首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Arabidopsis cell wall–associated receptor-like kinase (WAK) gene family contains five highly related members whose products are suited for exchanging signals between the intracellular and extracellular compartments. WAK members are expressed in specific organs and regulated differentially by various biotic and abiotic factors. To gain further insight into how WAKs function during development, we used a glucocorticoid-inducible system to express ectopically the WAK4 antisense gene. The induced expression of the WAK4 antisense gene resulted in a significant decrease of WAK proteins. Ninety-six hours after the induction of WAK4 antisense expression, WAK proteins became undetectable. Cell elongation was impaired, and lateral root development was blocked. The level of WAK protein could be controlled by the concentration of the applied inducer, dexamethasone, and was correlated with the severity of the cell elongation inhibition phenotype. These results suggest that the WAKs serve a vital role in cell elongation and are required for plant development.  相似文献   

3.
4.
There are only a few proteins identified at the cell surface that could directly regulate plant cell wall functions. The cell wall-associated kinases (WAKs) of angiosperms physically link the plasma membrane to the carbohydrate matrix and are unique in that they have the potential to directly signal cellular events through their cytoplasmic kinase domain. In Arabidopsis there are five WAKs and each has a cytoplasmic serine/threonine protein kinase domain, spans the plasma membrane, and extends a domain into the cell wall. The WAK extracellular domain is variable among the five isoforms, and collectively the family is expressed in most vegetative tissues. WAK1 and WAK2 are the most ubiquitously and abundantly expressed of the five tandemly arrayed genes, and their messages are present in vegetative meristems, junctions of organ types, and areas of cell expansion. They are also induced by pathogen infection and wounding. Recent experiments demonstrate that antisense WAK expression leads to a reduction in WAK protein levels and the loss of cell expansion. A large amount of WAK is covalently linked to pectin, and most WAK that is bound to pectin is also phosphorylated. In addition, one WAK isoform binds to a secreted glycine-rich protein (GRP). The data support a model where WAK is bound to GRP as a phosphorylated kinase, and also binds to pectin. How WAKs are involved in signaling from the pectin extracellular matrix in coordination with GRPs will be key to our understanding of the cell wall's role in cell growth.  相似文献   

5.
Lally D  Ingmire P  Tong HY  He ZH 《The Plant cell》2001,13(6):1317-1331
The Arabidopsis cell wall-associated receptor-like kinase (WAK) gene family contains five highly related members whose products are suited for exchanging signals between the intracellular and extracellular compartments. WAK members are expressed in specific organs and regulated differentially by various biotic and abiotic factors. To gain further insight into how WAKs function during development, we used a glucocorticoid-inducible system to express ectopically the WAK4 antisense gene. The induced expression of the WAK4 antisense gene resulted in a significant decrease of WAK proteins. Ninety-six hours after the induction of WAK4 antisense expression, WAK proteins became undetectable. Cell elongation was impaired, and lateral root development was blocked. The level of WAK protein could be controlled by the concentration of the applied inducer, dexamethasone, and was correlated with the severity of the cell elongation inhibition phenotype. These results suggest that the WAKs serve a vital role in cell elongation and are required for plant development.  相似文献   

