首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
适合于植物花器官的冰冻切片技术   总被引:15,自引:0,他引:15  
通过对4种植物主要花器官冰冻切片技术的各个环节及参数的研究,建立了一种适合于植物花器官的冰冻切片技术,即蔗糖保护-液氮速冻-冰冻切片法。其具体程序是:材料经固定和冷冻保护(蔗糖为冷冻保护剂)后进行速冻包埋(液氮为包埋剂);尔后进行冰冻切片;切片经干燥和染色(或者不染色)后,在显微镜下观察并摄影。此法为植物花器官的细胞生物学和分子生物学研究提供了简便、快速和高效的切片技术。  相似文献   

2.
The activities of soluble invertase (EC 3.2.1.26), cell wall invertase (EC 3.2.1.26) and sucrose synthase (EC 2.4.1.13) were determined in Easter lily ( Lilium longiflorum Thunb. cv. Nellie White) floral organs during flower development. These enzyme activities were correlated with dry weight gains and carbohydrate pools to investigate the importance of their expression in maintaining sink strength of floral organs. In the early stages of flower bud development, anthers exhibited the highest rates of dry weight gain and activity of sucrolytic enzymes. Once anther growth was completed, the dry weight gain of tepal, filament, stigma and style increased with a concomitant increase in hexose concentrations and invertase activity. Although all three enzymes capable of catalyzing sucrose cleavage were present in every flower organ of L. longiflorum , soluble invertase was the predominant enzyme in all flower organs except stigma where cell wall invertase dominated. Soluble invertase activity was highly correlated with dry weight gain in most of the flower organs.  相似文献   

3.
4.
以洋葱JQS-1、MST-140、Red beauty 3个常规栽培品种的鳞茎为试材,观察统计洋葱花器数目的变化,探讨花器数目的变异与植物花器多样性的关系,为植物花器发育模式以及植物分类和系统发育研究提供依据。结果表明:(1)洋葱花序中正常的洋葱小花含有6枚雄蕊,一些异常小花雄蕊的数目减少到5枚或增加到7~11枚;正常花药中的花粉粒数量大、形状规则、分散均匀,而异常花药中的花粉粒形状不规则。(2)雌蕊数目也发生变异,子房由正常的3室,变成了2室、4室或6室;花柱从正常1枚,增加到2枚或3枚。(3)正常小花含有6片花被片,异常小花的花被片数目从5片到10片。(4)花被片与雄蕊数目的变异有同步增减和非同步增加2种类型。  相似文献   

5.
Sucrose synthesis and sucrose hydrolysis in cut carnations (Dianthus caryophyllus) supplied with glucose solution .
Sucrose synthesis and hydrolysis in cut carnations supplied with a glucose solution have been investigated using both entire floral branches and floral branches without any of their organs (petals, non-petaloid pieces, leaves) and isolated organs. – The flower is a more active sink that the leaves. The transformationn of glucose into sucrose is essential for the ability of the flower to use the exogenous glucose. All organs of the floral branch (petals, ovaries and sepals, leaves, stem) are able to form sucrose. The hydrolysis of the obtained sucrose occurs nearly exclusively in the petals.  相似文献   

6.
Little is known about how plants protect flowers—their reproductive organs—against florivory. Additionally, the induced floral defense system has been examined in only a few species. We tested the inducibility of putative floral defenses and investigated the relationship between natural florivory and the floral defenses of 12 naturally growing plant species. The relationships between florivory and four chemical traits (nitrogen, phosphorus, total phenolics, and condensed tannins) were investigated in 12 plant species. We also studied whether flowers induce changes in chemical defenses in response to artificial damage in 10 plant species. A higher concentration of floral nitrogen was associated with a decreasing frequency of florivore attacks. Among the four traits of the 10 plant species studied, no trait changed in response to the artificial damage. We suggest that induced defense systems may not be advantageous for flowers, although it is also possible that these species simply do not use induced defense in any of their plant parts.  相似文献   

7.
A novel method for initiating somatic embryogenesis in grapevine, based on immature whole flower culture, is presented. The embryogenic competence of flowers was compared to that of anthers and ovaries, the most widely used explant types, for five grapevine cultivars. Both the genotype and the explant source affected the differentiation of somatic embryos. The highest percentages of embryogenesis were obtained in ovary-derived calli from all cultivars tested with the exception of Brachetto a grappolo lungo. Whole flowers proved to be suitable material for initiating embryogenic cultures for most tested cultivars, and for 110 R, Chardonnay, and Grignolino they gave similar or better results than anthers. Collection of whole flowers from the inflorescence is easier and faster than excision of anthers and ovaries from the flower itself; it can be done without the use of a stereomicroscope and damage to the explant is unlikely. No morphological difference was noted among embryogenic cultures originated from ovaries, flowers, or anthers.  相似文献   

