首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new two-strain model, for assessing the impact of basic control measures, treatment and dose-structured mass vaccination on cholera transmission dynamics in a population, is designed. The model has a globally-asymptotically stable disease-free equilibrium whenever its associated reproduction number is less than unity. The model has a unique, and locally-asymptotically stable, endemic equilibrium when the threshold quantity exceeds unity and another condition holds. Numerical simulations of the model show that, with the expected 50 % minimum efficacy of the first vaccine dose, vaccinating 55 % of the susceptible population with the first vaccine dose will be sufficient to effectively control the spread of cholera in the community. Such effective control can also be achieved if 50 % of the first vaccine dose recipients take the second dose. It is shown that a control strategy that emphasizes the use of antibiotic treatment is more effective than one that emphasizes the use of basic (non-pharmaceutical) anti-cholera control measures only. Numerical simulations show that, while the universal strategy (involving all three control measures) gives the best outcome in minimizing cholera burden in the community, the combined basic anti-cholera control measures and treatment strategy also has very effective community-wide impact.  相似文献   

2.
Zika virus is a flavivirus transmitted to humans primarily through the bite of infected Aedes mosquitoes. In addition to vector-borne spread, however, the virus can also be transmitted through sexual contact. In this paper, we formulate and analyze a new system of ordinary differential equations which incorporates both vector and sexual transmission routes. Theoretical analysis of this model when there is no disease induced mortality shows that the disease-free equilibrium is locally and globally asymptotically stable whenever the associated reproduction number is less than unity and unstable otherwise. However, when we extend this same model to include Zika induced mortality, which have been documented in Latin America, we find that the model exhibits a backward bifurcation. Specifically, a stable disease-free equilibrium co-exists with a stable endemic equilibrium when the associated reproduction number is less than unity. To further explore model predictions, we use numerical simulations to assess the importance of sexual transmission to disease dynamics. This analysis shows that risky behavior involving multiple sexual partners, particularly among male populations, substantially increases the number of infected individuals in the population, contributing significantly to the disease burden in the community.  相似文献   

3.
A deterministic model for the transmission dynamics of a strain of dengue disease, which allows transmission by exposed humans and mosquitoes, is developed and rigorously analysed. The model, consisting of seven mutually-exclusive compartments representing the human and vector dynamics, has a locally-asymptotically stable disease-free equilibrium (DFE) whenever a certain epidemiological threshold, known as the basic reproduction number(R(0)) is less than unity. Further, the model exhibits the phenomenon of backward bifurcation, where the stable DFE coexists with a stable endemic equilibrium. The epidemiological consequence of this phenomenon is that the classical epidemiological requirement of making R(0) less than unity is no longer sufficient, although necessary, for effectively controlling the spread of dengue in a community. The model is extended to incorporate an imperfect vaccine against the strain of dengue. Using the theory of centre manifold, the extended model is also shown to undergo backward bifurcation. In both the original and the extended models, it is shown, using Lyapunov function theory and LaSalle Invariance Principle, that the backward bifurcation phenomenon can be removed by substituting the associated standard incidence function with a mass action incidence. In other words, in addition to establishing the presence of backward bifurcation in models of dengue transmission, this study shows that the use of standard incidence in modelling dengue disease causes the backward bifurcation phenomenon of dengue disease.  相似文献   

4.
Chlamydia trachomatis (CT) is the most common bacterial cause of sexually transmitted disease. High-risk human papillomavirus (HR-HPV) is considered the main etiological agent for cervical neoplasia. Evidences showed that the presence of co-infection of CT and HR-HPV plays a central role in the etiology of cervical intraepithelial neoplasia (CIN) and cervical cancer. The goals of this study were: evaluate the human papillomavirus (HPV) and CT prevalence among Brazilian women with abnormal cytology and provide the effect of this association on the severity of cervical neoplasia. The population of this study was composed by 142 women with incident histological incidence of CIN grades I, II, III or cervical cancer from Recife, Northeast of Brazil. The polymerase chain reaction method on a cervical brush specimen was used to detect both agents and the automatic sequencing method was used for HPV genotyping assay. The prevalence of HPV and CT was 100 and 24.65 %, respectively. Thirteen types of HPV were detected; HPV 16, 18, 31 and 33 were the most common. The most prevalent HPV types were HPV 16 and 18. A significant association between CT positive and HPV 16 infection was found (p < 0.0106; OR = 5.31; 95 % IC 1.59–17.67). In the study population, there was diversity of HPV infections, with high-risk types being the most common. Also, the data collected suggest that CT infection may play an important role in the natural history of HPV infection.  相似文献   

