首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anti-factor VIII (FVIII) inhibitory IgG may arise as alloantibodies to therapeutic FVIII in patients with congenital hemophilia A, or as autoantibodies to endogenous FVIII in individuals with acquired hemophilia. We have described FVIII-hydrolyzing IgG both in hemophilia A patients with anti-FVIII IgG and in acquired hemophilia patients. Here, we compared the properties of proteolytic auto- and allo-antibodies. Rates of FVIII hydrolysis differed significantly between the two groups of antibodies. Proline-phenylalanine-arginine-methylcoumarinamide was a surrogate substrate for FVIII-hydrolyzing autoantibodies. Our data suggest that populations of proteolytic anti-FVIII IgG in acquired hemophilia patients are different from that of inhibitor-positive hemophilia A patients.  相似文献   

2.
Designing gene delivery vectors for cardiovascular gene therapy   总被引:3,自引:0,他引:3  
Genetic therapy in the cardiovascular system has been proposed for a variety of diseases ranging from prevention of vein graft failure to hypertension. Such diversity in pathogenesis requires the delivery of therapeutic genes to diverse cell types in vivo for varying lengths of time if efficient clinical therapies are to be developed. Data from extensive preclinical studies have been compiled and a certain areas have seen translation into large-scale clinical trials, with some encouraging reports. It is clear that progress within a number of disease areas is limited by a lack of suitable gene delivery vector systems through which to deliver therapeutic genes to the target site in an efficient, non-toxic manner. In general, currently available systems, including non-viral systems and viral vectors such as adenovirus (Ad) or adeno-associated virus (AAV), have a propensity to transduce non-vascular tissue with greater ease than vascular cells thereby limiting their application in cardiovascular disease. This problem has led to the development and testing of improved vector systems for cardiovascular gene delivery. Traditional viral and non-viral systems are being engineered to increase their efficiency of vascular cell transduction and diminish their affinity for other cell types through manipulation of vector:cell binding and the use of cell-selective promoters. It is envisaged that future use of such technology will substantially increase the efficacy of cardiovascular gene therapy.  相似文献   

3.
Adeno-associated virus-based vectors in gene therapy   总被引:4,自引:0,他引:4  
Adeno-associated virus (AAV) vectors were shown capable of high efficiency transduction of both dividing and nondividing cells and tissues. AAV-mediated transduction leads to stable, long-term transgene expression in the absence of apparent immune response. These properties and the broad host range of AAV vectors indicate that they constitute a powerful tool for gene therapy purposes. An additional potential benefit of AAV vectors is their ability to integrate site-specifically in the presence of Rep proteins which can be expressed transiently, thus limiting their suspected adverse effects. The major restrictions of AAV as vectors are their limited genetic capacity and strict packaging size constraint of less than 5 kb. Another difficulty is the labor-intensive and expensive procedure for the production and packaging of recombinant AAV vectors. The major benefits and drawbacks of AAV vectors and advances made in the past 3 years are discussed.  相似文献   

4.
Adeno-associated virus (AAV) is so far the most valuable vehicle for gene therapy because it has no association with immune response and human disease. The present study was conducted to investigate the feasibility of AAV-mediated BMP4 gene transfer for bone formation. In vitro study suggested that AAV-BMP4 vectors could transduce myoblast C2C12 cells and produce osteogenic BMP4. In vivo study demonstrated that new bone formation could be induced by direct injection of AAV-BMP4 into the skeletal muscle of immunocompetent rats. Histological analysis revealed that the newly formed bone was induced through endochondral mechanism. Immunohistochemical staining further demonstrated that AAV-BMP4 gene delivery could mediate long-term transduction, and the involvement of BMP4 expression was responsible for the endochondral ossification. This study is, to our knowledge, the first report in the field of AAV-based BMP gene transfer and should be promising for clinical orthopaedic applications.  相似文献   

5.
Hemophilia A is an X-linked congenital bleeding disorder caused by Factor VIII deficiency. Different mutations including point mutations, deletions, insertions and inversions have been reported in the FVIII gene, which cause hemophilia A. In the current study, with the use of conformational sensitive gel electrophoresis (CSGE) analysis, we report a novel 1-nt deletion in the A6 sequence at codons 1328-1330 (4040-4045 nt delA) occurring in exon 14 of the FVIII gene in a seven-year-old Iranian boy with severe hemophilia A. This mutation that causes frameshift and premature stop-codon at 1331 has not previously been reported in the F8 Hemophilia A Mutation, Structure, Test and Resource Site (HAMSTeRS) database.  相似文献   

