首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cane toad (Rhinella marina) is one of the most successful invasive species worldwide, and has caused significant negative impacts on Australian fauna. Experimental work in the laboratory and in mesocosms has shown that tadpoles of native frogs can affect survival, size at metamorphosis and duration of larval period of cane toad tadpoles. To test if these effects occur in nature, we conducted a field experiment using two temporary ponds where we set up enclosures with tadpoles of native green tree frogs (Litoria caerulea) and cane toads in treatments with a range of densities and combinations. The presence of green tree frog tadpoles significantly decreased the growth rate of toad tadpoles and increased the duration of their larval period in both ponds; in one pond, frog tadpoles also significantly reduced the body length and mass of metamorph toads. Toad tadpoles did not have any significant negative effects on green tree frog tadpoles, but there was strong intraspecific competition within the latter species: increased frog tadpole density resulted in increased larval period and reduced survival, growth rate and size at metamorphosis for frogs at one or both ponds. Our results are encouraging for the possibility of using native frogs as one component of an integrated approach to the biological control of cane toads.  相似文献   

2.
Summary Newly-metamorphosed individuals of some species of frogs and toads differ from adults in behavior, ecology, and physiology. These differences may be related to broader patterns of the life histories of different species of frogs. In particular, the length of larval life and the size of a frog at metamorphosis appear to be significant factors in post-metamorphic ontogenetic change. These changes in performance are associated with rapid post-metamorphic increases in oxygen transport capacity. Bufo americanus (American toads) and Rana sylvatica (wood frogs) spend only 2–3 months as tadpoles and metamorphose at body masses of 0.25 g or less. Individuals of these species improve endurance and aerobic capacity rapidly during the predispersal period immediately following metamorphosis. Increases in hematocrit, hemoglobin concentration, and heart mass relative to body mass are associated with this improvement in organismal performance. Rana clamitans (green frogs) spend from 3 to 10 months as larvae and weigh 3 g at metamorphosis. Green frogs did not show immediate post-metamorphic increases in performance. Rana palustris (pickerel frogs) are intermediate to wood frogs and green frogs in length of larval life and in size at metamorphosis, and they are intermediate also in their post-metamorphic physiological changes.American toads and wood frogs appear to delay dispersal from their natal ponds while they undergo rapid post-metamorphic growth and development, whereas green frogs disperse as soon as they leave the water, even before they have fully absorbed their tails. The very small body sizes of newly metamorphosed toads and wood frogs appear to limit the scope of their behaviors. The brief larval periods of these species permit them to exploit transient aquatic habitats, but impose costs in the form of a period of post-metamorphic life in which their activities are restricted in time and space compared to those of adults.  相似文献   

3.
Amphibians, like other animals, generate corticosterone or cortisol glucocorticoid responses to stimuli perceived to be threatening. It is generally assumed that the corticosterone response of animals to capture and handling reflects the corticosterone response to stimuli such as the sight of a predator that are thought to be natural stressors. Fijian ground frogs ( Platymantisvitiana ) are preyed upon by the introduced cane toads ( Rhinellamarina ), and we used ground frogs to test the hypothesis that the sight of a predator will induce a corticosterone stress response in an amphibian. Urinary corticosterone metabolite concentrations increased in male ground frogs exposed to the sight of a toad for 1, 3 or 6 h, whereas corticosterone did not change in frogs exposed to another male ground frog, a ball, or when no stimulus was present in the test compartment. The frogs exposed to a toad initially moved towards the stimulus then moved away, whereas frogs exposed to another frog moved towards the test frog and remained closer to the frog than at the start of the test. Tonic immobility (TI) was measured as an index of fearfulness immediately after the test exposure of the frogs to a stimulus. The duration of TI was longer in frogs exposed to a toad than to another frog or to a ball. The results provide novel evidence that the sight of a predator can induce a corticosterone response and lead to increased fearfulness in amphibians. In addition, they show that endemic frogs can recognise an introduced predator as a threat.  相似文献   