8.
Relationships between sex‐specific floral traits and endogenous phytohormones associated with altitude are unknown particularly in dioecious trees. We thus examined the relationships between floral morphology or biomass and phytohormones in male and female flowers of dioecious Populus cathayana populations along an altitudinal gradient (1,500, 1,600, and 1,700 m above sea level) in the Xiaowutai Nature Reserve in northern China. The female and male flowers had the most stigma and pollen at 1,700 m, the largest ovaries and least pollen at 1,500 m, and the smallest ovaries and greater numbers of anthers at 1,600 m altitude. The single‐flower biomass was significantly greater in males than in females at 1,600 or 1,700 m, but the opposite was true at 1,500 m altitude. The biomass percentages were significantly higher in anthers than in stigmas at each altitude, while significantly greater gibberellin A3 (GA3), zeatin riboside (ZR), indoleacetic acid (IAA), and abscisic acid (ABA) concentrations were found in female than in male flowers. Moreover, most flower morphological traits positively correlated with IAA in females but not in males. The biomass of a single flower was significantly positively correlated with ABA or IAA in males but negatively with ZR in females and was not correlated with GA3 in both females and males. Our results demonstrate a distinct sexual adaptation between male and female flowers and that phytohormones are closely related to the size, shape, and biomass allocation in the pollination or fertilization organs of dioecious plants, although with variations in altitude.  相似文献   

9.
Because internal resources are finite, it has been assumed that attractive, floral organs represent a significant drain on the energy and nutrient budget of a plant. Despite the broad significance of such trade-offs, in relatively few studies have investigators manipulated floral investments, then evaluated allocation to subsequently produced flowers, fruits, and seeds. In the present study of Nigella sativa, the cost of maturing and/or maintaining perianths was documented after all sepals and nectaries were removed at the bud stage and a significant increase in mean seed mass, the total amount of biomass allocated to seed production, and mean germination rate of the maternal seed crop were measured. The increased biomass, carbon, and nitrogen allocated to seeds were similar in magnitude to the reduction in biomass, carbon, and nitrogen invested in sepals and nectaries after perianth removal. Perianth removal did not significantly affect flower production, maternal fecundity, or progeny seed number. Taken together, these observations indicate the potential for selection-mediated through resource trade-offs with seed mass and time to germination-to cause, or at least facilitate, evolutionary reductions in flower size.  相似文献   

10.
辣椒胞质雄性不育系和保持系内源激素含量的比较   总被引:3,自引:0,他引:3  
以2个辣椒品系(199807、199803)的胞质雄性不育系和相应保持系为实验材料,采用酶联免疫吸附法(ELISA)测定IAA、(Z ZR)、GA3和ABA等内源激素含量,用气相色谱分析仪测定乙烯(ETH)释放量,对辣椒胞质雄性不育系和相应保持系内源激素含量变化规律进行研究.实验结果表明:在四分小孢子之前,花药中的IAA含量不育系显著高于保持系,在四分小孢子时期花药和花蕾中的IAA含量出现转折,到花粉粒成熟期的花蕾和花药以及开花期叶片中的IAA含量均是不育系显著低于保持系;小孢子各发育时期花药以及花期叶片中GA3含量均是不育系高于保持系,但花粉粒成熟期化蕾中GA3含量为不育系低于保持系;小孢子不同发育时期的花药以及花期叶片中ABA含量始终足不育系显著高于保持系,而花粉粒成熟期花蕾中ABA含量不育系与保持系没有显著差异;花粉粒成熟期的花蕾和花期叶片中ETH释放量表现为不育系显著高于保持系.同时,花粉粒成熟期的花蕾、花药和叶片中IAA/ABA、(Z ZR)/ABA、GA3/ABA、IAA/GA3、(Z ZR)/GA3等5个激素的比值均有不育系低于保持系的趋势.本实验结果说明辣椒的育性表现与花器和叶片等组织中内源激素的含量变化有关,花药和花期叶片中IAA亏缺、GA3和ABA增加以及化蕾和叶片中ETH过度产生,都有可能导致辣椒雄性不育.  相似文献   