6.
7.
The association of mitochondrial dysfunction with a variety of human diseases and disabilities has been documented. Mitochondrial gene therapy (MGT) seeks to correct the genetic defect in mitochondrial DNA. For successful MGT, an appreciation of the nature of the dysfunction and of the complexities of mitochondrial disease is necessary. This review summarizes the current status of various MGT protocols described in the literature. Although there are many technical difficulties to be overcome, there are indications that some of them will find clinical applications in the near future.  相似文献   

8.
9.

Aims

Hemophilia A (HA) is a severe, congenital bleeding disorder caused by the deficiency of clotting factor VIII (FVIII). For years, traditional laboratory animals have been used to study HA and its therapies, although animal models may not entirely mirror the human pathophysiology. Human induced pluripotent stem cells (iPSCs) can undergo unlimited self-renewal and differentiate into all cell types. This study aims to generate hemophilia A (HA) patient-specific iPSCs that differentiate into disease-affected hepatocyte cells. These hepatocytes are potentially useful for in vitro disease modeling and provide an applicable cell source for autologous cell therapy after genetic correction.

Main methods

In this study, we mainly generated iPSCs from urine collected from HA patients with integration-free episomal vectors PEP4-EO2S-ET2K containing human genes OCT4, SOX2, SV40LT and KLF4, and differentiated these iPSCs into hepatocyte-like cells. We further identified the genetic phenotype of the FVIII genes and the FVIII activity in the patient-specific iPSC derived hepatic cells.

Key findings

HA patient-specific iPSCs (HA-iPSCs) exhibited typical pluripotent properties evident by immunostaining, in vitro assays and in vivo assays. Importantly, we showed that HA-iPSCs could differentiate into functional hepatocyte-like cells and the HA-iPSC-derived hepatocytes failed to produce FVIII, but otherwise functioned normally, recapitulating the phenotype of HA disease in vitro.

Significance

HA-iPSCs, particular those generated from the urine using a non-viral approach, provide an efficient way for modeling HA in vitro. Furthermore, HA-iPSCs and their derivatives serve as an invaluable cell source that can be used for gene and cell therapy in regenerative medicine.  相似文献   

10.
Hemophilia A (HA) is an inherited X-linked recessive bleeding disorder caused by coagulant factor VIII (FVIII) deficiency. Previous studies showed that introduction of mesenchymal stem cells (MSCs) modified by FVIll-expressing retrovims may result in phenotypic correction of HA animals. This study aimed at the investigation of an alternative gene therapy strategy that may lead to sustained FVIII transgene expression in HA mice. B-domain-de/eted human FVIll (hFVHIBD) vector was microinjected into single-cell embryos of wild-type mice to generate a transgenic mouse line, from which hFVIIIBD-MSCs were isolated, followed by transplantation into HA mice. RT-PCR and real-time PCR analysis demonstrated the expression of hFVlllBD in multi-organs of recipient HA mice. Immunohistochemistry showed the presence of hFVIIIBD positive staining in multi-organs of recipient HA mice. ELISA indicated that plasma hFVIIIBD level in recipient mice reached its peak (77 ng/ mL) at the 3rd week after implantation, and achieved sustained expression during the 5-week observation period. Plasma FVIII activities of recipient HA mice increased from 0% to 32% after hFVIIIBD-MSCs transplantation. APTT (activated partial thromboplastin time) value decreased in hFVIIIBD-MSCs transplanted HA mice compared with untreated HA mice (45.5 s vs. 91.3 s). Our study demonstrated an effective phenotypic correction in HA mice using genetically modified MSCs from hFVIIIBD transgenic mice.  相似文献   