4.
Pond-breeding amphibians have been characterized as having metapopulation structure, and a goal of many local restoration projects is to establish viable metapopulations. However, recent studies suggest that metapopulation organization is unlikely at the local level because of high dispersal rates between neighboring ponds. Although many amphibians avoid ovipositing in habitats that pose high predation risk to their offspring, the spatial scale of avoidance is poorly resolved for natural systems and could involve wholesale movements between ponds. To determine the scale of avoidance, we monitored annual habitat use by the Wood frog ( Rana sylvatica ), American toad ( Bufo americanus ), and Spotted salamander ( Ambystoma maculatum ) at a restoration site in western North Carolina, U.S.A. Wood frogs consistently used most fish-free ponds, but rapidly curtailed use following fish invasions. American toads rarely used the same breeding site from year to year, and adults strongly avoided ovipositing in habitats with predatory Wood frog tadpoles. Spotted salamanders exhibited a predator avoidance response to fish that was weaker than the predator avoidance response of anurans. Our data indicate that the spatial scale of predator avoidance by ovipositing amphibians often exceeds that of an individual pond and that the focal species at this site are organized as patchy populations rather than as metapopulations. At local restoration sites, ponds that are placed in spatial arrays to create metapopulations may not accomplish their goal and may limit the extent to which ovipositing adults can express an adaptive antipredator behavior. We discuss an alternative design that is more likely to enhance the long-term persistence of local populations.  相似文献   

5.
6.
Parasite transfer to native fauna is a potentially catastrophic impact of invasive species. Introduced cane toads in Australia frequently host the nematode lungworm Rhabdias pseudosphaerocephala, which reduces viability of metamorph toads. If native frogs are vulnerable to this South American parasite, cane toad invasion may affect native species via this route; but if the native taxa are not vulnerable, we may be able to exploit the parasites for managing toads. Our laboratory experiments show that infective larvae can penetrate the body of all seven species of Australian frogs (five hylids: Cyclorana longipes, Litoria caerulea, Litoria dahlii, Litoria nasuta, Litoria rothii, one myobatrachid: Opisthodon ornatus, and one limnodynastid: Limnodynastes convexiusculus) we tested, but most did not host the adult worms at the end of the trials, and none showed major impairment of growth, survival or locomotor performance. One native tree‐frog (L. caerulea) retained high infection levels with few ill effects, suggesting that we might be able to use this taxon as a reservoir species to build up local parasite densities for toad management. However, the interspecific variation in lungworm retention suggests that generalizations about parasite effects on native frogs will be elusive.  相似文献   

7.
Body size at metamorphosis is a critical trait in the life history of amphibians. Despite the wide-spread use of amphibians as experimental model organisms, there is a limited understanding of how multiple abiotic and biotic factors affect the variation in metamorphic traits under natural conditions. The aim of our study was to quantify the effects of abiotic and biotic factors on spatial variation in the body size of tadpoles and size at metamorphosis of the European common toad (Bufo b. spinosus). Our study population was distributed over the riverbed (active tract) and the fringing riparian forest of a natural floodplain. The riverbed had warm ponds with variable hydroperiod and few predators, whereas the forest had ponds with the opposite characteristics. Spatial variation in body size at metamorphosis was governed by the interactive effects of abiotic and biotic factors. The particular form of the interaction between water temperature and intraspecific tadpole density suggests that abiotic factors laid the foundation for biotic factors: intraspecific density decreased growth only at high temperature. Predation and intraspecific density jointly reduced metamorphic size. Interspecific density had a negligible affect on body size at metamorphosis, suggesting weak inter-anuran interactions in the larval stage. Population density at metamorphosis was about one to two orders of magnitudes higher in the riverbed ponds than in the forest ponds, mainly because of lower tadpole mortality. Based on our results, we conclude that ponds in the riverbed appear to play a pivotal role for the population because tadpole growth and survival is best in this habitat.  相似文献   