6.
Wall-associated receptor-like kinases (WAKs) are important candidates for directly linking the extracellular matrix with intracellular compartments and are involved in developmental processes and stress response. WAK gene family has been identified in plants such as Arabidopsis and rice. Here, we present a detailed analysis of the WAK1 gene from barley cv. Golden Promise, mapped to chromosome 5H. Three BAC clones corresponding to the WAK fragment were sequenced and the full-length WAK1 gene was characterized. The gene has three exons and two short introns with a coding region of 2,178 bp encoding a protein of 725 amino acids. A regulatory region was analyzed in ?1,000 bp sequence upstream to start codon. Using conserved domains database and SMART, various conserved domains such as GUB WAK Bind, epidermal growth factor CA, and protein kinase C as well as other regions like signal peptides, active sites, and transmembrane domains were identified. The gene organization of HvWAK1 was compared with wheat (TaWAK1) and Arabidopsis (AtWAK1), suggesting that the WAK1 gene organization has remained highly conserved. Nonetheless, WAK1 was found to be highly divergent when compared with sequences available from barley cv. Haruna Nijo (50 %), rice (46 %), wheat (21 %), Arabidopsis (25 %), and maize (19 %). This divergence may have facilitated a better adaptation to surrounding environments due to its role in communication between the extracellular matrix, cell, and outer environment. Semiquantitative RT-PCR-based expression analysis indicates HvWAK1 expression is specific to roots. Significant differences in root growth between GP wild type and GP-Ds mutant seedlings were observed under control and salt stress conditions.  相似文献   

7.
8.
Knowledge on the responses of woody plants to abiotic stress can inform strategies to breed improved tree varieties and to manage tree species for environmental conservation and the production of lignocellulosic biomass. In this study, we examined the expression patterns of poplar (Populus trichocarpa) genes encoding members of the sucrose nonfermenting1-related protein kinase 2 (SnRK2) family, which are core components of the abiotic stress response. The P. trichocarpa genome contains twelve SnRK2 genes (PtSnRK2.1- PtSnRK2.12) that can be divided into three subclasses (I–III) based on the structures of their encoded kinase domains. We found that PtSnRK2s are differentially expressed in various organs. In MS medium-grown plants, all of the PtSnRK2 genes were significantly upregulated in response to abscisic acid (ABA) treatment, whereas osmotic and salt stress treatments induced only some (four and seven, respectively) of the PtSnRK2 genes. By contrast, soil-grown plants showed increased expression of most PtSnRK2 genes under drought and salt treatments, but not under ABA treatment. In soil-grown plants, drought stress induced SnRK2 subclass II genes in all tested organs (leaves, stems, and roots), whereas subclass III genes tended to be upregulated in leaves only. These results suggest that the PtSnRK2 genes are involved in abiotic stress responses, are at least partially activated by ABA, and show organ-specific responses.  相似文献   

9.
The Nitrate Transporter (NRT) Gene Family in Poplar   总被引:1,自引:0,他引:1  
Nitrate is an important nutrient required for plant growth. It also acts as a signal regulating plant development. Nitrate is actively taken up and transported by nitrate transporters (NRT), which form a large family with many members and distinct functions. In contrast to Arabidopsis and rice there is little information about the NRT family in woody plants such as Populus. In this study, a comprehensive analysis of the Populus NRT family was performed. Sixty-eight PtNRT1/PTR, 6 PtNRT2, and 5 PtNRT3 genes were identified in the P. trichocarpa genome. Phylogenetic analysis confirmed that the genes of the NRT family are divided into three clades: NRT1/PTR with four subclades, NRT2, and NRT3. Topological analysis indicated that all members of PtNRT1/PTR and PtNRT2 have 8 to 12 trans-membrane domains, whereas the PtNRT3 proteins have no or up to two trans-membrane domains. Four PtNRT3 members were predicted as secreted proteins. Microarray analyses revealed tissue-specific expression patterns of PtNRT genes with distinct clusters of NRTs for roots, for the elongation zone of the apical stem segment and the developing xylem and a further cluster for leaves, bark and wood. A comparison of different poplar species (P. trichocarpa, P. tremula, P. euphratica, P. fremontii x P. angustifolia, and P. x canescens) showed that the tissue-specific patterns of the NRT genes varied to some extent with species. Bioinformatic analysis of putative cis-regulatory elements in the promoter regions of PtNRT family retrieved motifs suggesting the regulation of the NRT genes by N metabolism, by energy and carbon metabolism, and by phytohormones and stress. Multivariate analysis suggested that the combination and abundance of motifs in distinct promoters may lead to tissue-specificity. Our genome wide analysis of the PtNRT genes provides a valuable basis for functional analysis towards understanding the role of nitrate transporters for tree growth.  相似文献   