11.
In order to chemically identify the putative indole-3-acetic acid (IAA) and to confirm the native source of auxins account for rapid elongation of the floral stalk of tulip, we examined diffusible IAA from various parts of tulip plant during rapid elongation of the flower stalk. IAA was identified in the diffusates collected from the leaves, internodes, and floral organs with gas chromatography (GC)–mass spectrometry. The amount of diffusible IAA from different plant organs followed the order of that the internodes > flower organs > leaves during the period of rapid elongation of the floral stalk. The diffusible IAA from internodes reached its peak amount at different time than did diffusible IAA from the flower. The results obtained indicated that the top internode is probably the major source of auxins account for rapid elongation of the flower stalk.  相似文献   

12.
Development of floral organs during maturation of flower budsinto fully open boronia flowers is described. The petals andfunctional anthers attain their maximum size prior to the non-functionalanthers and the stigma. Organoleptic properties of the floralextract change with successive stages of bud development. Theconcentrations of extract and volatiles in the extract (% byf. wt) increase as buds mature, the extract concentration beinghighest in large buds and open flowers and the concentrationof volatile compounds being highest in open flowers. The rateof flower and extract development was measured. Yields of flowermaterial and floral extract per plant, and the concentrationof total volatiles including ß-ionone reach maximumlevels when 70% of flowers have reached anthesis. All measuredfactors decline after this point, except extract concentration(% of f. and d. wt) which is maintained up to 83% open flowers. Boronia megastigma(Nees); brown boronia; Rutaceae; flower development; floral extract; solvent extraction; ß-ionone; essential oils  相似文献   

13.
Two kinds of hydroxycinnamic derivatives can be found in tobacco: esters and amides. They do not accumulate in the same way during development. Esters, especially chlorogenic acids, are always present in all organs, whereas amides are observed only during certain periods in specific organs (from 47 days after sowing, in apical leaves, anthers and ovaries). A relationship has been found between accumulation of amides and flowering of plants grown at 20°C. By comparing amide accumulation as well as leaf emergence rate, both at a temperature that allows flowering (20°C) and at a temperature that inhibits flowering (30°C), it appears that amides begin to accumulate whenever a plant is ripening to flower.  相似文献   

14.
Two widespread assumptions underlie theoretical models of the evolution of sex allocation in hermaphroditic species: (1) resource allocations to male and female function are heritable; and (2) there is an intrinsic, genetically based negative correlation between male and female reproductive function. These assumptions have not been adequately tested in wild species, although a few studies have detected either genetic variation in pollen and ovule production per flower or evidence of trade-offs between male and female investment at the whole plant level. It may also be argued, however, that in highly autogamous, perfect-flowered plant taxa that exhibit genetic variation in gamete production, strong stabilizing selection for an efficient pollen:ovule ratio should result in a positive correlation among genotypes with respect to mean ovule and mean pollen production per flower. Here we report the results of a three-generation artificial selection experiment conducted on a greenhouse population of the autogamous annual plant Spergularia marina. Starting with a base population of 1200 individuals, we conducted intense mass selection for two generations, creating four selected lines (high and low ovule production per flower; high and low anther production per flower) and a control line. By examining the direct and correlated responses of several floral traits to selection on gamete production per flower, we evaluated the expectations that primary sexual investment would exhibit heritable variation and that resource-sharing, variation in resource-garnering ability, or developmental constraints mold the genetic correlations expressed among floral organs. The observed direct and correlated responses to selection on male and female gamete production revealed significant heritabilities of both ovule and anther production per flower and a significant negative genetic correlation between them. When plants were selected for increased ovules per flower over two generations, ovule production increased and anther production declined relative to the control line. Among plants selected for decreased anthers per flower, we observed a decline in anther production and an increase in ovule production relative to the control line. In contrast, the lines selected for low ovules per flower and for high anthers per flower exhibited no evidence for significant genetic correlations between male and female primary investment. Correlated responses to selection also indicate a genetically based negative correlation between the production of normal versus developmentally abnormal anthers (staminoid organs); a positive correlation between the production of ovules versus staminoid organs; and a positive correlation between the production of anthers and petals. The negative relationship between male versus female primary investment supports classical sex allocation theory, although the asymmetrical correlated responses to selection indicate that this relationship is not always expressed.  相似文献   

