首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the hunting behaviour of Myrmicaria opaciventris (Hymenoptera: Formicidae) in order to evaluate if it can be used as a biological control agent against the termites that damage sugarcane plantations. Hunting workers foraged in groups and recruited nestmates at short-range when they encountered large termite soldiers or groups of small termite workers. Differences in prey capture concerned the: (1) means of detection (from a distance or by contact); (2) termite body part seized (small termites seized by the body; large termites by an appendage); (3) percentages of prey abandoned; and (4) use of venom. The sting of the workers is spatulated implying a topical application of the venom on the prey. Large termites were stretched by several workers whose adherence to the substrate is facilitated by well-developed arolia and claws on the legs while others spread venom on the body and carved it up. An adaptation to termite capture was noted with a distribution of tasks between the workers which subdued prey, and those which transported it. In the former case, the workers easily eliminated termite soldiers, successively attacked several termite workers and even captured new individuals while holding the first ones captured between their mandibles before retrieving them all at once. The remaining individuals were retrieved by the transporting workers. Given this particularly effective predatory strategy, we concluded that, under certain conditions, M. opaciventris can be used as a biological control agent against termites.  相似文献   

2.
Enterobacter cloacae, one of the indigenous gut bacteria of the Formosan subterranean termite (Coptotermes formosanus), was genetically modified with a transposon Tn5 vector containing genes (tcdA1 and tcdB1) encoding orally insecticidal proteins from the entomopathogenic bacterium Photorhabdus luminescens subsp. laumondii TT01, a symbiont of the entomopathogenic nematode Heterorhabditis bacteriophora, for termite control. In the laboratory, termites were fed filter paper inoculated with the recombinant bacteria. The chromosomal expression of the introduced genes showed that there were insecticidal activities against termite workers and soldiers challenged with the transformed bacteria. After termites were fed recombinant bacteria, the termite mortality was 3.3% at day 5, and it increased from 8.7% at day 9 to 93.3% at day 29. All the dead termites contained the recombinant bacteria in their guts. Transfer of the recombinant bacteria occurred between donor workers (initially fed recombinant bacteria) and recipient workers (not fed). More than 20% of the recipient termites ingested recombinant bacteria within 2 h, and 73.3% of them had ingested recombinant bacteria after 12 h. The method described here provides a useful alternative for sustainable control of the Formosan subterranean termite (C. formosanus) and other social insects, such as the imported red fire ant (Solenopsis invicta).  相似文献   

3.
Escherichia coli was transformed with a recombinant plasmid (pEGFP) containing the genes for ampicillin resistance and Green Fluorescent Protein (GFP). Escherichia coli expressing GFP (E. coli/GFP+) was then fed to workers of the termite Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). The transformed bacteria in the termite guts were detected by growing the gut flora under selective conditions and then checking the cultures for fluorescence. Recombinant plasmids in the termite gut were detected by plasmid extraction with subsequent restriction enzyme digest. The presence of the GFP gene in the gut of termites fed with E. coli/GFP+ was verified by PCR amplification. Transformed E. coli were ingested rapidly when workers fed on filter paper inoculated with E. coli/GFP+. After 1 day, 42% of termite guts harbored E. coli/GFP+. Transfer of E. coli/GFP+ from donor termites (fed with E. coli/GFP+) to recipients (fed with moist filter paper) occurred within 1 day. However, without continuous inoculation, termites lost the transformed bacteria within 1 week.  相似文献   

4.
Antitermitic quinones from Diospyros sylvatica   总被引:1,自引:0,他引:1  
Six quinones were isolated from the chloroform extract of the roots of Diospyros sylvatica and identified as 2-methyl-anthraquinone, plumbagin, diosindigo, diospyrin, isodiospyrin and microphyllone. The effect of the root extract on the orientation and survival of the subterranean termite, Odontotermes obesus was tested. In addition, four of these quinones were tested on the survival of the subterranean termite. In a direct-choice experiment, exposure to an extract-treated filter disc had a significantly repellent effect over the solvent-treated filter disc. The no-choice experiment revealed the toxic property of the extract as well as the tested quinones and showed high mortality of the O. obesus workers after 48 h on forced exposure. The major termiticidal components identified were plumbagin, isodiospyrin and microphyllone while diospyrin was not toxic to termites at the concentration tested. All the quinones are reported for the first time from D. sylvatica.  相似文献   