8.
Invasive species can affect the ecosystems they colonize by modifying the behaviour of native taxa; for example, avoidance of chemical cues from the invader may modify habitat use (shelter site selection) by native species. In laboratory trials, we show that metamorphs of most (but not all) native frog species on a tropical Australian floodplain avoid the scent of invasive cane toads (Bufo marinus Linnaeus 1758). Cane toads also avoid conspecific scent. This response might reduce vulnerability of metamorph frogs and toads to larger predatory toads. However, similar avoidance of one type of pungency control (garlic), and the presence of this avoidance behaviour in frogs at the toad invasion front (and hence, with no prior exposure to toads), suggest that this may not be an evolved toad‐specific response. Instead, our data support the simpler hypothesis that the metamorph anurans tend to avoid shelter sites that contain strong and unfamiliar scents. Temporal and spatial differences in activity of frogs versus toads, plus the abundance of suitable retreat sites during the wet season (the primary time of frog activity), suggest that avoiding toad scent will have only a minor impact on the behaviour of native frogs. However, this behavioural impact may be important when environmental conditions bring toads and frogs into closer contact.  相似文献   

9.
Amphibian ranaviruses occur globally, but we are only beginning to understand mechanisms for emergence. Ranaviruses are aquatic pathogens which can cause?>?90% mortality in larvae of many aquatic-breeding amphibians, making them important focal host taxa. Host susceptibilities and virulence of ranaviruses have been studied extensively in controlled laboratory settings, but research is needed to identify drivers of infection in natural environments. Constructed ponds, essential components of wetland restoration, have been associated with higher ranavirus prevalence than natural ponds, posing a conundrum for conservation efforts, and emphasizing the need to understand potential drivers. In this study, we analyzed 4 years of Frog virus 3 prevalence and associated environmental parameters in populations of wood frogs (Lithobates sylvaticus) and green frogs (Lithobates clamitans) in a constructed pond system. High prevalence was best predicted by low temperature, high host density, low zooplankton concentrations, and Gosner stages approaching metamorphosis. This study identified important variables to measure in assessments of ranaviral infection risk in newly constructed ponds, including effects of zooplankton, which have not been previously quantified in natural settings. Examining factors mediating diseases in natural environments, particularly in managed conservation settings, is important to both validate laboratory findings in situ, and to inform future conservation planning, particularly in the context of adaptive management.  相似文献   

10.
Adaptations that enhance fitness in one situation can become liabilities if circumstances change. In tropical Australia, native snake species are vulnerable to the invasion of toxic cane toads. Death adders (Acanthophis praelongus) are ambush foragers that (i) attract vertebrate prey by caudal luring and (ii) handle anuran prey by killing the frog then waiting until the frog''s chemical defences degrade before ingesting it. These tactics render death adders vulnerable to toxic cane toads (Bufo marinus), because toads elicit caudal luring more effectively than do native frogs, and are more readily attracted to the lure. Moreover, the strategy of delaying ingestion of a toad after the strike does not prevent fatal poisoning, because toad toxins (unlike those of native frogs) do not degrade shortly after the prey dies. In our laboratory and field trials, half of the death adders died after ingesting a toad, showing that the specialized predatory behaviours death adders use to capture and process prey render them vulnerable to this novel prey type. The toads'' strong response to caudal luring also renders them less fit than native anurans (which largely ignored the lure): all toads bitten by adders died. Together, these results illustrate the dissonance in behavioural adaptations that can arise following the arrival of invasive species, and reveal the strong selection that occurs when mutually naive species first interact.  相似文献   

11.
Wetland hydroperiod is a key factor for the reproductive success of pond-breeding amphibians. Ground-water withdrawals may cause intermittent ponds to dry prematurely, potentially affecting amphibian development. In three intermittent ponds, we monitored hydrology and tracked oviposition, larval development, and metamorphosis for three frog species that represented a range of breeding phenologies. The three species were the southern leopard frog (Lithobates sphenocephalus), spring peeper (Pseudacris crucifer), and Pine Barrens treefrog (Hyla andersonii). We simulated ground-water withdrawals by subtracting from 5 to 50 cm (in 5-cm increments) from the measured water-depth values at the ponds over a short-term (2-year) period and a long-term (10-year) period to estimate the potential impact of hydroperiod alterations on frog development. Short-term simulations indicated that 5 and 10 cm water-depth reductions would have resulted in little or no impact to hydroperiod or larval development and metamorphosis of any of the species. Noticeable impacts were estimated to occur for reductions ≥15 cm. Long-term simulations showed that impacts to the appearance of the first pre-metamorphs and metamorphs would have occurred at reductions ≥10 cm and impacts to initial egg deposition would have occurred at reductions ≥20 cm. For all simulations, successively greater reductions would have caused increasing impacts that varied by species and pond, with the 50-cm reductions shortening hydroperiods enough to practically eliminate the possibility of larval development and metamorphosis for all three species. Compared to the spring peeper and southern leopard frog, the estimated impacts of the simulations on the various life stages were the greatest for the Pine Barrens treefrog.  相似文献   