11.
Hemophilia A (HA) is a bleeding disorder caused by deficiency of the coagulation factor VIII (F8). F8 replacement is standard of care, whereas gene therapy (F8 gene) for HA is an attractive investigational approach. However, the large size of the F8 gene and the immunogenicity of the product present challenges in development of the F8 gene therapy. To resolve these problems, we synthesized a shortened F8 gene (F8-BDD) and cloned it into a lentiviral vector (LV). The F8-BDD produced mainly short cleaved inactive products in LV-transduced cells. To improve F8 functionality, we designed two novel F8-BDD genes, one with an insertion of eight specific N-glycosylation sites (F8-N8) and another which restored all N-glycosylation sites (F8-299) in the B domain. Although the overall protein expression was reduced, high coagulation activity (>100-fold) was detected in the supernatants of LV-F8-N8- and LV-F8-299-transduced cells. Protein analysis of F8 and the procoagulation cofactor, von Willebrand Factor, showed enhanced interaction after restoration of B domain glycosylation using F8-299. HA mouse hematopoietic stem cell transplantation studies illustrated that the bleeding phenotype was corrected after LV-F8-N8 or -299 gene transfer into the hematopoietic stem cells. Importantly, the F8-299 modification markedly reduced immunogenicity of the F8 protein in these HA mice. In conclusion, the modified F8-299 gene could be efficiently packaged into LV and, although with reduced expression, produced highly stable and functional F8 protein that corrected the bleeding phenotype without inhibitory immunogenicity. We anticipate that these results will be beneficial in the development of gene therapies against HA.  相似文献   

12.
梅文瀚  卢健  钱关祥 《生命科学》2001,13(4):174-176
基因治疗是彻底治愈血友病A的最理想方法,逆转录病毒是最为常用的载体之一,本文对逆转录病毒在血友病A基因治疗中的研究进展作一综述。  相似文献   

13.
Recombinant factor VIII is one of the most complex mammalian proteins and a biotechnology venture required for the treatment of hemophilia A. The complexity of the protein, post-translational modifications and limitations of expression elements make the production of active recombinant FVIII a challenge. Here we report the production of biologically active Factor VIII in two different cell lines, CHO and HepG2, by transient transfection. Two expression vectors based on the CMV promoter were used: one harboring CMV Intron A (InA) and the other without it. To bypass difficulties in secretion, we also studied the influence of co-expression of the human splice isoform of the XBP1 gene. We report the production of recombinant FVIII possessing bioengineered FVIII heavy and light chains, linked by a minimal B domain. In our study, HepG2, a human hepatocyte cell line, expressed Factor VIII ten-fold more than a CHO cell line, and in HepG2 cells, the expression of XBP1 improved Factor VIII activity. For CHO cells, expression was improved by the presence of InA, but no further improvement was noted with XBP1 co-expression. These data suggest that the minimal B domain rFVIII preserves Factor VIII biological activity and that different expression elements can be used to improve its production.  相似文献   

14.
Gene therapy is considered a feasible approach for the treatment and prevention of HIV/AIDS. Targeting both viral genes and host dependency factors can interfere with the viral lifecycle and prevent viral replication. A number of approaches have been taken to target these genes, including ribozymes, aptamers, and RNAi based therapies. A number of these therapies are now beginning to make their way into clinical trials and providing proof of principle that gene therapy is a safe and realistic option for treating HIV. Here, we focus on those therapies that have progressed along the pipeline to preclinical and clinical testing.  相似文献   

15.
重组腺相关病毒载体临床实验研究   总被引:3,自引:1,他引:2  
重组腺相关病毒载体 (rAAV)基因药物已经开展六十余项(67)临床研究,其安全、高效、稳定、表达持久等特点越来越受到业界的重视,最近的临床试验发现其在治疗先天性黑内障临床研究中呈现出显著疗效更是极大地振奋了人们的信心。临床研究案例的增加使人们对rAAV基因药物有了更为全面、深入的认识。与此同时,也对基因药物提出了更多挑战与要求,尤其是免疫原性和安全性等方面。  相似文献   

16.
《遗传学报》2022,49(12):1114-1126
CRISPR/Cas9-mediated site-specific insertion of exogenous genes holds potential for clinical applications. However, it is still infeasible because homologous recombination (HR) is inefficient, especially for non-dividing cells. To overcome the challenge, we report that a homology-independent targeted integration (HITI) strategy is used for permanent integration of high-specificity-activity Factor IX variant (F9 Padua, R338L) at the albumin (Alb) locus in a novel hemophilia B (HB) rat model. The knock-in efficiency reaches 3.66%, as determined by droplet digital PCR (ddPCR). The clotting time is reduced to a normal level four weeks after treatment, and the circulating factor IX (FIX) level is gradually increased up to 52% of the normal level over nine months even after partial hepatectomy, demonstrating the amelioration of hemophilia. Through primer-extension-mediated sequencing (PEM-seq), no significant off-target effect is detected. This study not only provides a novel model for HB but also identifies a promising therapeutic approach for rare inherited diseases.  相似文献   