5.
6.
Indigenous gut bacteria of the Formosan subterranean termite (Coptotermes formosanus Shiraki, Isoptera: Rhinotermitidae) were used as shuttle systems to deliver, express and spread foreign genes in termite colonies. The gut bacterium Enterobacter cloacae was transformed with a recombinant plasmid (pEGFP) containing genes encoding ampicillin resistance and green fluorescent protein (GFP). In laboratory experiments, termite workers and soldiers from three colonies were fed with filter paper inoculated with transformed bacteria. Transformed bacteria were detected in termite guts by growing the entire gut flora under selective conditions and checking the cultures visually for fluorescence. We demonstrated that (1) transformed bacteria were ingested within a few hours and the GFP gene was expressed in the termite gut; (2) transformed bacteria established a persistent population in the termite gut for up to 11 weeks; (3) transformed bacteria were efficiently transferred throughout a laboratory colony, even when the donor (termites initially fed with transformed bacteria) to recipient (not fed) ratio was low; (4) transformed E. cloacae were transferred into soil; however, they did not accumulate over time and the GFP plasmid was not transferred to other soil bacteria. In the future, transgenic bacteria may be used to shuttle detrimental genes into termite colonies for improved pest control.  相似文献   

7.
Costs associated with subterranean termite damage and control are estimated to approach $2 billion annually in the United States alone. The Formosan subterranean termite, Coptotermes formosanus Shiraki, is one of the more economically important subterranean species. In recent years, the shortcomings associated with conventional chemical control methods have prompted policymakers and scientists to evaluate the potential for biological control of subterranean termites (C. formosanus in particular), that is, to determine the potential for natural enemies - predators, parasitoids and pathogens - to suppress termite populations. Ants are the greatest predators of termites, and may have a considerable local impact on termite populations in some areas of the world. A few parasitoids of termites are known, but their potential for regulating termite populations seems negligible. Characteristics of the colony, such as a protected, underground location (and, for the C. formosanus nest, its modular and dispersed nature), are likely to limit the impact predators and parasitoids have on subterranean termites. Thus, there seems little potential for use of these agents for subterranean termite control. For various reasons, pathogenic organisms, such as viruses, bacteria, Protozoa, nematodes and most fungi, have shown little promise for use in biological termite control. However, research suggests that strains of two well-studied, endoparasitic fungi, Beauveria bassiana and Metarhizium anisopliae, when employed in baiting schemes, may offer the potential for at least some measure of subterranean termite control, although their successful use is compromised by a number of inherent biological limitations and logistical problems that have yet to be solved. Although not strictly in the realm of classical biological control, recent studies suggest that natural products, such as ant semiochemicals and fungal metabolites (siderophores), or their synthetic analogues, eventually might find a use in termite control programmes as repellents or insecticides in wood treatments or soil applications if stable formulations can be developed.  相似文献   

8.
Xylophagous termites possess symbiotic bacteria that fix atmospheric nitrogen (N(2)). Although symbiotic N(2) fixation is central to termite nutrition and ecologically important, it is energetically costly. Using stable isotopes, we tested the hypothesis that symbiotic N(2) fixation would decrease in workers of the eastern subterranean termite, Reticulitermes flavipes Kollar, which were exposed to high nitrogen diets. To calculate the isotope discrimination factor occurring as a result of digestion, Δ(dig), and which occurs as the result of N(2) fixation, Δ(fix), symbiotic N(2) fixation was inhibited via force feeding termites the antibiotic kanamycin. Antibiotic-treated termites and control (N(2)-fixing) termites were exposed to different concentrations of dietary N (0, 0.21, and 0.94% N), their (15)N signatures were obtained, and the percent nitrogen derived from the atmosphere within termite samples was calculated. As we hypothesized, symbiotic N(2) fixation rates were negatively correlated with dietary N, suggesting that high concentrations of dietary N suppressed symbiotic N(2) fixation in R. flavipes. A comparison of the (15)N isotope signatures of antibiotic-treated termites with their food sources demonstrated that Δ(dig) = 2.284‰, and a comparison of the (15)N isotope signatures of antibiotic-treated termites with control termites indicated that Δ(fix) = -1.238‰. These are the first estimates of Δ(dig) for R. flavipes, and the first estimate of Δ(fix) for any N(2)-fixing termite species.  相似文献   