5.
The number of patients need to be treated may exceed the carry capacity of local hospitals during the spreading of a severe infectious disease. We propose an epidemic model with saturation recovery from infective individuals to understand the effect of limited resources for treatment of infectives on the emergency disease control. It is shown that saturation recovery from infective individuals leads to vital dynamics, such as bistability and periodicity, when the basic reproduction number R0 is less than unity. An interesting dynamical behavior of the model is a backward bifurcation which raises many new challenges to effective infection control.  相似文献   

6.
The phenomenon of backward bifurcation in disease models, where a stable endemic equilibrium co-exists with a stable disease-free equilibrium when the associated reproduction number is less than unity, has important implications for disease control. In such a scenario, the classical requirement of the reproduction number being less than unity becomes only a necessary, but not sufficient, condition for disease elimination. This paper addresses the role of the choice of incidence function in a vaccine-induced backward bifurcation in HIV models. Several examples are given where backward bifurcations occur using standard incidence, but not with their equivalents that employ mass action incidence. Furthermore, this result is independent of the type of vaccination program adopted. These results emphasize the need for further work on the incidence functions used in HIV models.  相似文献   

7.
Human papillomavirus (HPV) is the primary cause of cervical carcinoma and its precursor lesions, and is associated with a variety of other cancers and diseases. A prophylactic quadrivalent vaccine against oncogenic HPV 16/18 and warts-causing genital HPV 6/11 types is currently available in several countries. Licensure of a bivalent vaccine against oncogenic HPV 16/18 is expected in the near future. This paper presents a two-sex, deterministic model for assessing the potential impact of a prophylactic HPV vaccine with several properties. The model is based on the susceptible-infective-removed (SIR) compartmental structure. Important epidemiological thresholds such as the basic and effective reproduction numbers and a measure of vaccine impact are derived. We find that if the effective reproduction number is greater than unity, there is a locally unstable infection-free equilibrium and a unique, globally asymptotically stable endemic equilibrium. If the effective reproduction number is less than unity, the infection-free equilibrium is globally asymptotically stable, and HPV will be eliminated.  相似文献   

8.
A model for assessing the effect of periodic fluctuations on the transmission dynamics of a communicable disease, subject to quarantine (of asymptomatic cases) and isolation (of individuals with clinical symptoms of the disease), is considered. The model, which is of a form of a non-autonomous system of non-linear differential equations, is analysed qualitatively and numerically. It is shown that the disease-free solution is globally-asymptotically stable whenever the associated basic reproduction ratio of the model is less than unity, and the disease persists in the population when the reproduction ratio exceeds unity. This study shows that adding periodicity to the autonomous quarantine/isolation model developed in Safi and Gumel (Discret Contin Dyn Syst Ser B 14:209–231, 2010) does not alter the threshold dynamics of the autonomous system with respect to the elimination or persistence of the disease in the population.  相似文献   

9.
Cervical cancer is caused primarily by infection with oncogenic types of human papillomavirus (HPV). However, HPV infection alone is not sufficient for the progression to cervical cancer. Host immunogenetic factors may involve in the development of this disease. Inositol 1,4,5-trisphosphate 3-kinase C (ITPKC) is recently shown to act as a negative regulator of T-cell activation. We aim to study if polymorphisms in the ITPKC gene are associated with the risk of cervical cancer in Taiwanese women. ITPKC rs28493229 C/G, rs890934 G/T, rs2303723 C/T, and rs10420685 A/G polymorphisms were genotyped in a hospital-based study of 465 women with cervical squamous cell carcinoma (CSCC) and 800 age-matched healthy control women. The presence and genotypes of HPV in CSCC were determined. The frequency of G/G genotype and G allele of the ITPKC rs28493229 polymorphism was significantly higher in patients with CSCC compared with controls (OR = 1.81, 95 % CI 1.20–2.73, P = 0.005, P c = 0.02; OR = 1.70, 95 % CI 1.14–2.54, P = 0.008, P c = 0.03, respectively). No significant associations were found for other 3 polymorphisms. Haplotype analysis revealed the distribution of haplotype CGTA was significantly reduced in women with CSCC (OR = 0.59, 95 % CI 0.40–0.89, P = 0.01, P c = 0.04). In conclusion, we found the G/G genotype and G allele of the ITPKC rs28493229 polymorphism may contribute to the risk of CSCC in Taiwanese women. This finding provides new insights into the mechanisms of immune activation in cervical cancer.  相似文献   