15.
16.
Characterization of nodule growth and function, phosphorus and nitrogen status of plant tissues and host-plant growth of nodulated soybean ( Glycine max L. Merr.) plants developing and recovering from phosphorus deficiency was used to evaluate the role of phosphorus in symbiotic dinitrogen fixation. The sequence of physiological responses during recovery from phosphorus deficiency was; (1) rapid uptake of phosphorus, (2) rapid increases in the phosphorus concentration of leaves and nodules, (3) enhanced growth and function of nodules, (4) increased nitrogen concentrations in all plant organs and (5) enhanced plant growth. The sequence of physiological responses to onset of phosphorus deficiency was; (1) decreased phosphorus uptake, (2) decreased phosphorus concentrations in leaves and nodules, (3) decreased nodule function, (4) decreased nitrogen concentration in plant organs and (5) decreased plant growth. These results, in conjunction with previously published data (Sa and Israel, Plant Physiol. 97: 928–935, 1991), support an interpretation that the total response of symbiotic dinitrogen fixation in soybean plants to altered phosphorus supply is a function of both indirect effects on host-plant growth and more direct effects on the metabolic function of nodules.  相似文献   

17.
18.
Rates of growth of seedlings of E. globulus, E. regnans and E. nitens were related to phosphorus supply in two soils but concentrations of total nitrogen and total phosphorus in most plant tissues did not vary significantly among soil or phosphorus treatments. Differences in concentrations of nitrogen and phosphorus and in the composition of the pool of free amino-acids among leaves at different stages of development were far greater than differences between treatments. The most significant of these differences were several-fold greater concentrations of arginine in the oldest leaves and these are most likely due to protein degradation and/or in situ synthesis since arginine is not generally phloem mobile. The concentration of reduced nitrogen in xylem sap was inversely related to growth and glutamine was by far the dominant nitrogenous solute. We suggest that specific nitrogenous solutes may be useful indices of the nitrogen status of eucalypt tissues for insect herbivores.  相似文献   

19.
Barto EK  Cipollini D 《Oecologia》2005,146(2):169-178
Two prominent theories proposed to explain patterns of chemical defense expression in plants are the optimal defense theory (ODT) and the growth-differentiation balance hypothesis (GDBH). The ODT predicts that plant parts with high fitness value will be highly defended, and the GDBH predicts that slow growing plant parts will have more resources available for defense and thus will have higher defense levels than faster growing tissues. We examined growth rate, fitness value, and defense protein levels in leaves of a wild and lab ecotype of Arabidopsis thaliana to address whether patterns of defense protein expression in this plant conform to predictions of either the ODT or the GDBH. We divided leaves of A. thaliana into six leaf classes based on three developmental stages: vegetative, bolting, and flowering; with two leaf ages at each stage: young and old. We assessed the fitness value of leaves by determining the impact of the removal of each leaf class on total seed production and germination rates. Although A. thaliana was highly tolerant to defoliation, young leaves were more valuable than old in general, and young leaves on bolting plants were the most valuable leaf class in particular. Young leaves on vegetative plants grew fastest in both ecotypes, while old leaves on bolting and flowering plants grew slowest. Finally, defense levels were assessed in each leaf class by quantifying the constitutive and inducible expression of four defense-related proteins. Expression of guaiacol peroxidase and chitinase activity conformed largely to GDBH predictions. Expression of trypsin inhibitor and polyphenoloxidase activity varied by leaf class and treatment, but conformed to neither GDBH nor ODT predictions.  相似文献   

20.
Protective floral structures may evolve in response to the negative effects of floral herbivores. For example, water calyces--liquid-filled, cup-like structures resulting from the fusion of sepals--may reduce floral herbivory by submerging buds during their development. Our observations of a water-calyx plant, Chrysothemis friedrichsthaliana (Gesneriaceae), revealed that buds were frequently attacked by ovipositing moths (Alucitidae), whose larvae consumed anthers and stigmas before corollas opened. Almost 25% of per-plant flower production was destroyed by alucitid larvae over two seasons, far exceeding the losses to all other floral herbivores combined. Experimental manipulation of water levels in calyces showed that a liquid barrier over buds halved per-flower alucitid egg deposition and subsequent herbivory, relative to buds in calyces without water. Thus, C. friedrichsthaliana's water calyx helps protect buds from a highly detrimental floral herbivore. Our findings support claims that sepal morphology is largely influenced by selection to reduce floral herbivory, and that these pressures can result in novel morphological adaptations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号