9.
The Formosan subterranean termite, Coptotermesformosanus Shiraki (Isoptera: Rhinotermitidae), accidentally brought into the United States, has become a major urban pest, causing damage to structures and live trees. Because of increasing restrictions on the use of conventional termiticides, attention is focused on finding safer alternative methods for termite management. Oil from citrus peel, referred to here as orange oil extract (OOE), contains -92% d-limonene, and it is generally known to be toxic to insects. In laboratory experiments, 96 and 68% termites were killed in 5 d when OOE at 5 ppm (vol:vol) was dispensed from the top or bottom, respectively, with termites held at the opposite end of a tight-fitting plastic container. Apart from high mortality, workers exposed to vapor consumed significantly less filter paper than controls. However, when termites were exposed to OOE vapor, even at 10 ppm, in the void of a model wall, there was very little mortality. Termites did not tunnel through glass tubes filled with sand treated with 0.2 or 0.4% OOE. Sand treated with OOE was extracted each week for 8 wk to determine the remaining amount of d-limonene. Results indicated that there was a sharp decline in the quantity of d-limonene during the first 3 wk to a residual level that gradually decreased over the remaining period. With a suitable method of application and in combination with other control practices, OOE can be effectively used for the control of subterranean termites.  相似文献   

10.
This study evaluated the effect of Summon Preferred Food Source on feeding, tunneling, and bait station discovery by the Formosan subterranean termite, Coptotermes formosanus Shiraki. Bioassays were conducted to determine whether Summon disks affected the aggregation and feeding behavior of termites and to determine whether the presence of Summon disks caused increased recruitment of termites to wood blocks. When termites encountered the disk, they immediately clustered on top of the disk. Termites were observed aggregating on top of the disk throughout the experiment. Consumption of Summon disks was significantly greater than consumption of cardboard disks in paired choice tests. The presence of a Summon disk on top of a wood block caused a significant increase in consumption of the wood block. Bioassays also were conducted to determine whether water extracts of Summon disks affected termite behavior. Consumption of filter paper disks treated with a water extract of Summon disks was significantly greater than consumption of control filter paper disks. Termites tunneled through sand treated with a water extract of Summon disks faster than they tunneled through untreated sand. In a field test, the rate of infestation of monitoring stations with a Summon disk was 3 times greater than the rate of infestations of stations without a disk.  相似文献   

11.
This study investigated the efficacy of extracts from four plants, namely: Azadirachta indica, Ocimum gratissimum, Vernonia amygdalina and Nicotiana tabaccum at managing the population of termites in the laboratory and in the field. The synthetic insecticide (Chlorpyrifos 0.1%) and water were included in the study as controls. In the laboratory, contact toxicity was conducted by topical application of the treatments to the thorax of soldier termite Macrotermes bellicossus and mortality noted. The repellent action of the treatments was tested by releasing 10 of the termites into the center of Petri dishes lined with treated filter paper. The number of insects present on the control and treatment halves was recorded and the percentage repellence values were computed. The residual effects of the treatments was studied by placing five termites in Petri dishes lined with filter paper that have been treated with the treatments 24 hours prior to its placement and insect mortality was noted. The studies were conducted using complete randomised design with four replicates. Field trial of the treatments was conducted on termitaria that were demolished and disinfested with five liters of the treatments. The results showed that all the treatments caused 95–100% mean insect mortality 10 hours after insect exposure and have repellence values of between 40 and 65%. The residual effects of the treatments caused termite mean mortality of 100% in Chlorpyrifos and N. tabacum-treated surfaces and between 50 and 65% in others. In the field, only A. indica and Chlopyrifos were effective at curtailing termite upsurge and rebuild of termitaria.  相似文献   

12.
Phenotypic plasticity is thought to be of prime importance for the evolution of castes in social insects. However, conclusions are generally drawn from holometabolous social Hymenoptera, whereas little is known about the hemimetabolous termites. We investigated the influence of environmental conditions on the expression of the alternative phenotypes, worker versus dispersing sexual, in the drywood termite Cryptotermes secundus. Season played a fundamental role in this regulatory process by setting developmental deadlines. Individuals failing to reach these deadlines developed back to workers, whereas those in time progressed to dispersing sexuals. This seasonal regulation was superposed by the influence of food availability in the nest that adjusted the number of remaining workers versus dispersing sexuals. In line with declining benefits at the natal nest, there were more dispersing sexuals when the food was reduced. Provided that the life type of C. secundus reflects the ancestral state in termite evolution, as is often assumed, our results support the hypothesis that termite workers originated from individuals failing in sexual development. Furthermore, a taxonomical comparison between termite species with different life-styles stresses the importance of a predictable variation in food availability for the existence of a plastic development and the occurrence of conditionally expressed phenotypes in termites. Compared with social Hymenoptera, the mechanisms involved in caste polyphenism in termites differed considerably, which demands more differentiated discussions about social insects caste polyphenism.  相似文献   

