. DNA sequencing showed the non-synonymous mutations which change the amino acid, silent mutation, and nucleotide deletion in four isolates. MY09C10 showed neither deletion nor mutation in nucleotide. The AcrA protein of the AcrAB multidrug efflux pump was overexpressed in these strains. Complementation with a plasmid-borne wild-type acrR gene reduced the expression level of AcrA protein in the mutants and partially restored antibiotic susceptibility one- to fourfold. This study shows that mutations in acrR are an additional genetic basis for phenicol resistance.  相似文献   

17.

Background

Quinolones are potent broad-spectrum bactericidal agents increasingly employed also in resource-limited countries. Resistance to quinolones is an increasing problem, known to be strongly associated with quinolone exposure. We report on the emergence of quinolone resistance in a very remote community in the Amazon forest, where quinolones have never been used and quinolone resistance was absent in 2002.

Methods

The community exhibited a considerable level of geographical isolation, limited contact with the exterior and minimal antibiotic use (not including quinolones). In December 2009, fecal carriage of antibiotic resistant Escherichia coli was investigated in 120 of the 140 inhabitants, and in 48 animals reared in the community. All fluoroquinolone-resistant isolates were genotyped and characterized for the mechanisms of plasmid- and chromosomal-mediated quinolone resistance.

Principal Findings

Despite the characteristics of the community remained substantially unchanged during the period 2002–2009, carriage of quinolone-resistant E. coli was found to be common in 2009 both in humans (45% nalidixic acid, 14% ciprofloxacin) and animals (54% nalidixic acid, 23% ciprofloxacin). Ciprofloxacin-resistant isolates of human and animal origin showed multidrug resistance phenotypes, a high level of genetic heterogeneity, and a combination of GyrA (Ser83Leu and Asp87Asn) and ParC (Ser80Ile) substitutions commonly observed in fluoroquinolone-resistant clinical isolates of E. coli.

Conclusions

Remoteness and absence of antibiotic selective pressure did not protect the community from the remarkable emergence of quinolone resistance in E. coli. Introduction of the resistant strains from antibiotic-exposed settings is the most likely source, while persistence and dissemination in the absence of quinolone exposure is likely mostly related with poor sanitation. Interventions aimed at reducing the spreading of resistant isolates (by improving sanitation and water/food safety) are urgently needed to preserve the efficacy of quinolones in resource-limited countries, as control strategies based only on antibiotic restriction policies are unlikely to succeed in those settings.  相似文献   

18.
The diversity and physiological characteristics of culturable bacteria associated with lichens from different habitats of the Arctic and Antarctica were investigated. The 68 retrieved isolates could be grouped on the basis of their 16S rRNA gene sequences into 26 phylotypes affiliated with the phyla Actinobacteria, Bacteroidetes, Deinococcus-Thermus, and Firmicutes and with the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Isolates belonging to the Alphaproteobacteria were the most abundant, followed by those belonging to Actinobacteria, Betaproteobacteria, Gammaproteobacteria, Bacteroidetes, Firmicutes, and Deinococcus-Thermus. Phylogenetic analysis showed that approximately 21 % of the total isolates represented a potentially novel species or genus (≤97 % sequence similarity). Strains belonging to the genera Sphingomonas, Frondihabitans, Hymenobacter, and Burkholderia were recovered from lichen samples from both geographic locations, implying common and important bacterial functions within lichens. Extracellular protease activities were detected in six isolates, affiliated with Burkholderia, Frondihabitans, Hymenobacter, Pseudomonas, and Rhodanobacter. Extracellular lipase activities were detected in 37 isolates of the genera Burkholderia, Deinococcus, Frondihabitans, Pseudomonas, Rhodanobacter, Sphingomonas, and Subtercola. This is the first report on the culturable bacterial diversity present within lichens from Arctic and Antarctica and the isolates described herein are valuable resources to decode the functional and ecological roles of bacteria within lichens. In addition, the low similarity (≤97 %) of the recovered isolates to known species and their production of cold-active enzymes together suggest that lichens are noteworthy sources of novel bacterial strains for use in biotechnological applications.  相似文献   

19.
Roots of plants in the genus Enkianthus, which belongs to the earliest diverging lineage in the Ericaceae, are commonly colonized by arbuscular mycorrhizal (AM) fungi. We documented the community of fungal root endophytes associated with Enkianthus species using a culture-based method for better understanding the members of root-colonizing fungi, except for AM fungi. Fungal isolates were successfully obtained from 610 out of 3,599 (16.9 %) root segments. Molecular analysis of fungal cultures based on ribosomal internal transcribed spacer (ITS) sequences yielded 63 operational taxonomical units (OTUs: 97 % sequence similarity cutoff) from 315 representative isolates. Further phylogenetic analysis showed that most (296 isolates) belonged to Ascomycota and were either members of Helotiales (Dermataceae, Hyaloscyphaceae, Phialocephala and Rhizoscyphus ericae aggregate), Oidiodendron, or other Pezizomycotina. Twenty-three out of 63 OTUs, which mainly consisted of Leotiomycetes, showed high similarities with reference sequences derived from roots of other ericaceous plants such as Rhododendron. The results indicated that Enkianthus houses variable root mycobionts including putative endophytic and mycorrhizal fungi in addition to AM fungi.  相似文献   

20.
Clopidogrel is an antiplatelet drug. It is used for the treatment as well as for the prophylaxis of coronary artery disease. Clopidogrel resistance is an emerging problem in clinical settings. The aim of the present study was to evaluate the effect of CYP3A5*3 genetic polymorphism on clopidogrel resistance. One hundred and forty-seven patients from outpatient Department of Cardiology on 75 mg/day of clopidogrel as maintenance dose were recruited from April 2010 to July 2011. All subjects gave written informed consent to participate in the study. DNA extraction was performed using phenol chloroform extraction procedure and genotyping by standard Taqman based RT-PCR method. Platelet aggregation was done at the end of 7th and 14th day by using chronolog lumi Aggregometer which is expressed as impedance in ohms. Impedance values of >5 ohms at the end of 6 min were considered as clopidogrel resistance. Subjects (N = 147) were analysed for CYP3A5*3 polymorphism, of which 49 (33 %) were found to be clopidogrel resistant. Homomutants of CYP3A5*3 gene had 2.78 (0.97–7.98; p < 0.05) fold risk and heteromutants had 2.4 (0.93–6.46; p < 0.05) fold risk of developing clopidogrel resistance. Carriers of defective allele G of CYP3A5*3 had higher propensity to cause clopidogrel resistance with an odds ratio of 1.63. Variant alleles and genotypes of CYP3A5*3 polymorphism contributed significantly to clopidogrel resistance with a higher odds ratio. Thus, pharmacogenomics paves way for the emergence of stratified medicine in clopidogrel therapy and personalised pharmacotherapy in ischaemic heart disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号