12.
The ability of prey to respond to novel predator cues may depend on the generality or specificity of the response to predator cues. We used laboratory behavioral experiments to examine the ability of tadpoles of three species of anurans (American toad, Bufo americanus ; bullfrog, Rana catesbeiana ; and green frog, R. clamitans ) to respond to the presence of two native potential predators (bluegill, Lepomis macrochirus ; and largemouth bass, Micropterus salmoides ) and one non-native potential predator (goldfish, Carassius auratus ). We also examined the effect of tadpole size on the behavioral responses of American toads and green frogs to predator cues. All three species of tadpoles responded to the presence of predator cues, although the specific responses varied among species. American toads and green frogs reduced activity in the presence of at least some fish cues, but bullfrog tadpoles did not change their activity. Bullfrogs decreased use of vegetation in the presence of some predator cues, whereas American toads and green frogs did not. American toads only responded to the presence of bluegill cues but not the other fish predator cues, whereas bullfrogs and green frogs responded more generally to the fish predators. In both American toads and green frogs, tadpole size affected behavior. For American toads, activity increased, as did the use of the vegetated side of the aquarium, in larger tadpoles. Not only did size affect American toad behavior, but it also influenced the responses of the tadpoles to predator cues. For green frogs, activity decreased in larger tadpoles. Our results suggest that behavioral responses of tadpoles to predator cues can be influenced by both the identity of the predator and the prey, as well as the size of the potential prey.  相似文献   

13.
Biotechnology offers a new approach for the restoration of tree species affected by exotic pathogens; however, nontarget impacts of this novel strategy on other organisms have not been comprehensively assessed. We evaluated the effect of transgenic American chestnut (Castanea dentata) leaf litter on the growth and survival of larval wood frogs (Lithobates sylvaticus), a forest‐dwelling amphibian species widely sympatric with American chestnut, that forage almost entirely on periphyton and litter detritus that accumulate in temporary vernal pools in forests. We reared wood frog larvae on Castanea leaf litter (American chestnut genetically engineered for blight tolerance, nontransgenic American chestnut, Chinese chestnut [Castanea mollissima], and an American–Chinese chestnut hybrid) and litter from two non‐Castanea, nontransgenic “control” tree species, coupled with two levels of supplementary food. We observed no differences in growth or survival of wood frog larvae reared on transgenic versus nontransgenic American chestnut leaves. Without supplementary food, wood frog larvae provided leaves from American chestnut (both types) developed faster and grew larger than those exposed to other leaf litter treatments. Results of this study provide preliminary evidence that (1) American chestnut may have formerly been an important source of food for forest‐dwelling amphibians and (2) transgenic American chestnut litter generated as part of chestnut restoration efforts is unlikely to present direct novel risks to developing amphibian larvae in the forest environment.  相似文献   

14.
Among the multiple factors involved in the decline of amphibians, competition with alien species remains understudied. In Western Europe, non-native marsh frogs (Pelophylax ridibundus and other sister species) have been widely imported for gastronomic purposes and have then often escaped from captivity. Apart from closely related species, the impact of the subsequent colonization of non-native species on native amphibians is still unknown. In this study, we analysed the response of a threatened species, the yellow-bellied toad (Bombina variegata), faced with the presence of alien frogs in mountain rivers in France. We studied the co-occurrence pattern of the native toad and the alien frog, while taking into account co-dependence of the detection rates in both species. We tested three main scenarios to explain a non-random pond occurrence for each species and to establish their respective habitat preferenda: (1) a pond-area-dependent scenario, predicting different responses from each species for a given pond size, (2) a fish-dependent scenario, predicting different responses from each species given the presence of fish in ponds, and (3) a floodplain-width-dependent scenario, predicting different responses from each species given the geomorphological characteristics of the floodplain. Taking into account site-specific covariates, we concluded that introduced frogs do not currently have an impact on the native population of the yellow-bellied toad.  相似文献   