13.
The subterranean termite Reticulitermes speratus usually nests in rotten wood trunks, which may also be occupied by the Japanese garden ant Lasius japonicus. Few battles were observed between them under ordinary circumstances because they inhabit separate nesting sites. However, once the termite nesting sites were artificially broken, the ant workers invaded and hunted the termites, although the termite soldiers fought against the ants. This study aims to confirm intra‐ and inter‐specific chemical interactions between the termite and ant. Solid phase microextraction–gas chromatograph (SPME‐GC) analyses revealed that R. speratus soldiers secreted caste‐specific sesquiterpene hydrocarbon when they were irritated. Both the hexane extract of the soldiers and its hydrocarbon fraction, as well as the crushed soldier bodies, attracted the soldiers but dispersed the workers when presented on the trails. We also confirmed that the soldier chemicals enhanced aggressiveness of L. japonicus, which rushed around the odor sources and hunted any termites that were present. These findings suggest that: (i) the soldier–specific secretion might serve as an alarm pheromone in termite chemical communication, in which components recruit soldiers and also warn the other colony members away; and (ii) termite communication is eavesdropped on by L. japonicus workers to locate and hunt the termites.  相似文献   

14.
Abstract. Termites contribute nitrogen to their habitat through the nitrogenase activity of their bacterial symbionts. Previous studies indicate that high levels of dietary nitrogen suppress nitrogen fixation in termites. We examined the effects of dietary nitrogen on fixation rates in termites in both field and laboratory experiments. Ten field cplonies of Reticulitermes were collected and assayed for nitrogenase activity in July 1993, October 1993, January 1994, and April 1994. The nitrogen content of the wood collected with each colony was determined. There was no correlation between termite nitrogen fixation rates and the amount of nitrogen in their food for any of the four collection periods. In laboratory experiments, nitrogen fixation rates decreased when termites were fed filter paper treated with 2% and 5% ammonium nitrate or a 5% mixture of the amino acids proline, tryptophan and leucine, compared to water-treated controls. By contrast, the nitrogenase activity of termites fed filter paper treated with 2% and 5% ammonium phosphate, a mixture of the amino acids histidine, serine and aspartic acid, or 2% and 5% urea did not differ from the controls. However, nitrogenase activity increased when termites were fed with 2% uric acid. No clear association exists between termite nitrogen fixation and the nitrogen content of their food.  相似文献   

15.
1. Termites are one of the most important invertebrate ecosystem engineers in tropical regions, which may be quantified using termite biomass data. However, biomass data are particularly difficult to collect as they rely on termites being weighed in the field, which may neither be possible nor convenient. Local scale linear regression models, based on termite head widths (mm) and body masses (mg), have been used in the past to estimate termite biomass using head width and abundance data. However, these models represent very limited numbers of termite taxa from single sites. In the present study, I provide one of the most representative linear regression models available based on 90 samples from three different countries (Peru, Kenya, and Malaysia). 2. Although the linear regression model under‐ or overestimated body weights of taxa with characteristic features (e.g. large heads of Odontotermes workers or elongated abdomens of Kalotermitidae) it provides a robust method for estimating termite biomass at the community level. Additionally, while there are limitations related to the general model, which may be solved by focusing on taxa specific data and the use of higher accuracy equipment, it is the first model to facilitate termite biomass estimates using the head with and abundance data only. 3. This study encourages the use of termite biomass data to gain a better understanding of termites in ecosystem processes and calls for comparative data to be gathered for the purpose of creating models that may be representative of the variability among termite taxa.  相似文献   

16.
Predation pressure from ants is a major driving force in the adaptive evolution of termite defense strategies and termites have evolved elaborate chemical and physical defenses to protect themselves against ants. We examined predator–prey interactions between the woodland ant, Aphaenogaster rudis (Emery) and the eastern subterranean termite, Reticulitermes flavipes (Kollar), two sympatric species widely distributed throughout deciduous forests in eastern North America. To examine the behavioral interactions between A. rudis and R. flavipes we used a series of laboratory behavioral assays and predation experiments where A. rudis and R. flavipes could interact individually or in groups. One-on-one aggression tests revealed that R. flavipes are vulnerable to predation by A. rudis when individual termite workers or soldiers are exposed to ant attacks in open dishes and 100% of termite workers and soldiers died, even though the soldiers were significantly more aggressive towards the ants. The results of predation experiments where larger ant and termite colony fragments interacted provide experimental evidence for the importance of physical barriers for termite colony defense. In experiments where the termites nested within artificial nests (sand-filled containers), A. rudis was aggressive at invading termite nests and inflicted 100% mortality on the termites. In contrast, termite mortality was comparable to controls when termite colonies nested in natural nests comprised of wood blocks. Our results highlight the importance of physical barriers in termite colony defense and suggest that under natural field conditions termites may be less susceptible to attacks by ants when they nest in solid wood, which may offer more structural protection than sand alone.  相似文献   