10.
11.
12.
13.
14.
15.
Zhang  Bin  Li  Pan  Su  Tongbing  Li  Peirong  Xin  Xiaoyun  Wang  Weihong  Zhao  Xiuyun  Yu  Yangjun  Zhang  Deshuang  Yu  Shuancang  Zhang  Fenglan 《Journal of Plant Growth Regulation》2020,39(1):72-86

The wall-associated kinase (WAK) gene family, a subfamily of the receptor-like kinase (RLK) gene family, is associated with the cell wall in plants, and has vital functions in cell expansion, pathogen resistance, and heavy metal stress tolerance because of their roles of the extracellular environment sensors to trigger intracellular signals in Arabidopsis. In the present study, 96 Chinese cabbage (Brassica rapa ssp. pekinensis) BrWAK gene family members were identified from the B. rapa genome using a reiterative database search and manual confirmation. The protein domain characterization, gene structure analysis, and phylogenetic analysis of the BrWAKs classified them into three gene groups. Comparative genomic analysis between WAK genes from Chinese cabbage and Arabidopsis revealed that the BrWAK genes have undergone the gene expansion and deletion events during evolution. Furthermore, the conserved motifs in the kinase domains of the WAK proteins and eukaryotic protein kinase family proteins were compared and some non-RD kinase proteins among the BrWAKs were identified. Ultimately, expression analysis of BrWAK genes in six tissues and under various stress conditions revealed that some tissue-specific WAK genes might function in callus cell growth and reproduction process; Bra012273, Bra016426, Bra016427, and Bra025882 might be involved in downy mildew resistance and high humidity stress; Bra012273, Bra025882, and Bra025883 might be responded to drought and heat stress. Taken together, this research was identified and classified the WAK gene family in Chinese cabbage and provided valuable resources to explore the potential roles of BrWAK genes in plant development and stress responses.

  相似文献   

16.

Background and Aims

The cell cycle is controlled by cyclin-dependent kinases (CDKs), and CDK inhibitors are major regulators of their activities. The ICK/KRP family of CDK inhibitors has been reported in several plants, with seven members in arabidopsis; however, the phylogenetic relationship among members in different species is unknown. Also, there is a need to understand how these genes and proteins are regulated. Furthermore, little information is available on the functional differences among ICK/KRP family members.

Methods

We searched publicly available databases and identified over 120 unique ICK/KRP protein sequences from more than 60 plant species. Phylogenetic analysis was performed using 101 full-length sequences from 40 species and intron–exon organization of ICK/KRP genes in model species. Conserved sequences and motifs were analysed using ICK/KRP protein sequences from arabidopsis (Arabidopsis thaliana), rice (Orysa sativa) and poplar (Populus trichocarpa). In addition, gene expression was examined using microarray data from arabidopsis, rice and poplar, and further analysed by RT-PCR for arabidopsis.

Key Results and Conclusions

Phylogenetic analysis showed that plant ICK/KRP proteins can be grouped into three major classes. Whereas the C-class contains sequences from dicotyledons, monocotyledons and gymnosperms, the A- and B-classes contain only sequences from dicotyledons or monocotyledons, respectively, suggesting that the A- and B-classes might have evolved from the C-class. This classification is also supported by exon–intron organization. Genes in the A- and B- classes have four exons, whereas genes in the C-class have only three exons. Analysis of sequences from arabidopsis, rice and poplar identified conserved sequence motifs, some of which had not been described previously, and putative functional sites. The presence of conserved motifs in different family members is consistent with the classification. In addition, gene expression analysis showed preferential expression of ICK/KRP genes in certain tissues. A model has been proposed for the evolution of this gene family in plants.  相似文献   

17.
18.
A novel method for studying differential expression of multigene family members based on the high sensitivity of RT-PCR completed by restriction site polymorphism of DNA is described. This method allows the identification of specific patterns of expression of fourchalcone synthase genes in a Hunnegem poplar clone (Populus trichocarpa ×Populus deltoides).  相似文献   