10.
Preventing and managing the HIV/AIDS epidemic in South Africa will dominate the next decade and beyond. Reduction of new HIV infections by implementing a comprehensive national HIV prevention programme at a sufficient scale to have real impact remains a priority. In this paper, a deterministic HIV/AIDS model that incorporates condom use, screening through HIV counseling and testing (HCT), regular testing and treatment as control strategies is proposed with the objective of quantifying the effectiveness of HCT in preventing new infections and predicting the long-term dynamics of the epidemic. It is found that a backward bifurcation occurs if the rate of screening is below a certain threshold, suggesting that the classical requirement for the basic reproduction number to be below unity though necessary, is not sufficient for disease control in this case. The global stabilities of the equilibria under certain conditions are determined in terms of the model reproduction number R0. Numerical simulations are performed and the model is fitted to data on HIV prevalence in South Africa. The effects of changes in some key epidemiological parameters are investigated. Projections are made to predict the long-term dynamics of the disease. The epidemiological implications of such projections on public health planning and management are discussed.  相似文献   

11.
A recent randomized controlled trial shows a significant reduction in women-to-men transmission of HIV due to male circumcision. Such development calls for a rigorous mathematical study to ascertain the full impact of male circumcision in reducing HIV burden, especially in resource-poor nations where access to anti-retroviral drugs is limited. First of all, this paper presents a compartmental model for the transmission dynamics of HIV in a community where male circumcision is practiced. In addition to having a disease-free equilibrium, which is locally-asymptotically stable whenever a certain epidemiological threshold is less than unity, the model exhibits the phenomenon of backward bifurcation, where the disease-free equilibrium coexists with a stable endemic equilibrium when the threshold is less than unity. The implication of this result is that HIV may persist in the population even when the reproduction threshold is less than unity. Using partial data from South Africa, the study shows that male circumcision at 60% efficacy level can prevent up to 220,000 cases and 8,200 deaths in the country within a year. Further, it is shown that male circumcision can significantly reduce, but not eliminate, HIV burden in a community. However, disease elimination is feasible if male circumcision is combined with other interventions such as ARVs and condom use. It is shown that the combined use of male circumcision and ARVs is more effective in reducing disease burden than the combined use of male circumcision and condoms for a moderate condom compliance rate.  相似文献   

12.
Mathematical Study of a Staged-Progression HIV Model with Imperfect Vaccine   总被引:1,自引:0,他引:1  
A staged-progression HIV model is formulated and used to investigate the potential impact of an imperfect vaccine. The vaccine is assumed to have several desirable characteristics such as protecting against infection, causing bypass of the primary infection stage, and offering a disease-altering therapeutic effect (so that the vaccine induces reversal from the full blown AIDS stage to the asymptomatic stage). The model, which incorporates HIV transmission by individuals in the AIDS stage, is rigorously analyzed to gain insight into its qualitative features. Using a comparison theorem, the model with mass action incidence is shown to have a globally-asymptotically stable disease-free equilibrium whenever a certain threshold, known as the vaccination reproduction number, is less than unity. Furthermore, the model with mass action incidence has a unique endemic equilibrium whenever this threshold exceeds unity. Using the Li-Muldowney techniques for a reduced version of the mass action model, this endemic equilibrium is shown to be globally-asymptotically stable, under certain parameter restrictions. The epidemiological implications of these results are that an imperfect vaccine can eliminate HIV in a given community if it can reduce the reproduction number to a value less than unity, but the disease will persist otherwise. Furthermore, a future HIV vaccine that induces the bypass of primary infection amongst vaccinated individuals (who become infected) would decrease HIV prevalence, whereas a vaccine with therapeutic effect could have a positive or negative effect at the community level.  相似文献   