15.
Along with immune defences, many animals exhibit effective anti-parasite behaviours such as parasite avoidance and removal that influence their susceptibility to infection. Host ecology and life history influence investment into comparatively fixed defences such as innate immunity but may affect the strength of anti-parasite behaviours as well. We investigated activity levels in five different species of larval amphibian with varying life histories and ecology in control, novel food stimulus, and trematode parasite (Echinoparyphium sp.) threat conditions. There was a significant interaction of species and treatment given that American toad (Bufo americanus), wood frog (Lithobates sylvaticus), and bullfrog (Lithobates catesbeianus) tadpoles generally increased their activity when parasite infectious stages were present while grey tree frogs (Hyla versicolor) and northern leopard frogs (Lithobates pipiens) did not, even though activity was negatively related to infection. In addition, there was considerable variation among species in their susceptibility to parasitism, with infection prevalence ranging from 17 % in bullfrog tadpoles to 70 % in wood frogs. However, amphibian life history (larval and adult traits) was not related to parasitism or level of anti-parasite behaviour at the species level. Consequently, we suggest that future investigations include more species with a range of life history traits and also consider host ecology, particularly if conspicuous anti-parasite behaviours are more likely in amphibian species that experience a relatively low risk of predation.  相似文献   

16.
Larvae of certain species of blowflies (Calliphoridae) can cause myiasis in frogs and toads, but there are few reports from North American amphibians. Of these, most are from toads (bufonids). In this study, we observe primary myiasis in a population of juvenile wood frogs, Rana sylvatica, collected on 22-23 August 2003, from southeastern Wisconsin and compare our observations with previous studies on myiasis from toads. Two (5%) of 39 frogs were infected by the blow fly Bufolucilia silvarum, with an intensity of 28 and 31, whereas 1 (2.5%) of 39 frogs was infected by the blow fly Bufolucilia elongata with an intensity of 14. We found that (1) B. silvarum lay eggs on healthy wood frogs, (2) eggs hatch, with first-instar maggots penetrating under the skin, (3) maggots develop to mature third instars within 13-16 hr of egg hatching, (4) maggots kill the host within 7-47 hr of egg hatching, and (5) maggots consume the entire frog carcass reducing it to bones within 42-59 hr of egg hatching. Our observations on the time of death and how quickly carcasses of wood frogs were consumed by these maggots compared with previous studies on toads suggest that finding infected juvenile wood frogs may be uncommon. Therefore, myiasis by these flies on wood frogs and other small terrestrial anurans may be a phenomenon that is much more common than is currently observed. This is the first report of B. silvarum and B. elongata causing myiasis in wood frogs.  相似文献   

17.
Harper EB  Semlitsch RD 《Oecologia》2007,153(4):879-889
Populations of species with complex life cycles have the potential to be regulated at multiple life history stages. However, research tends to focus on single stage density-dependence, which can lead to inaccurate conclusions about population regulation and subsequently hinder conservation efforts. In amphibians, many studies have demonstrated strong effects of larval density and have often assumed that populations are regulated at this life history stage. However, studies examining density regulation in the terrestrial stages are rare, and the functional relationships between terrestrial density and vital rates in amphibians are unknown. We determined the effects of population density on survival, growth and reproductive development in the terrestrial stage of two amphibians by raising juvenile wood frogs (Rana sylvatica) and American toads (Bufo americanus) at six densities in terrestrial enclosures. Density had strong negative effects on survival, growth and reproductive development in both species. We fitted a priori recruitment functions to describe the relationship between initial density and the density of survivors after one year, and determined the functional relationship between initial density and mass after one year. Animals raised at the lowest densities experienced growth and survival rates that were over twice as great as those raised at the highest density. All female wood frogs in the lowest density treatment showed signs of reproductive development, compared to only 6% in the highest density treatment. Female American toads reached minimum reproductive size only at low densities, and male wood frogs and American toads reached maturity only in the three lowest density treatments. Our results demonstrate that in the complex life cycle of amphibians, density in the terrestrial stage can reduce growth, survival and reproductive development and may play an important role in amphibian population regulation. We discuss the implications of these results for population regulation in complex life cycles and for amphibian conservation.  相似文献   