17.
为探讨白蚁消化道形态品级差异及其系统学意义,对4个科8种白蚁兵蚁和工蚁的消化道进行比较形态学研究.结果表明:低等白蚁的兵蚁和(拟)工蚁形态较为相似,高等白蚁的兵蚁与工蚁局部特征存在明显差异.由低等到高等兵蚁和工蚁消化道各部分差异呈增多趋势.前、中、后肠占消化道的百分比在山林原白蚁Hodotermopsis sjoest...  相似文献   

18.
The foraging behavior and survivorship of termites are modified by the presence of wood-inhabiting fungi. Nonetheless, it is not clear if these interactions are beneficial, negative, or neutral for termites. We conducted a meta-analytical review to determine if the presence of wood-inhabiting fungi affects the foraging behavior and survivorship of termites. Overall, the presence of wood-inhabiting fungi in a resource used by termites was positive, increasing resource consumption by 120%, and aggregation behavior by 81%. The presence of fungi also increased termite trail-following by approximately 200% and increased survival by 136%. The results varied, however, according to the type of fungi evaluated. Decay fungi and sap-stain fungi elicited positive responses in termites, whereas molds did not affect the consumption of cellulose by termites. Amongst the decay fungi group, white-rot fungi caused the strongest and most positive response in all termite behaviors evaluated, although brown-rot fungi is known to be preferred by termites. The results of our study, therefore, suggest that wood-inhabiting fungi are potential facilitators of the foraging behavior and survivorship of termites. These results have great implications for termite biocontrol, as well as for knowledge of the ecological aspects of termite–fungi interactions.  相似文献   

19.
Fungus-growing termites live in obligate mutualistic symbiosis with species of the basidiomycete genus Termitomyces , which are cultivated on a substrate of dead plant material. When the termite colony dies, or when nest material is incubated without termites in the laboratory, fruiting bodies of the ascomycete genus Xylaria appear and rapidly cover the fungus garden. This raises the question whether certain Xylaria species are specialised in occupying termite nests or whether they are just occasional visitors. We tested Xylaria specificity at four levels: (1) fungus-growing termites, (2) termite genera, (3) termite species, and (4) colonies. In South Africa, 108 colonies of eight termite species from three termite genera were sampled for Xylaria . Xylaria was isolated from 69% of the sampled nests and from 57% of the incubated fungus comb samples, confirming high prevalence. Phylogenetic analysis of the ITS region revealed 16 operational taxonomic units of Xylaria , indicating high levels of Xylaria species richness. Not much of this variation was explained by termite genus, species, or colony; thus, at level 2–4 the specificity is low. Analysis of the large subunit rDNA region, showed that all termite-associated Xylaria belong to a single clade, together with only three of the 26 non-termite-associated strains. Termite-associated Xylaria thus show specificity for fungus-growing termites (level 1). We did not find evidence for geographic or temporal structuring in these Xylaria phylogenies. Based on our results, we conclude that termite-associated Xylaria are specific for fungus-growing termites, without having specificity for lower taxonomic levels.  相似文献   

20.
This study examined the responses of two termite species, the Formosan subterranean termite, Coptotermes formosanus Shiraki, and the eastern subterranean termite, Reticulitermes flavipes (Kollar), to three types of wood decay fungi: a brown rot fungus, Gloeophyllum trabeum (Persoon: Fries) Murrill; a white rot fungus, Phanerochaete chrysosporium Burdsall; and a litter rot fungus, Marasmiellus troyanus (Murrill) Singer. We also examined the responses of termites to these three types of fungi grown on different substrates. For all three fungal species, both termite species showed a strong preference for fungus-infected sawdust over uninfected sawdust. In choice tests, both termite species preferred sawdust infected with either M. troyanus or P. chrysosporium over G. trabeum. However, termites did not show any preference for fungus-infected potato dextrose agar over uninfected potato dextrose agar. Tunneling activity of C. formosanus was greater in sand treated with methanol extracts of fungus-infected sawdust than in sand treated with extracts of uninfected sawdust. Because chemicals in the fungal extracts caused termites to tunnel further into treated sand than untreated sand, these chemicals could potentially be used to direct termite foraging toward bait stations in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号