19.
Verica JA  Chae L  Tong H  Ingmire P  He ZH 《Plant physiology》2003,133(4):1732-1746
The Arabidopsis cell wall-associated kinase (WAK) and WAK-like kinase (WAKL) family of receptor-like kinase genes encodes transmembrane proteins with a cytoplasmic serine/threonine kinase domain and an extracellular region containing epidermal growth factor-like repeats. Previous studies have suggested that some WAK members are involved in plant defense and heavy metal responses, whereas others are required for cell elongation and plant development. The WAK/WAKL gene family consists of 26 members in Arabidopsis and can be divided into four groups. Here, we describe the characterization of group 2 members that are composed of a cluster of seven tandemly arrayed WAKL genes. The predicted WAKL proteins are highly similar in their cytoplasmic region but are more divergent in their predicted extracellular ligand-binding region. WAKL7 encodes a truncated WAKL isoform that is predicted to be secreted from the cytoplasm. Ratios of nonsynonymous to synonymous substitutions suggest that the extracellular region is subject to diversifying selection. Comparison of the WAKL and WAK gene clusters suggests that they arose independently. Protein gel-blot and immunolocalization analyses suggest that WAKL6 is associated with the cell wall. Histochemical analyses of WAKL promoters fused with the beta-glucuronidase reporter gene have shown that the expressions of WAKL members are developmentally regulated and tissue specific. Unlike WAK members whose expressions were found predominately in green tissues, WAKL genes are highly expressed in roots and flowers. The expression of WAKL5 and WAKL7 can be induced by wounding stress and by the salicylic acid analog 2,6-dichloroisonicotinic acid in an nonexpressor of pathogenesis-related gene 1-dependent manner, suggesting that they, like some WAK members, are wound inducible and can be defined as pathogenesis-related genes.  相似文献   

20.
Benzenoids (C6–C1 aromatic compounds) play important roles in plant defense and are often produced upon herbivory. Black cottonwood (Populus trichocarpa) produces a variety of volatile and nonvolatile benzenoids involved in various defense responses. However, their biosynthesis in poplar is mainly unresolved. We showed feeding of the poplar leaf beetle (Chrysomela populi) on P. trichocarpa leaves led to increased emission of the benzenoid volatiles benzaldehyde, benzylalcohol, and benzyl benzoate. The accumulation of salicinoids, a group of nonvolatile phenolic defense glycosides composed in part of benzenoid units, was hardly affected by beetle herbivory. In planta labeling experiments revealed that volatile and nonvolatile poplar benzenoids are produced from cinnamic acid (C6–C3). The biosynthesis of C6–C1 aromatic compounds from cinnamic acid has been described in petunia (Petunia hybrida) flowers where the pathway includes a peroxisomal-localized chain shortening sequence, involving cinnamate-CoA ligase (CNL), cinnamoyl-CoA hydratase/dehydrogenase (CHD), and 3-ketoacyl-CoA thiolase (KAT). Sequence and phylogenetic analysis enabled the identification of small CNL, CHD, and KAT gene families in P. trichocarpa. Heterologous expression of the candidate genes in Escherichia coli and characterization of purified proteins in vitro revealed enzymatic activities similar to those described in petunia flowers. RNA interference-mediated knockdown of the CNL subfamily in gray poplar (Populus x canescens) resulted in decreased emission of C6–C1 aromatic volatiles upon herbivory, while constitutively accumulating salicinoids were not affected. This indicates the peroxisomal β-oxidative pathway participates in the formation of volatile benzenoids. The chain shortening steps for salicinoids, however, likely employ an alternative pathway.

A three-step peroxisomal β-oxidative pathway mediates the shortening of the propyl side chain of cinnamic acid and contributes to herbivore-induced aromatic volatile formation in poplar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号