13.
One major drawback associated with the use of anti-retroviral drugs in curtailing HIV spread in a population is the emergence and transmission of HIV strains that are resistant to these drugs. This paper presents a deterministic HIV treatment model, which incorporates a wild (drug sensitive) and a drug-resistant strain, for gaining insights into the dynamical features of the two strains, and determining effective ways to control HIV spread under this situation. Rigorous qualitative analysis of the model reveals that it has a globally asymptotically stable disease-free equilibrium whenever a certain epidemiological threshold (R t 0) is less than unity and that the disease will persist in the population when this threshold exceeds unity. Further, for the case where R t 0 > 1, it is shown that the model can have two co-existing endemic equilibria, and competitive exclusion phenomenon occurs whenever the associated reproduction number of the resistant strain (R t r) is greater than that of the wild strain (R t w). Unlike in the treatment model, it is shown that the model without treatment can have a family of infinitely many endemic equilibria when its associated epidemiological threshold (R(0)) exceeds unity. For the case when [Formula in text], it is shown that the widespread use of treatment against the wild strain can lead to its elimination from the community if the associated reduction in infectiousness of infected individuals (treated for the wild strain) does not exceed a certain threshold value (in this case, the use of treatment is expected to make R t w < R t r.  相似文献   

14.
The paper considers a deterministic model for the transmission dynamics of West Nile virus (WNV) in the mosquito-bird-human zoonotic cycle. The model, which incorporates density-dependent contact rates between the mosquito population and the hosts (birds and humans), is rigorously analyzed using dynamical systems techniques and theories. These analyses reveal the existence of the phenomenon of backward bifurcation (where the stable disease-free equilibrium of the model co-exists with a stable endemic equilibrium when the reproduction number of the disease is less than unity) in WNV transmission dynamics. The epidemiological consequence of backward bifurcation is that the classical requirement of having the reproduction number less than unity, while necessary, is no longer sufficient for WNV elimination from the population. It is further shown that the model with constant contact rates can also exhibit this phenomenon if the WNV-induced mortality in the avian population is high enough. The model is extended to assess the impact of some anti-WNV control measures, by re-formulating the model as an optimal control problem with density-dependent demographic parameters. This entails the use of two control functions, one for mosquito-reduction strategies and the other for personal (human) protection, and redefining the demographic parameters as density-dependent rates. Appropriate optimal control methods are used to characterize the optimal levels of the two controls. Numerical simulations of the optimal control problem, using a set of reasonable parameter values, suggest that mosquito reduction controls should be emphasized ahead of personal protection measures.  相似文献   

15.
The paper presents a deterministic compartmental model for the transmission dynamics of swine influenza (H1N1) pandemic in a population in the presence of an imperfect vaccine and use of drug therapy for confirmed cases. Rigorous analysis of the model, which stratifies the infected population in terms of their risk of developing severe illness, reveals that it exhibits a vaccine-induced backward bifurcation when the associated reproduction number is less than unity. The epidemiological consequence of this result is that the effective control of H1N1, when the reproduction number is less than unity, in the population would then be dependent on the initial sizes of the subpopulations of the model. For the case where the vaccine is perfect, it is shown that having the reproduction number less than unity is necessary and sufficient for effective control of H1N1 in the population (in such a case, the associated disease-free equilibrium is globally asymptotically stable). The model has a unique endemic equilibrium when the reproduction number exceeds unity. Numerical simulations of the model, using data relevant to the province of Manitoba, Canada, show that it reasonably mimics the observed H1N1 pandemic data for Manitoba during the first (Spring) wave of the pandemic. Further, it is shown that the timely implementation of a mass vaccination program together with the size of the Manitoban population that have preexisting infection-acquired immunity (from the first wave) are crucial to the magnitude of the expected burden of disease associated with the second wave of the H1N1 pandemic. With an estimated vaccine efficacy of approximately 80%, it is projected that at least 60% of Manitobans need to be vaccinated in order for the effective control or elimination of the H1N1 pandemic in the province to be feasible. Finally, it is shown that the burden of the second wave of H1N1 is expected to be at least three times that of the first wave, and that the second wave would last until the end of January or early February, 2010.  相似文献   