17.
We previously demonstrated that coagulation factor VIII (FVIII) accelerates proteolytic cleavage of von Willebrand factor (VWF) by A disintegrin and metalloprotease with thrombospondin type 1 repeats (ADAMTS13) under fluid shear stress. In this study, the structural elements of FVIII required for the rate-enhancing effect and the biological relevance of this cofactor activity are determined using a murine model. An isolated light chain of human FVIII (hFVIII-LC) increases proteolytic cleavage of VWF by ADAMTS13 under shear in a concentration-dependent manner. The maximal rate-enhancing effect of hFVIII-LC is ∼8-fold, which is comparable with human full-length FVIII and B-domain deleted FVIII (hFVIII-BDD). The heavy chain (hFVIII-HC) and the light chain lacking the acidic (a3) region (hFVIII-LCΔa3) have no effect in accelerating VWF proteolysis by ADAMTS13 under the same conditions. Although recombinant hFVIII-HC and hFVIII-LCΔa3 do not detectably bind immobilized VWF, recombinant hFVIII-LC binds VWF with high affinity (KD, ∼15 nm). Moreover, ultra-large VWF multimers accumulate in the plasma of fVIII−/− mice after hydrodynamic challenge but not in those reconstituted with either hFVIII-BDD or hFVIII-LC. These results suggest that the light chain of FVIII, which is not biologically active for clot formation, is sufficient for accelerating proteolytic cleavage of VWF by ADAMTS13 under fluid shear stress and (patho) physiological conditions. Our findings provide novel insight into the molecular mechanism of how FVIII regulates VWF homeostasis.  相似文献   

18.
AAV as a viral vector for human gene therapy   总被引:7,自引:0,他引:7  
Investigation of the adeno-associated virus (AAV) life cycle has enabled the establishment of methodology and identification of critical cis-acting sequences required for recombinant AAV production. Vectors derived from the defective human parvovirus (AAV) have been used for successful gene transfer and expression in many diverse mammalian cell types, such as erythroid, airway epithelium, and neuronal cells. One of the crucial steps in the continued case of AAV as a vector is the development of packaging systems that will allow efficient encapsidation of foreign genes into AAV virions. For this reason, the focus of this article will be generation of recombinant AAV vectors.  相似文献   

19.
Syndromic retinitis pigmentosa (RP) is the result of several mutations expressed in rod photoreceptors, over 40 of which have so far been identified. Enormous efforts are being made to relate the advances in unraveling the patho-physiological mechanisms to therapeutic approaches in animal models, and eventually in clinical trials on humans. This review summarizes briefly the current clinical management of RP and focuses on the new exciting treatment possibilities. To date, there is no approved therapy able to stop the evolution of RP or restore vision. The current management includes an attempt at slowing down the degenerative process by vitamin supplementation, trying to treat ocular complications and to provide psychological support to blind patients. Novel therapeutic may be tailored dependant on the stage of the disease and can be divided in three groups. In the early stages, when there are surviving photoreceptors, the first approach would be to try to halt the degeneration by correction of the underlying biochemical abnormality in the visual cycle using gene therapy or pharmacological treatment. A second approach aims to cope with photoreceptor cell death using neurotrophic growth factors or anti-apoptotic factors, reducing the production of retino-toxic molecules, and limiting oxidative damage. In advanced stages, when there are few or no functional photoreceptors, strategies that may benefit include retinal transplantation, electronic retinal implants or a newly described optogenetic technique using a light-activated channel to genetically resensitize remnant cone-photoreceptor cells.  相似文献   

20.
Diabetes mellitus type 1 (DM1) represents one of the most obvious targets for successful treatment by gene transfer. The disease provides targets and methods for therapy that include suppression of autoimmunity, restoration of insulin responsiveness, functional replacement of pancreatic islets, and correction of vascular and nerve damage associated with prolonged hyperglycemia. The pathogenesis of DM1 is well understood and gene sequences are known that would support these various approaches for genetic intervention. However, a key limitation at present is the availability of efficient and reliable methods for delivery and sustained expression of the transferred DNA. Most genetic vectors are derived from viruses, and recent improvements in adenovirus-derived, lentivirus-derived, and adeno-associated virus-derived vectors suggest that these will have successful application to diabetes in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号