18.
Abstract Despite widespread concern about the ecological impacts of invasive species, mechanisms of impact remain poorly understood. Cane toads (Chaunus [Bufo] marinus) were introduced to Queensland in 1935, and have now spread across much of tropical Australia. One plausible impact of toad invasion concerns competition between toads and native frogs, but there has been no previous experimental evaluation of this possibility. We examined interactions between toads and a morphologically similar species of native frog (Cyclorana australis) by manipulating toad and frog densities within large outdoor enclosures beside a floodplain in the wet‐dry tropics of the Northern Territory. Toads differed from frogs significantly in dietary composition and feeding rates, even in comparisons controlling for body‐size differences between these two taxa. Perhaps reflecting the abundant insect biomass, manipulating anuran densities or the presence of the putatively competing species did not influence food intake or dietary composition. However, the presence of toads suppressed activity levels of native frogs. The degree to which the invasion of cane toads influences attributes such as the activity levels, food intake and dietary composition of native frogs warrants further study, but our study suggests that competitive effects are likely to be minor compared with other pathways (such as direct poisoning during ingestion attempts) by which toads can affect frog populations.  相似文献   

19.
Across all taxa, amphibians exhibit some of the strongest phenological shifts in response to climate change. As climates warm, amphibians and other animals are expected to breed earlier in response to temperature cues. However, if species use fixed cues such as daylight, their breeding timing might remain fixed, potentially creating disconnects between their life history and environmental conditions. Wood frogs Rana sylvatica are a cold-adapted species that reproduce in early spring, immediately after breeding ponds are free of ice. We used long-term surveys of wood frog oviposition timing in 64 breeding ponds over 20 yr to show that, despite experiencing a warming of 0.29°C per decade in annual temperature, wood frog breeding phenology has shifted later by 2.8 d since 2000 (1.4 d per decade; 4.8 d per °C). This counterintuitive pattern is likely the result of changes in the timing of snowpack accumulation and melting. Finally, we used relationships between climate and oviposition between 2000 and 2018 to hindcast oviposition dates from climate records to model longer-term trends since 1980. Our study indicates that species can respond to fine-grained seasonal climate heterogeneity within years that is not apparent or counterintuitive when related to annual trends across years.  相似文献   

20.
The effects of variable hydroperiod (three levels) and initial density of amphibians (two levels) on survival, growth rate, and time to and mass at metamorphosis were studied for wood frogs (Rana sylvatica), Jefferson salamanders (Ambystoma jeffersonianum), and spotted salamanders (A. maculatum). Experiments were carried out in 260-1 mesocosms set up outdoors in a forest. These pond simulations were designed to mimic conditions that occur in palustrine temporary wetlands in central Pennsylvania. No animals reached metamorphosis in the short hydroperiod (56 days). However a greater proportion (66%) of tadpoles of R. sylvatica survived to the end of the 56-day, treatment than the 84- or 158-day treatments (29 and 14%, respectively), from which all survivors metamorphosed. In contrast, neither of the salamanders metamorphosed by 84 days; survival to metamorphosis at 158 days was 15% for A. jeffersonianum and 10% for A. maculatum. Average instantaneous growth rates for A. jeffersonianum decreased with each increase in hydroperiod. Growth of R. sylvatica was greater in the 56-day hydroperiod than in hydroperiods of 84 or 158 days. Initial amphibian density had no effect on growth or survival of any species. It appears that salamander larvae were predatory on tadpoles, since survival of R. sylvatica was negatively correlated with survival of A. jeffersonianum in 84-day treatments and with growth of A. maculatum in 158-day treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号