16.
The re-emergence of syphilis has become a global public health issue, and more persons are getting infected, especially in developing countries. This has also led to an increase in the incidence of human immunodeficiency virus (HIV) infections as some studies have shown in the recent decade. This paper investigates the synergistic interaction between HIV and syphilis using a mathematical model that assesses the impact of syphilis treatment on the dynamics of syphilis and HIV co-infection in a human population where HIV treatment is not readily available or accessible to HIV-infected individuals. In the absence of HIV, the syphilis-only model undergoes the phenomenon of backward bifurcation when the associated reproduction number (\({\mathcal {R}}_{T}\)) is less than unity, due to susceptibility to syphilis reinfection after recovery from a previous infection. The complete syphilis–HIV co-infection model also undergoes the phenomenon of backward bifurcation when the associated effective reproduction number (\({\mathcal {R}}_{C}\)) is less than unity for the same reason as the syphilis-only model. When susceptibility to syphilis reinfection after treatment is insignificant, the disease-free equilibrium of the syphilis-only model is shown to be globally asymptotically stable whenever the associated reproduction number (\({\mathcal {R}}_{T}\)) is less than unity. Sensitivity and uncertainty analysis show that the top three parameters that drive the syphilis infection (with respect to the associated response function, \({\mathcal {R}}_{T}\)) are the contact rate (\(\beta _S\)), modification parameter that accounts for the increased infectiousness of syphilis-infected individuals in the secondary stage of the infection (\(\theta _1\)) and treatment rate for syphilis-only infected individuals in the primary stage of the infection (\(r_1\)). The co-infection model was numerically simulated to investigate the impact of various treatment strategies for primary and secondary syphilis, in both singly and dually infected individuals, on the dynamics of the co-infection of syphilis and HIV. It is observed that if concerted effort is exerted in the treatment of primary and secondary syphilis (in both singly and dually infected individuals), especially with high treatment rates for primary syphilis, this will result in a reduction in the incidence of HIV (and its co-infection with syphilis) in the population.  相似文献   

17.

Background

Oncogenic human papillomavirus (HPV) infection, particularly multiple HPV types, is recognized as a necessary cause of anal cancer. However, a limited number of studies have reported the prevalence of anal HPV infection in Asia. We determined the prevalence, genotypes, and risk factors for anal HPV infection in Japanese HIV-positive men who have sex with men (MSM), heterosexual men, and women.

Methods

This cross-sectional study included 421 HIV-positive patients. At enrollment, we collected data on smoking, alcohol, co-morbidities, drugs, CD4 cell counts, HIV RNA levels, highly active anti-retroviral therapy (HAART) duration, sexually transmitted infections (STIs), and serological screening (syphilis, hepatitis B virus, Chlamydia trachomatis, Entamoeba histolytica). Anal swabs were collected for oncogenic HPV genotyping.

Results

Oncogenic HPV rate was 75.9% in MSM, 20.6% in heterosexual men, and 19.2% in women. HPV 16/18 types were detected in 34.9% of MSM, 17.7% of heterosexual men, and 11.5% of women. Multiple oncogenic HPV (≥2 oncogenic types) rate was 54.6% in MSM, 8.8% in heterosexual men, and 0% in women. In univariate analysis, younger age, male sex, MSM, CD4 <100, HIV viral load >50,000, no administration of HAART, and having ≥2 sexually transmitted infections (STIs) were significantly associated with oncogenic HPV infection, whereas higher smoking index and corticosteroid use were marginally associated with oncogenic HPV infection. In multivariate analysis, younger age (OR, 0.98 [0.96–0.99]), MSM (OR, 5.85 [2.33–14.71]), CD4 <100 (OR, 2.24 [1.00–5.01]), and having ≥2 STIs (OR, 2.81 [1.72–4.61]) were independently associated with oncogenic HPV infection. These 4 variables were also significant risk factors for multiple oncogenic HPV infection.

Conclusions

Among Japanese HIV-infected patients, approximately two-thirds of MSM, one-fifth of heterosexual men, and one-fifth of women have anal oncogenic HPV infection. Younger age, MSM, ≥2 STIs, and immunosuppression confer a higher risk of infection with oncogenic HPV and multiple oncogenic types.  相似文献   

18.
Epidemic control strategies alter the spread of the disease in the host population. In this paper, we describe and discuss mathematical models that can be used to explore the potential of pre-exposure and post-exposure vaccines currently under development in the control of tuberculosis. A model with bacille Calmette-Guerin (BCG) vaccination for the susceptibles and treatment for the infectives is first presented. The epidemic thresholds known as the basic reproduction numbers and equilibria for the models are determined and stabilities are investigated. The reproduction numbers for the models are compared to assess the impact of the vaccines currently under development. The centre manifold theory is used to show the existence of backward bifurcation when the associated reproduction number is less than unity and that the unique endemic equilibrium is locally asymptotically stable when the associated reproduction number is greater than unity. From the study we conclude that the pre-exposure vaccine currently under development coupled with chemoprophylaxis for the latently infected and treatment of infectives is more effective when compared to the post-exposure vaccine currently under development for the latently infected coupled with treatment of the infectives.  相似文献   

19.
In this paper we consider an age-duration-structured population model for HIV infection in a homosexual community. First we investigate the invasion problem to establish the basic reproduction ratio R(0) for the HIV/AIDS epidemic by which we can state the threshold criteria: The disease can invade into the completely susceptible population if R(0)>1, whereas it cannot if R(0)<1. Subsequently, we examine existence and uniqueness of endemic steady states. We will show sufficient conditions for a backward or a forward bifurcation to occur when the basic reproduction ratio crosses unity. That is, in contrast with classical epidemic models, for our HIV model there could exist multiple endemic steady states even if R(0) is less than one. Finally, we show sufficient conditions for the local stability of the endemic steady states.  相似文献   

20.
Multiple determinant factors are involved in the occurrence and progression of esophageal squamous cell carcinoma (ESCC). Human papillomavirus (HPV) and human leukocyte antigen (HLA) polymorphism were identified as important factors. This study examined the associations between the development of Kazakh ESCC and the determinant factors including HLA-DRB1*0901, 1501; DQB1*0301, 0602; high-risk HPV infection in the area of Xinjiang, China. 200 Kazakh patients with ESCC and 150 controls were recruited, and polymerase chain reaction (PCR) was performed to detect HLA-DRB1*0901, 1501 and DQB1*0301,0602 using sequence-specific primers (SSPs). HPV16 was detected in esophageal specimens using PCR. HPV16 infection rate in Kazakh ESCC case group was 41 %, significantly higher than that of control group 14 % (OR = 3.62; 95 % CI, 2.15–6.09; P < 0.001). A positive association between ESCC and HLA-DRB1*1501 (OR = 2.46, P < 0.0125) or HLA-DQB1*0301 (OR = 3.34, P < 0.0125) alleles was observed. Similar tendencies were observed for HLA-DRB1*1501 (OR = 3.095, P < 0.0125) and HLA-DQB1*0301 (OR = 2.410, P < 0.0125) alleles with HPV16-positive ESCC. HLA-DRB1*1501, HLA-DQB1*0301 and DQB1*0602 were significantly associated with ESCC when the age was ≥55 years (P < 0.0125 for all), whereas only HLA-DQB1*0301 was significantly associated with ESCC when the age was <55 years (P < 0.0125). HLA-DRB1*1501 and HLA-DQB1*0301 were significantly associated with an increase in ESCC occurrence in females (P < 0.0125), whereas only HLA-DQB1*0301 was significantly associated with ESCC in males. Moreover, the occurrence of HLA-DQB1*0602 gene in poorly differentiated ESCC group (68.8 %) was slightly higher than that of well-differentiated squamous cell carcinoma group (31.2 %). The difference was not statistically significant (P > 0.0125). The study suggests that HLA-DRB1*1501 and HLA-DQB1*0301 may influence the immune response to specific tumor and HPV-encoded epitopes and affect the risk of Kazakh ESCC in XinJiang, China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号